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DIFAR type underwater passive systems are one of the more commonly used tools for detecting
submarines. At the design stage, which usually uses computer simulations, it is necessary to generate
acoustic noise of the sea. It has been shown that correlating noise significantly reduces these errors
compared to the assumption that noise is uncorrelated. In addition, bearing errors have been shown to be
the same in systems with a commonly used antenna containing five hydrophones, as in a system without
a central hydrophone, which may be useful in some DIFAR system design solutions.
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1. Introduction

One of the most commonly used means of detec-
tion and location of submarines is the Directional Fre-
quency Analysis and Recording (DIFAR) sonobuoys
system. This is a passive system that operates by re-
ceiving the acoustic signals emitted by submarines, de-
tecting them and locating them. In recent years, DI-
FAR sonobuoys have also been used to track the mi-
grations of whales and to record the sounds they emit
(McDonald, 2004; Miller, 2012; Greene Jr. et al.,
2004). In general, DIFAR sonobuoys are equipped
with a hydroacoustic antenna consisting of five hy-
drophones, which constitute crossed pairs of gradi-
ent hydrophones and an additional central hydrophone
(Mallet, 1975; Salamon, 2004). Similar antenna
systems without a central hydrophone are also known
(Stover, 1969; Salamon et al., 2000). In this pa-
per, the authors will prove that both solutions are cor-
rect and provide similar bearing accuracy levels across
a wide range of signal-to-noise ratios.

As in any passive or active acoustic system, bear-
ing accuracy is influenced by noise, of which the level
in the operating frequency range of sonobuoys (10 Hz
to 3 kHz) is particularly high (Salamon, 2004; 2006;
Marszal et al., 2005). The knowledge of the impact of

noise on bearing accuracy is thus essential at the sys-
tem design stage. Although the knowledge of the acous-
tic noise of the oceans and seas (also regarding the shal-
low Baltic Sea) is very rich (Salamon, 2006; Urick,
1983; 1986; Burdick, 1984; Marage, Mori, 2010;
Klusek, 2011; Klusek, Lisimenka, 2016; Koza-
czka, Grelowska, 2011; Grelowska et al., 2013;
Rudnicki, Marszal, 2016), underwater acoustic sys-
tems, in particular the DIFAR system, also require –
as shown below – knowledge of their spatial correlation
level.

Theoretical and experimental research on the cor-
relation of acoustic noise in the sea has been con-
ducted for decades (Cron, Sherman, 1962; Cox,
1973) and has covered increasingly extensive aspects
of this question. Most theoretical papers are based
on analytical noise and acoustic wave propagation
models using the Green’s functions (Roux et al.,
2005; Buckingham, 2011). They determine the corre-
lation function, the cross-correlation density function
or correlation coefficients (Ren, Huang, 2020). Sur-
face noise sources (wave noise), isotropic noise (Ren,
Huang, 2020; Buckingham, 2012) and vector noise
fields (Zhou et al., 2017) have also been analysed. In
(Buckingham, 2011), noise sources are placed on the
surface of spheres and their specimens, which is close
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to the noise model proposed in this paper. Noise prop-
agation also includes absorption attenuation and re-
fraction caused by the depth distribution of the speed
of sound in oceans. The impact of noise filtering on the
correlations is analysed as well (Buckingham, 2012).
The research covers noise correlation for hydrophones
arranged on the horizontal planes or vertically (Cox
1973; Buckingham, 2011; 2012; Ren, Huang, 2020;
Zhou et al., 2017; Yang et al., 2018).

In order to investigate the impact of the shape of
sound speed profiles on the vertical noise-correlation,
in the case of the surface-generated noise, experi-
mental research were conducted in deep ocean waters
(Barclay, Buckingham, 2014; 2016).

The above-quoted and other publications provide
broad and detailed knowledge of acoustic noise corre-
lation in the sea, which is valuable during the operation
of active and, in particular, passive underwater acous-
tic systems. Based on a computer simulation, which is
the common design stage at present, developing a nu-
merical model of spatially-correlated noise seems use-
ful. This is one of the objectives of this paper. Another
objective is to investigate the impact of noise correla-
tion on bearing errors in the DIFAR system. A devel-
oped numerical model of correlated noise was used for
this purpose.

