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Abstract—In this paper we propose a solution to the problem
of tracking quasi-periodically varying systems based on the
local basis function (LBF) approach. Within this framework,
parameter trajectories are locally approximated using linear
combinations of specific functions of time known as basis func-
tions. We derive both bias and variance characteristics of LBF
estimators. Additionally, we demonstrate that the computational
burden associated with LBF estimation algorithms can be signif-
icantly reduced, without sacrificing high estimation accuracy, by
employing the computationally fast, approximate version of the
LBF scheme.

Index Terms—quasi-periodically varying systems, identifica-
tion, adaptive algorithms, local basis function method

I. INTRODUCTION

This work addresses the identification and tracking of quasi-
periodically varying systems, prevalent in various fields. One
example is mechanical systems [1], [2], where the cyclic nature
of parameter changes is attributed to the presence of rotating
elements. Another example is underwater acoustic (UWA)
communication systems [3], [4], [5], where channel param-
eters, representing reflections of the emitted sound waves
from surrounding objects (ship, sea bottom, sea surface, etc.)
undergo periodic-like changes due to the Doppler effect. The
Doppler effect, primarily induced by the relative transmitter-
object motion and sea surface movement, varies across differ-
ent propagation paths [7], [8]. Given that both the amplitudes
and frequencies of parameter changes may fluctuate over time
due to relative speed variations and environmental factors,
accurate tracking is crucial for the proper functioning of the
UWA communication system.

The methods presented in this paper are noncausal, hence,
can be implemented only in applications allowing almost real-
time operation. An example of such application from the UWA
communication domain is self-interference (SI) cancellation in
UWA communication systems operating in full-duplex mode.
In this application both communication devices transmit and
receive signals simultaneously, using the same bandwidth [9],
[10], [11]. The operational principle of these devices leads to
contamination of the signal received from the far-end trans-
mitter with the signal produced by a near-end transmitter and
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its reflections from underwater objects. This self-interference
should be canceled, which requires accurate estimates of quasi-
periodically varying SI channel.

The signals in the UWA communication systems are typ-
ically complex-valued. Hence we will adopt the following
notation: xxx∗ denotes complex conjugate and xxxH is a Hermitian
(conjugate) transpose of a matrix or vector.

II. PROBLEM FORMULATION

Usually the UWA communication channel is modeled using
the finite impulse response (FIR) model [3], [5], [6]

y(t) =

p∑
i=1

β∗
i (t)u(t− si) + e(t), (1)

where t = . . . ,−1, 0, 1, . . . , is a discrete time, {u(t)} rep-
resents transmitted signal, {e(t)} is a measurement noise,
and {y(t)} denotes received signal. The parameter β∗

i (t) =
θ∗i (t)e

jω0nit is quasi-periodically time-varying where θi(t) is
the slowly time-varying delay-Doppler-spread function, and
(si, ni) ∈ P = {(s1, n1), . . . , (sp, np)} are pairs corre-
sponding to p different scatterers at different time delay and
Doppler shift. Their values can be found prior to identification
[12]. Active time delays can be also estimated effectively
during identification using the preestimation technique [11].
The frequency is defined as ω0 = 2π∆ν, where ∆ν is the
Doppler spacing. For more details on the interpretation of
these quantities, see [4]. Many dedicated techniques have been
developed for the identification of such systems, with the best-
known method being the time-updated recursive least squares
(TU-RLS) method [4], [13]. Also, classical general-purpose
methods for the identification of nonstationary systems, such
as the local basis function (LBF) method [14], can be em-
ployed.

In this study we improve the approach based on the LBF
method by exploiting the available prior knowledge of the
“structure” of parameter changes.

First, we rewrite the model equation (1) as

y(t) =

p∑
i=1

θ∗i (t)e
jω0nitu(t− si) + e(t) = θθθH(t)φφφ(t) + e(t).

(2)
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In the equation above, θθθ(t) = [θ1(t), . . . , θp(t)]
T is a vector

of time-varying scaling factors, and φφφ(t) = [ejω0n1tu(t −
s1), . . . , e

jω0nptu(t− sp)]
T is the regression vector.