The developed numerical model of spatial noise cor-
relation of the site can also be used in the design of

Fig. 1. Functional diagram of a DIFAR system.

Fig. 2. Functional diagram of an alternative system with four hydrophones.

other sonar systems with multi-transducer antennas,
and hydroacoustic underwater communication systems
(Kochańska et al., 2018; Schmidt et al., 2018).

2. Operating principle of the system

In most DIFAR type systems, the acoustic part
consists of five hydrophones (H0, H1, H2, H3, and H4)
placed in the horizontal plane, as shown in Fig. 1. The
hydrophones are usually piston piezoelectric transduc-
ers with a circular surface (Mallet, 1975; Salamon,
2004; Stover, 1969) and less frequently tubular piezo-
electric transducers (Marszal et al., 2005). With this
configuration of hydrophones in the system, it is only
possible to determine the bearing of the signal source,
which is still sufficient for most applications. The sig-
nals from hydrophone pairs (H1, H3, and H2, H4)
are subtracted, filtered by the low-pass filter (LPF),
and the difference between them is subjected to Fast
Fourier Transform (FFT). Fourier transform is also
determined for the signal received by the central hy-
drophone H0.

An alternative system configuration is possible, in
which the central hydrophone is not used, as shown
in Fig. 2.

Assuming initially that only useful signal s(t) with-
out noise is received and that the signal source is at
a long distance R from the antenna and that R≫ 2d,
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the method of processing in the system configured as
shown in Fig. 1 is described by the following depen-
dencies:

I{s1(t) − s3(t)} = I{s(t + τs) − s(t − τs)}

= (ejωτs − e−jωτs)S(jω)

= 2j sinωτs ⋅ S(jω), (1)

I{s2(t) − s4(t)} = I{s(t + τc) − s(t − τc)}

= (ejωτc − e−jωτc)S(jω)

= 2j sinωτc ⋅ S(jω), (2)

where s1(t), ..., s4(t) are the signals received by indi-
vidual hydrophones, 2d is the delays depend on the
hydrophones’ distance, c is speed of the acoustic wave
in water, and α is bearing, equal to τs = d

c
sinα and

τc = d
c

cosα. The Fourier transform of the signal s(t)
is determined as: I{s(t)} = S(jω).

The multiplication of the above expressions by
S∗(jω) results in the following:

X(jω) = 2j sinωτs ⋅ ∣S(jω)∣2

≅ 2jω
d

c
sinα ⋅ ∣S(jω)∣2, (3)

Y (jω) = 2j sinωτc ⋅ ∣S(jω)∣2

≅ 2jω
d

c
cosα ⋅ ∣S(jω)∣2, (4)

because the argument of the sine function is very small
– close to zero.

The above equations may be used to determine
bearing α, which is the same at each frequency of the
received signal spectrum. Bearing α is described as:

α = arctg
X(jω)
Y (jω)

. (5)

In the alternative version of the system shown in
Fig. 2, the sums of the received signals are used, which
results in the following:

I{s1(t) + s3(t)} = I{s(t + τs) + s(t − τs)}

= (ejωτs + e−jωτs)S(jω)

= 2 cosωτs ⋅ S(jω), (6)

I{s2(t) + s4(t)} = I{s(t + τc) + s(t − τc)}

= (ejωτc + e−jωτc)S(jω)

= 2 cosωτc ⋅ S(jω). (7)

The multiplication of the expressions described by
formulae (1) and (2) by the coupled spectra given by
the above formulae results in the following:

X(jω) = 4j sinωτs cosωτs ⋅ ∣S(jω)∣2

= 2j sin 2ωτs ⋅ ∣S(jω)∣2, (8)

Y (jω) = 4j sinωτc cosωτc ⋅ ∣S(jω)∣2

= 2j sin 2ωτc ⋅ ∣S(jω)∣2. (9)

In the antenna without of central hydrophone H0,
as in the previous case, results in the following:

X(jω) = 2j sin 2ωτs ⋅ ∣S(jω)∣2

≅ 4jω
d

c
sinα ⋅ ∣S(jω)∣2, (10)

Y (jω) = 2j sin 2ωτc ⋅ ∣S(jω)∣2

≅ 4jω
d

c
cosα ⋅ ∣S(jω)∣2, (11)

because for the very small argument of the cosine func-
tion it has a value close to one.

The advantage of this method is the possibility of
simplifying the system antenna design, however the
number of received signal processing operations is in-
creased.

In both versions of the system, errors of bearing α
depend on the input signal-to-noise ratio SNR. This
will be determined further in this paper by simulating
the numerical operation of the system. For this pur-
pose, the following algorithms will be used:

• for the system with a central hydrophone:

X(jω) = Im[I{s(t+τs)−s(t−τs)+n1(t)−n3(t)}

⋅I∗{s(t)+n(t)}], (12)

Y (jω) = Im[I{s(t+τc)−s(t−τc)+n2(t)−n4(t)}

⋅I∗{s(t)+n(t)}], (13)

• for the system without a central hydrophone:

X(jω) = Im[I{s(t+τs)−s(t−τs)+n1(t)−n3(t)}

⋅I∗{s(t+τs)+s(t−τs)+n1(t)+n3(t)}], (14)

Y (jω) = Im[I{s(t+τc)−s(t−τc)+n2(t)−n4(t)}

⋅I∗{s(t+τc)+s(t−τc)+n2(t)+n4(t)}], (15)

where n(t), ..., n4(t) represent the noise received by hy-
drophones with specific numbers.

The algorithms written above are processed in the
numerical system. In addition, the signal received is
filtered by analogue low-pass filters to reduce the noise
band and meet regular sampling requirements, al-
though this is not included in the above formulae.

3. Numerical model of the system

The numerical processing of the operations de-
scribed above required the development of a model of
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noise that will be acceptably close to the real ambient
noise field. However, the reflection of the wave from the
bottom and the sea surface was omitted and a constant
spatial distribution of the speed of sound was assumed.
For this purpose, the system antenna was surrounded
with a very large number of noise sources with a ran-
dom and homogeneous spatial distribution in a sphere
with a selectable radius. Each source emitted an inde-
pendent execution of Gaussian noise, with an identical
duration and identical variance. An example distribu-
tion of noise sources is shown in Fig. 3.

Fig. 3. Cross-section of surface distribution of noise sources.

Due to the symmetry of the model, the research
can be limited to one pair of hydrophones. Assuming
a Cartesian coordinate system, it is assumed that the
coordinates of a pair of hydrophones are as follows:
x1 = −d, y1 = 0, z1 = 0, and x3 = d, y3 = 0, z3 = 0. If the
coordinates of a certain noise source are x, y, z, then
its distances from the hydrophones are as follows:

R =
√
x2 + y2 + z2,

R1 =
√

(x + d)2 + y2 + z2, (16)

R3 =
√

(x − d)2 + y2 + z2,

where R represents the distance to the central hy-
drophone, Ri – distance to the i-th hydrophone.

Assuming a spherical model of propagation, the
noise received by the hydrophones can be expressed
as follows:

n(t) = σR0

R
f[t − τ(R)],

n1(t) = σR0

R1
f[t − τ1(R1)], (17)

n3(t) = σR0

R3
f[t − τ3(R3)],

where R0 is the reference distance (e.g. R0 = 1 m), the
delays are as follows: τ = R/c, τ1 = R1/c, τ3 = R3/c,
while c represents the speed of the acoustic wave in
water.

In numerical calculations, continuous time t must
be converted to discrete time-series separated by the
sampling time ∆t, i.e. t = k∆t = k/fs, where fs
is the sampling frequency. The sampling frequency
should be selected to reflect the actual delays τ with
sufficient accuracy. In the considered system, the dif-
ference of delays between hydrophones 1 and 3 is es-
sential, i.e. ∆t13 = τ1(R1)−τ3(R3). The determination
of 2a = c∆t13 and the use of formula (16) result in the
following:

√
(x + d)2 + y2 + z2 −

√
(x − d)2 + y2 + z2 = 2a. (18)

After transforming the above formula, it is found
that coordinates x, y, z of the noise source meet the
following equation:

x2

a2
− y

2

b2
− z

2

b2
= 1, (19)

where d2 = a2 + b2.
This is the equation of a rotary hyperboloid with

foci (−d, 0, 0) and (d, 0, 0), of which the traces on
surface z = 0 are shown in Fig. 4. This was noticed i.e.
by (Roux et al., 2005).