III. IDENTIFICATION USING THE LOCAL BASIS FUNCTION
(LBF) METHOD

Assume that each scaling factor θi(t), i = 1, . . . , p can be
modeled, within the analysis window Tk(t) = [t − k, t + k]
centered on the time instant t, by a linear combination of
known, linearly independent functions of time, called basis
functions

θi(t+ τ) =

m∑
l=1

f∗l (τ)ail(t) = fffH(τ)αααi(t),

τ ∈ Ik = [−k, k], i = 1, . . . , p,

(3)

where fff(τ) = [f1(τ), . . . , fm(τ)]T is the vector of basis
functions, and αααi(t) = [ai1(t), . . . , aim(t)]T is the vector of
basis function coefficients. It is assumed that the basis function
coefficients are constant within the analysis window. However,
since the estimation is performed in a sliding window mode,
their values can change over time, hence the time dependence.
Within this work we adopt the orthonormal discrete-time
Legendre polynomials (ODLPs) [15].

Under the assumption above, the output signal can be locally
modeled as

y(t+ τ) = αααH(t)ψψψ(t, τ) + e(t+ τ), τ ∈ Ik, (4)

where ψψψ(t, τ) = φφφ(t+ τ)⊗ fff(τ) is the generalized regression
vector, and ⊗ denotes the Kronecker product. The LBF
estimates of system parameters can be computed as

α̂ααLBF(t) = argmin
ααα

k∑
τ=−k

|y(t+ τ)−αααHψψψ(t, τ)|2

= PPP−1(t)ppp(t)

θ̂θθLBF(t) = FFF(0)α̂ααLBF(t),

(5)

where

PPP(t) =

k∑
τ=−k

ψψψ(t, τ)ψψψH(t, τ)

ppp(t) =

k∑
τ=−k

ψψψ(t, τ)y∗(t+ τ),

(6)

and FFF(τ) = IIIp ⊗ fffH(τ), τ ∈ Ik, where IIIp is a p× p identity
matrix.

Note that if the basis functions are recursively computable,
i.e., if there exists a m×m matrix AAA such that fff(i−1) = AAAfff(i),
then the generalized regression matrix PPP(t) and the vector ppp(t)
can be recursively updated using the formulas given in [14].

IV. PROPERTIES OF THE LBF METHOD

The properties of the LBF estimator will be derived under
the following assumptions

(A1) {u(t)} is a sequence of zero-mean, independent circular
complex random variables with variance σ2

u and fourth
statistical moment E[|u(t)|4] = c4u.

(A2) {e(t)}, independent of {u(t)}, is a sequence of zero-
mean, independent and identically distributed (i.i.d.)
circular complex random variables of variance σ2

e .
The first assumption is typically met in UWA communication,
where the input signal can be modeled as an i.i.d. sequence
of the form u(t) = ±1± j.

Under (A1) and (A2), the generalized regression matrix
tends to its expected value in a mean squared sense

lim
k→∞

PPP(t) = σ2
uIIImp m.s. (7)

This fact can be easily proven using a technique similar to
the one presented in [16], after noting that the values of the
ODLPs can be easily bounded for growing k.

The values of ODLPs can be found using the following
formulae [15]

fl+1(τ) = bl,K

l∑
s=0

(−1)s
(
l

s

)(
l + s

s

)
(τ + k)(s)

(2k)(s)
,

τ ∈ Ik, l = 0, . . . ,m− 1,

(8)

where

τ (s) =

{
1 if s = 0

τ(τ − 1) . . . (τ − s+ 1) if s > 0

is the backward factorial function of order s, and bl,K is the
normalizing constant [15]

bl,k =

√
(2l + 1)(2k)(l)

(2k + l)(l+1)
. (9)

The aforementioned bound, which follows directly from (8)
and (9), has the form

∃c>0∀τ∈Ik∀l∈{1,2,...,m}|fl(τ)| ≤
c√
k
. (10)

The asymptotic result (7) justifies the approximation that
holds when k becomes sufficiently large

α̂ααLBF(t) ∼=
1

σ2
u

ppp(t)

θ̂θθLBF(t) ∼=
1

σ2
u

FFF(0)ppp(t) =
1

σ2
u

k∑
τ=−k

g(τ)φφφ(t+ τ)y∗(t+ τ),

(11)

where g(τ) = fffH(0)fff(τ), τ ∈ Ik. The last transition follows
from the properties of the Kronecker product.

A. Bias

Note that

θ̂θθLBF(t) ∼=
1

σ2
u

k∑
τ=−k

g(τ)φφφ(t+ τ)φφφH(t+ τ)θθθ(t+ τ)

+
1

σ2
u

k∑
τ=−k

g(τ)φφφ(t+ τ)e∗(t+ τ).

(12)
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Hence, if the measurement noise is independent of the input
signal, it holds that

E[θ̂θθLBF(t)] ∼=
k∑

τ=−k

g(τ)θθθ(t+ τ), (13)

which means that the mean path of LBF estimates is ap-
proximately equal to the result of filtering the true parameter
trajectory using a noncausal FIR filter with basis-dependent
impulse response g(τ). It is easy to check that the filter based
on ODLPs is low-pass.

If the parameter trajectories inside the analysis window
Tk(t) are exactly linear combinations of the chosen basis
functions, then the LBF estimator is unbiased. Otherwise, the
average estimated trajectory can be seen as an orthogonal
projection of the true trajectory onto a subspace spanned by
the basis functions.

B. Covariance matrix

Assume that parameter trajectories are linear combinations
of the chosen basis functions within the analysis window Tk(t)
(i.e., the LBF estimator is unbiased). Note that this condition
is approximately met if the number of basis functions m is
sufficiently large. Using (3), the estimation error can be written
in the form

∆θθθ(t) = θ̂θθLBF(t)− θθθ(t)

∼= FFF(0)

[
1

σ2
u

k∑
τ=−k

ψψψ(t, τ)ψψψH(t, τ)− IIImp

]
ααα(t)

+
1

σ2
u

k∑
τ=−k

g(τ)φφφ(t+ τ)e∗(t+ τ) = vvv1(t) + vvv2(t).

(14)

Since E[vvv1(t)vvv
H
2 (t)] = E[vvv2(t)vvv

H
1 (t)] = 0 due to the mutual

independence of the measurement noise and input signal, the
covariance matrix is given by

cov[θ̂θθLBF(t)] = E[∆θθθ(t)∆θθθH(t)]

= E[vvv1(t)vvv
H
1 (t)] + E[vvv2(t)vvv

H
2 (t)],

(15)

It can be shown [16] that the elements of E[vvv1(t)vvv
H
1 (t)] are

O
(
1
k

)
. So, for k large enough and under (A2), the following

approximation holds

cov[θ̂θθLBF(t)] ∼= E[vvv2(t)vvv
H
2 (t)]

=
1

σ4
u

k∑
τ=−k

|g(τ)|2E
[
φφφ(t+ τ)φφφH(t+ τ)

]
σ2
e

=
σ2
e

σ2
uLLBF

IIIp,

(16)

where LLBF =
[∑k

τ=−k |g(τ)|2
]−1

is called the equivalent
memory of the LBF estimator.

V. FAST LOCAL BASIS FUNCTION (FLBF) METHOD

The LBF method provides high accuracy estimates at the
cost of high computational burden. This computational cost
can be reduced by using the fast version of the LBF approach
- the fLBF method [17]. This approach consists of two steps:
preestimation and postfiltering. The first step allows obtaining
approximately unbiased estimates, regardless of the type and
speed of parameter changes. The unbiasedness of preestimates
comes at the cost of a high variance of preestimation errors.
Therefore, additional filtering is necessary, and for this pur-
pose, the Savitzky-Golay filtering [18] is usually chosen [17].

The computation of the preestimates starts by finding expo-
nentially weighted least squares (EWLS) estimates of system
parameters

θ̂θθEWLS(t) = argmin
θθθ

t∑
τ=1

λt−τ [y(τ)− θθθHφφφ(τ)]2, (17)

where λ ∈ (0, 1) is the so-called forgetting constant. The
steady-state formula for preestimates boils down to the “in-
verse filtering” of the EWLS estimates

θ̃θθ(t) =
1

1− λ
[θ̂θθEWLS(t)− λθ̂θθEWLS(t− 1)]. (18)

The next step, postfiltering, is based on the model (3) and
leads to the following fLBF (fast LBF) estimates, approximat-
ing the LBF estimates

α̂ααfLBF(t) = argmin
ααα

k∑
τ=−k

|θ̃θθ(t+ τ)−FFF(τ)ααα|2

θ̂θθfLBF(t) = FFF(0)α̂ααfLBF(t).