Fig. 4. Traces of right rotary hyperboloids.

In numerical calculations, it should be assumed
that delay ∆t13 is an integer multiple p of the sam-
pling time ∆t, i.e. ∆t13 = p∆t = p/fs. Consequently,
for a hydrophone distance of 2d, 2d = cP /fs should be
equally true, where P is a natural number. The num-
ber P is equal to the number of hyperboloid branches,
on which noise sources have delay difference ∆t13. It
determines the accuracy of delay measurements and
thus influences the quality of the model of noise. With
the assumed hydrophone distance 2d and the assumed
number P , the sampling frequency is as follows:

fs =
cP

2d
. (20)

It should be noted, that the discretisation of time
is inconsistent with the assumption of uniform spa-
tial distribution of the noise sources. The individual
sources are subject to an apparent shift towards the
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nearest hyperboloid. However, their position on the ap-
propriate hyperboloid remains random. Further in this
paper, it will be investigated whether this has an im-
pact on the quality of the model. This quality is eval-
uated by analysing the values of the Pearson corre-
lation coefficient rp13, the correlation function r13(t),
and the difference of spectra of the noise received by
the hydrophones.

The numerical procedure for determining the cor-
relation function is completed in the following steps:

• determination of the spatial uniform distribution
N of the noise sources,

• calculation from formulae (16) of distances R(n),
R1(n), and R3(n) of every n source,

• determination of the number of delay samples:
p(n) = int[R(n) ⋅ fs/c], p1(n) = int[R1(n) ⋅ fs/c],
p3(n) = int[R3(n) ⋅ fs/c],

• generation of K Gaussian noise samples n(k)
(where k is sequential number of noise sample)
with a standard deviation σ – further also referred
to as std(⋅), and filtering them by the Butterworth
filter with degree 8 and spectrum width B,

• delaying the set of consecutive samples by pre-
determined delays,

• calculation of the sum of samples according to for-
mulae:

s(k) =
n=N

∑
n=1

σR0

R(n)
n [k − p(n)],

s1(k) =
n=N

∑
n=1

σR0

R1(n)
n [k − p1(n)], (21)

s3(k) =
n=N

∑
n=1

σR0

R3(n)
n [k − p3(n)],

• calculation of discrete Fourier transforms:

S(k) = I{s(n)}, S1(k) = I{s1(n)},

and S3(k) = I{s3(n)},
(22)

• determination of the correlation function using the
fast Fourier transform method, according to the
formula:

γ1−3(k) = I−1{I[S1(k)] ⋅ I[S3(k)]}. (23)

The differences of spectra S1(k) − S3(k) are cal-
culated using formulae (22). In the following figures,
typical correlation functions and spectra differences are
shown, normalised for maximum values. They are ave-
raged over five measurement cycles with duration T .
They are subject to certain changes depending on the
assumed parameters, which will be shown further on.
In Fig. 7, the frequency range around zero should be
noted, in which very small values are assumed. It is
useful from the point of view of the considered system.

Fig. 5. Noise correlation function (2d = 0.2 m, N = 8000,
fs = 150 kHz, B = 2 kHz, T = 0.2 s, σ = 0.81, rp13 = 0.77).

Fig. 6. Central section of the correlation function
from Fig. 5.

Fig. 7. The spectra difference of noise received
by hydrophones 1 and 3 (parameters as in Fig. 5).

The above-discussed limitations of the digital sim-
ulation of the system are not applicable to the recei-
ved sinusoidal signals, in which delays can be replaced
with a phase shift. For example, for a sinusoidal sig-
nal with frequency f0, the formula (1) in discrete no-
tation is as follows:

I{s1(k) − s3(k)}=I{sin(2πkf0

fs
+ϕs)−sin(2πkf0

fs
−ϕs)}

= (ejϕs − e−jϕs)S(k)=2j sinϕs ⋅ S(k). (24)
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As shown – regardless of the sampling frequency fs
– for a sinusoidal signals, spectral lines amplitudes are
proportional to sines of phase shifts ϕs = 2πf0τs.

To select the parameters of the numerical model of
noise, first the impact of the sampling frequency fs will
be examined, while maintaining constant values of the
other parameters. The example averaged result of cal-
culations is shown in Table 1. As shown and confirmed
by other calculations, the values of correlation coeffi-
cients are practically identical and independent of the
sampling frequency. Moreover, this frequency has no
impact on the course of the correlation function and
spectra difference. The basic criterion of numerical cor-
rectness of the model of the noise is thus met.

Table 1. Coefficient dependency.

fs [kHz] rp13 rp24

75 0.778 0.770
150 0.786 0.778
225 0.789 0.786
300 0.785 0.770

2d = 0.2 m, N = 8000, B = 2 kHz, T = 0.2 s

Table 2 illustrates the impact of the number of
sources on the correlation coefficient value. The num-
ber of sources was changed with a constant observation
range R, while changing the bulk density. The results
included show that at the number of sources of ap-
prox. 1000, the correlation coefficients are practically
constant, which means that this number of sources is
sufficient for use in the model.

Table 2. Impact of N noise sources on sampling frequency
correlation coefficients.

N rp13 std(rp13) rp24 std(rp24)
4000 0.776 0.020 0.789 0.021
8000 0.781 0.014 0.772 0.017
1200 0.784 0.018 0.772 0.020
1600 0.782 0.014 0.771 0.018
2d = 0.2 m, R = 40 m, fs = 150 kHz, B = 2 kHz, T = 0.2 s

Moreover, it was checked, whether the model of
noise retained its properties with a changed observa-
tion range R and fixed number of sources. Example
results are shown in Table 3.

Table 3. Dependency of the correlation coefficients
on the range of observation R.

R [m] rp13 std(rp13) rp24 std(rp24)
30 0.790 0.015 0.778 0.014
40 0.781 0.019 0.781 0.010
50 0.772 0.010 0.780 0.017
60 0.771 0.026 0.773 0.028

2d = 0.2 m, N = 10000, fs = 150 kHz, B = 2 kHz, T = 0.2 s

In the observation range given in the table, correla-
tion coefficient values show no significant changes. The
increase of the standard deviation was only noted at
longer ranges, which is related to the fast decrease of
the bulk density of the sources.

In conclusion, the calculations proved the correct
functioning of the numerical model of noise across a rel-
atively wide range of parameters. In the further ana-
lyses, the model will be used with fixed parameters,
namely: sampling frequency fs = 150 kHz, number of
sources N = 10000 and observation range R = 50 m.
The sources around the antenna, within a sphere with
a radius of 3 m, will be eliminated. Statistically, this
area includes 2 sources, but the noise they emit can
have a very high standard deviation, which is also dif-
ferent for each hydrophone. This disturbs the statisti-
cal image of the calculation results.

Table 4 and the figures below illustrate the impact
of hydrophone distance 2d on the correlation coefficient
values, the duration of the correlation function tc and
its courses. The duration of the correlation function
was determined as the time range between the first
zeroes of this function.

Table 4. The dependency of the correlation coefficients and
the duration of the correlation on hydrophone distance 2d.

2d [m] rp13 rp24 tc [ms]
0.1 0.940 0.938 0.54
0.2 0.778 0.787 0.6
0.4 0.561 0.551 0.94
0.6 0.318 0.317 1.2
0.8 0.167 0.124 1.5
1.0 0.128 0.158 1.7

R = 50 m, N = 10000, fs = 150 kHz, B = 2 kHz, T = 0.2 s

Fig. 8. Correlation function with hydrophone distance
2d = 0.1 m.

As the hydrophones’ distance increased, the cor-
relation coefficient values decrease quickly and the
duration of the correlation function increases. This
means that the correlation between the noise received
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Fig. 9. Correlation function with hydrophone distance
2d = 0.4 m.

Fig. 10. Correlation function with hydrophone distance
2d = 0.6 m.

Fig. 11. Correlation function with hydrophone distance
2d = 0.8 m.

by the hydrophones deteriorates. In general, the dura-
tion of the correlation function depends on the doubled
time of the acoustic wave propagation between the hy-
drophones. For example, for a distance of 2d = 0.6 m,
this time is 0.8 s, which is smaller than time tc = 1.2 s.
This regularity is applicable to all hydrophone dis-
tances given in Table 4. As shown below, this is related
to the noise spectrum width.