(19)

It can be shown that this procedure simplifies to the filtering
operation [17]

θ̂θθfLBF(t) =

k∑
τ=−k

g(τ)θ̃θθ(t+ τ). (20)

It was shown in [17] that, in spite of its computational
simplicity, the fLBF scheme produces estimates that closely
approximate LBF estimates, i.e., θ̂θθfLBF(t) ∼= θ̂θθLBF(t).

VI. ADAPTIVE CHOICE OF m AND k

The number of basis functions m and the length of the
analysis window K = 2k+ 1 are crucial hyperparameters for
the LBF and fLBF methods. They control two components
of the mean squared parameter estimation error (MSE) - the
bias component and the variance component. Increasing m
and decreasing k increases the modeling capabilities and thus
reduces the bias at the cost of increasing the variance. The
opposite effect occurs when decreasing m and increasing k.
Therefore, the values of m and k should be carefully chosen to
achieve a trade-off between the bias and variance components
of the MSE. This can be done by parallel computation.
Suppose that M estimators equipped with different values of
(m, k) ∈ M = {(m1, k1), . . . , (mM , kM )} are run in parallel.
At each time instant we choose the estimator that minimizes
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the local sum of squares of the leave-one-out interpolation
errors

m(t), k(t) = argmin
(m,k)∈M

JLBF(t,m, k), (21)

where

JLBF(t,m, k) =

N∑
τ=−N

|εoLBF(t+ τ,m, k)|2, (22)

N denotes the half-width of the local decision window and

εoLBF(t,m, k) = y(t)− [θ̂θθ
o

LBF(t,m, k)]
Hφφφ(t). (23)

The estimates α̂ααo
(t,m, k) are obtained by excluding the

central observation from the analysis window

α̂αα
o
LBF(t,m, k) = argmin

ααα

k∑
τ=−k
τ ̸=0

|y(t+ τ)−αααHψψψ(t, τ)|2

θ̂θθ
o

LBF(t,m, k) = FFF(0)α̂αα
o
LBF(t,m, k).

(24)

Using the matrix inversion lemma [19], one can derive the
formula for the leave-one-out interpolation error εo(t,m, k)
which does not require solving (24)

εoLBF(t,m, k) =
εLBF(t,m, k)

1− δ(t,m, k)
, (25)

where δ(t,m, k) = ψψψH(t, 0)PPP−1(t)ψψψ(t, 0), and
εLBF(t,m, k) = y(t)− θ̂θθ

H

LBF(t,m, k)φφφ(t) is the interpolation
error.

As demonstrated in [20], the quantity δ(t,m, k) can be
approximated using the following formula

δ̄(m, k) = E[δ(t,m, k)] ∼= p fffH(0)fff(0). (26)

For the fLBF estimators, a similar procedure based on the
sums of the squared leave-one-out interpolation errors can be
constructed, resulting in [17]

εofLBF(t,m, k) =
εfLBF(t,m, k)− g(0)ε̃(t)

1− g(0)
, (27)

where εfLBF(t) = y(t) − θ̂θθ
H

fLBF(t)φφφ(t), and ε̃(t) = y(t) −
θ̃θθ
H
(t)φφφ(t).

VII. COMPUTER SIMULATIONS

For testing the proposed algorithms, we utilized a simulated
UWA communication channel with three parameters. The
experiments, as elaborated in [12], demonstrate the practical
utility of even such a simple model. The received (output)
signal is modeled as

y(t) = θ∗1(t)e
jω0tu(t− 2) + θ∗2(t)e

2jω0tu(t− 3)

+ θ∗3(t)e
4jω0tu(t− 10) + e(t).

(28)

The parameters θi(t), i = 1, 2, 3, were generated as
lowpass-filtered zero-mean circular Gaussian noises with a
variance of 2, sampled at frequency of 1000 Hz with a
bandwidth of 1 Hz. We set ω0 = 0.002π.

The input signal was a circular random sequence of the form
u(t) = ±1 ± j. The noise was a random circular Gaussian
sequence with variance equal to σ2

e = 3.8, or σ2
e = 0.38,

corresponding to signal-to-noise ratios (SNRs) of 5 and 15
dB, respectively. To mitigate boundary effects, the signal
generation started 500 time steps before identification and
concluded 500 time steps after the identification process was
halted.

The TU-RLS algortihm was implemented according to [13],
and its parameters µ and λ were chosen heuristically for each
SNR value to minimize the MSE score. They were set to µ =
0.0006, λ = 0.96 for SNR equal to 5 dB and µ = 0.002,
λ = 0.92 for SNR equal to 15 dB.

All the results presented below were obtained by comparing
βi(t) = θi(t)e

jω0nit, i = 1, 2, 3 with their estimates.
Table 1 presents the averaged MSE values (in decibels) over

100 independent realizations of measurement noise for the
”old” LBF method, based on the model (1), and the ”new”
one proposed in this paper, based on the model (2). The
letter “A” denotes the adaptive algorithm, combining results
provided by the algorithms equipped with m ∈ {1, 3, 5} and
k ∈ {50, 100, 200}, and “A0” denotes the adaptive algorithm
obtained after replacing δ(t,m, k) with δ̄(m, k). For both
adaptive algorithms N = 30.

TABLE I
THE MSE SCORE (IN DECIBELS) AVEREGED OVER 100 INDEPENDENT

REALIZATIONS OF THE MEASUREMENT NOISE, FOR THE LBF ALGORITHM
DESCRIBED IN [14] (OLD LBF) AND THE LBF APPROACH DESCRIBED IN

THIS PAPER (NEW LBF).

SNR 15 dB

Algorithm m\k 50 100 200

old LBF
1 -7.30 1.66 6.14
3 -18.57 -12.67 2.36
5 -16.68 -19.71 -6.64

new LBF

1 -21.05 -18.70 -9.41
3 -18.76 -21.86 -24.75
5 -16.68 -19.86 -22.94

A -22.19
A0 -22.11

TU-RLS -14.51

SNR 5dB

Algorithm m\k 50 100 200

old LBF
1 -6.23 1.73 6.15
3 -8.73 -9.47 2.43
5 -6.68 -9.83 -5.80

new LBF

1 -12.26 -14.10 -8.99
3 -8.76 -11.86 -14.89
5 -6.68 -9.86 -12.94

A -12.37
A0 -12.30

TU-RLS -7.62

The results for the “old” fLBF approach [17], based on the
model (1), and the “new” fLBF approach, based on the model
(2), are gathered in Table 2. The forgetting constant λ = 0.9
(EWLS) was chosen according to the rule proposed in [11].
As shown in the tables above, the LBF and fLBF algorithms
proposed in this paper for identifying systems with quasi-
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TABLE II
THE MSE (IN DECIBELS) SCORE AVEREGED OVER 100 INDEPENDENT
REALIZATIONS OF MEASUREMENT NOISE FOR THE FLBF ALGORITHM

DESCRIBED IN [17] (OLD FLBF) AND THE FLBF ALGORITHM PROPOSED
IN (17) - (19) (NEW FLBF).

SNR 15 dB

Algorithm m\k 50 100 200

old fLBF
1 -7.83 1.61 6.08
3 -18.04 -12.90 2.31
5 -16.12 -19.12 -6.74

new fLBF

1 -21.93 -19.88 -9.70
3 -18.73 -21.72 -24.61
5 -16.80 -19.78 -22.78

A -21.93

SNR 5 dB

Algorithm m\k 50 100 200

old fLBF
1 -6.61 1.69 6.10
3 -8.68 -9.52 2.39
5 -6.76 -9.72 -5.86

new fLBF

1 -12.25 -14.35 -9.22
3 -8.76 -11.74 -14.74
5 -6.84 -9.81 -12.80

A -12.25

periodically changing parameters consistently outperform the
algorithms discussed in [14], [17], and [4]. The adaptive algo-
rithms consistently match or outperform the best algorithms
employed in parallel computations, highlighting the adaptive
scheme as a crucial practical tool. An example of estimates
obtained for SNR equal to 5 dB using the TU-RLS method, the
”old” LBF method, and the ”new” LBF method is illustrated
in Figure 1.

Fig. 1. Comparison of the real part of the estimated parameter trajectory
(black line) obtained for three different identification methods, superimposed
on the real part of the true parameter trajectory (red line).

VIII. CONCLUSION

This paper introduced a new method for identifying systems
with quasi-periodically changing parameters, utilizing insights

into the structure of these parameter changes to improve
estimation outcomes. We explored the characteristics of the
proposed LBF method and introduced its fast, computationally
efficient version. For the selection of hyperparameters in both
LBF and fLBF algorithms, we suggested an adaptive scheme
relying on leave-one-out cross-validation. The algorithms de-
veloped in this study were effectively benchmarked against the
currently available state-of-the-art algorithms.
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