Table 5 includes the correlation coefficient values
and the effective length of the correlation function for

Table 5. The dependency of the correlation coefficients and
the duration of the correlation on noise spectrum width.

B [kHz] rp13 rp24 tc [ms]
1 0.939 0.943 1.0
4 0.561 0.554 0.56
10 0.130 0.133 0.34
30 0.042 0.037 0.28

2d = 0.2 m, R = 50 m, N = 10000, fs = 150 kHz, T = 0.2 s

varied noise bandwidths B, while the figures below
show typical correlation function courses. The figures
were prepared with the parameters given in Table 5.

An increase in the noise spectrum width results
in a deteriorated correlation, which is shown by the
quickly decreasing correlation coefficient values. At the
same time, the duration of the correlation function
approaches the doubled time of the wave propaga-
tion between the hydrophones. This time is 4d/c =
0.4 m/1500 ms = 0.27 ms. As the spectrum width in-
creases, the noise properties approach the Dirac distri-
bution properties, while the correlation function for the
signal includes two pulses with a time span of 0.27 ms.
Approaching this situation is shown in Figs 13 and 14.

Fig. 12. Noise correlation function with spectrum width
B = 1 kHz.

Fig. 13. Noise correlation function with spectrum width
B = 10 kHz.
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Fig. 14. Noise correlation function with spectrum width
B = 30 kHz.

Fig. 15. Difference of noise spectra from Fig. 14.

The increase of the noise spectrum width is accom-
panied by an increase in variance, i.e. deterioration of
the signal-to-noise ratio. This has an adverse impact on
bearing errors, which will be shown in the next section.

The impact of the spectrum width on the correla-
tion function shown here has little relevance to practi-
cal systems, in which the spectrum width of received
noise does not exceed single digit kHz (Salamon,
2004; 2006; Marszal et al., 2005). This is only to con-
firm, from a physical point of view, the correct opera-
tion of the presented numerical model of centre noise.

In general, the above correlation functions using the
numerical model of noise meet the theoretical results
obtained by theoretical and experimental means, in-
cluded for example in publications: (Barclay, Buck-
ingham, 2016) – Figs 7 and 8, (Barclay, Bucking-

Table 6. Impact of signal-to-noise ratio SNR on bearing errors.

SNR [dB] −5 0 5 10 15

Without central hydrophone
∆α [deg] 1.02 0.65 −0.21 −0.06 −0.05

std(∆α) [deg] 2.20 1.31 0.46 0.28 0.20

With central hydrophone
∆α [deg] 1.04 0.66 −0.20 −0.05 −0.04

std(∆α) [deg] 2.20 1.31 0.46 0.28 0.20
f0 = 100 Hz, fs = 150 kHz, B = 2 kHz, T = 0.2 s, 2d = 0.2 m, N = 10000, rp13 = 0.79

ham, 2014) – Figs 13 and 14, and (Buckingham 2012)
– Fig. 11. A more complete conformity can be expected
after supplementing the presented model of noise with
a numerical model of wave noise, which will be the
subject of the next publication.

4. Simulation research on the system

The numerical model of the acoustic noise of the
sea presented above was used to examine its impact on
the operation of two versions of the system described
in Sec. 2. The objective of this examination was to
determine the impact of noise correlation on bearing
errors as a function of:

• input signal-to-noise ratio SNR,
• hydrophone distance 2d,
• received signal frequency f0,
• noise spectrum width B,
• the type of the received signal.

At the same time, the equivalence of both versions
of the system will be verified. For this purpose, the
bearing obtained in the system without a central hy-
drophone is marked with a circle, and the bearing from
the system with a central hydrophone is marked with
an asterisk. To show the impact of noise correlation
on bearing accuracy, the bearing obtained for non-
correlated noise will be given for comparison.

The impact of noise on bearing accuracy is illus-
trated by Table 6 and Figs 16 and 17. The figures show
the results of 10 tests. Calculations were made based
on the numerical model of noise described above. Sub-
sequent values of signal-to-noise ratio SNR were as-
sumed with the variance σ2 and standard deviation σ
calculated on the output of the selected hydrophone
after low-pass filtering, then amplitude s0 was deter-
mined for the sine signal with frequency f0, using the
formula:

s0 =
√

2σ10 SNR/20. (25)

Based on the results in the table and on the graph-
ical presentation of bearing values, it was concluded
that systems with and without a central hydrophone
are fully equivalent. Beyond SNR = −5 dB, bearing ac-
curacy improves visibly. With a worse signal-to-noise
ratio, high errors occur, which makes the system use-
less in practice.
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Fig. 16. Signal source bearing α = 30○, SNR = −5 dB (2d =
0.2 m, R = 50 m, N = 10000, fs = 150 kHz, f0 = 100 Hz,

T = 0.2 s).

Fig. 17. Signal source bearing α = 30○, SNR = 5 dB (other
parameters as in Fig. 16).

Table 7 includes the results of bearing calculations
as a function of hydrophone distance, while maintain-
ing constant values of the other parameters. The re-
sults are averaged over ten simulations.

Table 7. Impact of hydrophone distance 2d on bearing errors.

2d [m] 0.1 0.2 0.4 0.6 0.8 1.0
rp13 0.96 0.80 0.56 0.35 0.19 0.17

∆α [deg] −0.44 0.09 0.13 0.15 −0.32 −0.18
std(∆α) [deg] 1.72 0.96 1.45 1.15 1.00 1.59
f0 = 100 Hz, fs = 150 kHz, B = 2 kHz, T = 0.2 s, SNR = 0 dB, N = 10000, α = 45○

Table 8. The dependency of bearing on the received signal frequency.

f0 [Hz] 10 20 50 100 200
∆α [deg] −2.12 0.17 −0.19 0.38 −0.56

std(∆α) [deg] 3.57 1.37 1.96 1.22 1.07
2d = 0.4 m, fs = 150 kHz, B = 2 kHz, T = 0.2 s, SNR = 0 dB, N = 10000, α = 120○

Despite the deterioration of the noise correlation
as the hydrophone distance increased, both the av-
erage bearing error and its standard deviation show
no distinctive trends. Their dispersions are within sta-
tistical error with a relatively small number of tests.
Thus it can be concluded that bearing accuracy does
not depend on the hydrophone distance across a wide
range of variation. It results from the fact that the
deteriorating noise correlation (drop of the correla-
tion coefficient) is compensated by the increasing dif-
ference between the sine signals received by the hy-
drophones.

Bearing accuracy is also influenced by the received
signal frequency, as shown in Table 8 and illustrated by
the example bearing values shown in Fig. 18. The rea-
son is the differences between the received noise spec-
tra shown in Fig. 19. The compensating impact of the
sine signal difference value increasing with frequency
is however only efficient in the example shown start-
ing from frequencies higher than 20 Hz. However, this
limit is not constant and depends on the signal-to-noise
ratio and distance between hydrophones.

Fig. 18. Example bearing at frequency f0 = 20 Hz (2d =

0.4 m, fs = 150 kHz, B = 2 kHz, T = 0.2 s, SNR = 0 dB,
N = 10000, α = 120○).
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Fig. 19. Spectra difference of signal with noise received by
hydrophones (parameters as in Fig. 18).

The noise spectrum width resulting from filtering
by the low-pass filter has a direct impact on the noise
level and thus on the signal-to-noise ratio. The depen-
dency of the signal-to-noise ratio in the numerical cal-
culations is described by the following formula:

SNR = 10 log
s2

0

2σ2
+ 10 log

fs
B
, (26)

where the first component describes the signal-to-noise
ratio without filtering, and the second component ex-
presses the increase of the ratio caused by filtering. The
impact of the signal-to-noise ratio on bearing errors is
shown in Table 6.

The noise spectrum width also influences the noise
correlation level, which is illustrated by Table 5 and
Figs 15–18. The question is whether the noise correla-
tion has an impact on bearing errors. This is answered
by the results of the calculations shown in Table 9.

With the signal-to-noise ratio in the range given
in the table, the noise spectrum width shows no vis-
ible distinctive trends. The dispersion of values re-
sults from statistical errors. The same effect is visi-
ble in Table 6. At lower SNR values, the error also
does not increase with increasing spectral width. On
the other hand, the background noise in the cen-
ter of the plot increases as shown in Fig. 20, which
may result in incorrect detection of maximum spectral
lines. The system provides worse measurement accu-
racy when the received signal is a periodical rectangu-

Table 9. Impact of the bandwidth on bearing errors.

B [kHz] 1 2 3 4 5
SNR [dB] 5.1 2.0 0.2 −1.1 −2.1
rp13 0.96 0.81 0.71 0.55 0.39

∆α [deg] 0.19 0.02 −0.05 0.31 0.17
std(∆α) [deg] 0.61 0.86 1.04 1.32 0.97
2d = 0.2 m, s0 = 1, σ = 1, f0 = 100 Hz, fs = 150 kHz, T = 0.2 s, N = 10000, α = 30○

Fig. 20. Bearing with spectrum width B = 4 kHz (f0 =

100 Hz, 2d = 0.2 m, fs = 150 kHz, T = 0.2 s, SNR = −7 dB,
N = 10000, α = 30○).

lar wave (∆α = −1.29○, std(∆α) = 2.09○, for sine signal
∆α = −0.21○, std(∆α) = 0.46○). Example bearings are
shown in Fig. 21. Delay rounding, which is necessary in
the simulations, caused a bearing error of ∆α = −2.1○.
This error is not constant, but depends on the delay
rounding for the given bearing. It is caused by the ap-
parent shift of noise sources to the surface of the rotary

Fig. 21. Rectangular wave bearing (f0 = 100 Hz, 2d = 0.2 m,
fs = 150 kHz, T = 0.2 s, SNR = 5 dB, N = 10000, α = 30○).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


M. Rudnicki et al. – Impact of Spatial Noise Correlation on Bearing Accuracy in DIFAR Systems 719

Table 10. Impact of the signal-to-non-correlated noise ratio on bearing errors.

SNR [dB] 10 15 20 25 30
∆α [deg] 0.12 −0.18 2.09 −0.12 −0.51

std(∆α) [deg] 7.8 4.3 2.4 1.6 0.5
2d = 0.2 m, f0 = 50 Hz, fs = 150 kHz, B = 2 kHz, T = 0.2 s, N = 10000, α = 30○

hyperboloids, which is discussed in Sec. 3. It should be
emphasised that this is a simulation error, and is not
present in the actual system.

Along the bearing line, bearing values appear as
determined for the subsequent band of the rectangular
wave spectrum.

In the end, it will be shown how noise correla-
tion reduces bearing errors compared to a situation in
which the hydrophones receive non-correlated Gaus-
sian noise. In each cycle with duration T , the hy-
drophones independently receive ten N noise execu-
tions with spectrum width B, while the results are
averaged over ten measurement cycles. Table 10 in-
cludes bearing errors as a function of signal-to-noise
ratio SNR.

For SNR values smaller than 10 dB, the bearing
values show no distinctive concentration and thus they
are not included in the table. Comparing the results in
the above table with the results given in Table 6, simi-
lar bearing errors occur for the non-correlated noise,
when the signal-to-noise ratio is approx. 25 dB greater
than for the correlated noise. As shown in Fig. 22, large
bearing errors occur despite the high signal-to-noise
ratio, which manifests itself by a very high concentra-
tion of false resolutions in the central section of the
plot. Figure 23 shows spectra differences, which do not
accept small values, typical of correlated noise, shown
in Figs 7 and 15, in the low frequency range. This ex-
plains the significantly worse system properties when
receiving non-correlated signals.

Fig. 22. Example bearing for non-correlated noise (2d =

0.2 m, fs = 150 kHz, B = 2 kHz, T = 0.1 s, SNR = 15 dB,
N = 10000, α = 30○, rp13 = 0.023.

Fig. 23. Spectra difference of signal with noise received by
hydrophones (parameters as in Fig. 22).

5. Conclusions

The calculations provided in Sec. 3 have proven
that the proposed numerical model of sea noise sim-
ulates the reception of noise in the considered system
in a satisfactory manner. This requires, however, sup-
plementing by a numerical model of wind-driven sea
waves noise, bringing it closer in order to better sim-
ulate/reproduce the real conditions in the sea. Appli-
cation of the developed model of noise enabled com-
prehensive testing of the impact of the main system
parameters on bearing accuracy.

A system with a central hydrophone was considered
to be equivalent to a system without a hydrophone,
which increases design flexibility.

It was shown that adopting the non-correlated
noise model in the simulation system leads to false re-
sults, which are unacceptable in practice.
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