
1 INTRODUCTION 

Shells are generally thin slender structures or light 
members of other constructions. Composites, 
characterized by high level of strength-to-weight and 
stiffness-to-weight ratio, can be seen as the most 
suitable materials for modern slender constructions. 
Typically composite shells are multilayered 
structures, in which laminas are made of isotropic 
materials or composites. Since most common 
composites are reinforced with uniaxial fibers, a 
single layer represents an orthotropic body. If the 
fiber orientation varies in the stacking sequence of 
layers, then the whole structure is an anisotropic 
medium. The anisotropy is an advantageous feature 
for design purposes but on the other hand it 
complicates the laminates’ analysis and as a 
consequence the design process becomes complex. 

The aim of this work is to analyze multilayered 
shells subjected to axial compression. Since the load 
capacity of such structures is to a high degree 
dependent on loss of stability, the crucial point of 
this work is to estimate the critical load level. 
Special attention is paid to the examination of the 
influence of initial geometrical imperfections on the 
structure response.  

2 STABILITY OF SHELLS 

The stability of structures depends on many aspects, 
especially on slenderness, boundary conditions and 
imperfections of various nature, like material, load 

and geometrical imperfections. To evaluate the 
critical load level several methods can be used. The 
simplest one is the Linear Eigenvalue Problem.  

( )con K K v = 0    (1) 

where K
con is the constitutive stiffness matrix, K

σ 
stays for the geometrical stiffness matrix, v is the 
eigenvector and λ is the critical load multiplier. 

However, the solution obtained with this method 
can be incorrect if the structure undergoes large 
deformations in the pre-buckling range. In this case 
geometrically nonlinear incremental analysis should 
be performed:  

( ( ))Δ ( )TK q q = R q    (2) 

where KT(q) is the tangent stiffness matrix, Δq is the 
displacement increment vector and R(q) depicts the 
balanced force vector. 

This approach is obviously much more expensive 
from the computational point of view and it requires 
a little bit of experience, but if the arc-length 
strategy is used in following of equilibrium path, 
then also the behavior of structure in post-buckling 
range can be examined. 

As mentioned previously, the authors focus on 
the dependence of critical load level on geometrical 
imperfections. Understandable is the fact, that the 
realistic imperfection field would be the best one to 
include in the numerical model. However, if the 
structure is just to-be-designed, there is no 
knowledge about real imperfections and some 
assumptions have to be made. Of course, to preserve 
the structure safety, the worst imperfection pattern 
should be presumed in calculations, however, it is 
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not obvious. Arbocz & Starnes (2002) described the 
lower-bound approach to design of thin-walled 
structures that is basing on empirical data (see also 
Hühne et al., 2008), but it concerns only isotropic 
shells. Such a philosophy in design of composite 
shells does not exist (Arbocz & Starnes, 2002) and 
in this case other approaches should be applied. 

One of the imperfect geometrical patterns can be 
the lowest eigenmode shape obtained in linear 
eigenvalue problem. However, if the structure 
response is nonlinear below the first critical load, 
then this method seems to be useless. Such an 
imperfection field was classified by Winterstetter & 
Schmidt (2002), Schmidt (2000) as the ‘worst’ 
beside the ‘realistic’ and ‘stimulating’ geometric 
imperfections. ‘Worst’ imperfections are understood 
as mathematically determined possibly worst 
imperfections like eigenmode shape or single 
buckles. It is worth to mention, that Deml & 
Wunderlich (1997) have proven that in some cases 
single buckles can be worse than eigenmode shapes 
covering larger parts of a structure. Nonetheless, this 
classification of imperfections and comparison 
between single buckles and eigenmode shape were 
related to steel shells. 

In this work a stability analysis of composite 
panels is considered. Only numerical investigations 
are made. The disturbances of perfect shell geometry 
in a form of first eigenmode shape are assumed. 

3 LAMINATES IN NX-NASTRAN  

In the computations, the Equivalent Single Layer 
(ESL) concept is applied. It means that the 
laminated shell is treated as a single layer panel with 
resultant stiffness of a multilayered cross-section. 
Such a simplification can be justified by the global 
character of the analyzed phenomena, Altenbach & 
Altenbach (2001). The FEM calculations were 
performed with the commercial code NX-Nastran 
(Ver. 6.0). The fundamental assumptions of the 
computational model are summarized below. The 
layers are perfectly bonded together and no slip 
between them is possible. As one can read in the 
NX-Nastran User’s Guide, the formulation of the 
laminated finite element is basing on the Classical 
Lamination Theory (CLT). This statement is a little 
bit confusing, because the term CLT is well known 
as the simplest approach for laminates which bases 
on the Kirchhoff’s theory assumptions, i.e. 
transverse shear is not taken into account, see Jones 
(1975). However, in the laminates’ model in NX-
Nastran transverse shear is included and from this 
point of view this approach corresponds rather with 
the Reissner-Mindlin type theory. Moreover the 
linear displacement distribution through the 
thickness is assumed. In authors’ opinion this 
formulation should be rather classified as the First 

Order Shear Deformation (FOSD) theory. It is worth 
noticing, that no shear correction factors are 
presumed, but instead the equivalent transverse 
shear moduli for the whole cross-section are 
evaluated numerically by assuming the cylindrical 
bending of the shell. This approach seems to be very 
efficient and attractive in comparison to other, 
sometimes more complicated, formulations, see e.g. 
Sabik & Kreja (2008). 

4 NUMERICAL EXAMPLE 

This example was proposed by Becker et al. (1981) 
who analyzed behavior of laminated cylindrical 
panels axially compressed between two stiff plates. 
The straight edges of the shell are simply supported with 

possibility to move along the generatrix. Geometrical 
data are given in Figure 1. Since the load is applied 
to the top plate the rigid movement of the top curved 
edge of the shell is provided. All layers have equal 
thickness and are made of T300/5208 graphite epoxy 
composite with following material data: E1=20.5E6 
psi, E2=1.3E6 psi, G12=0.75E6 psi, v12=0.335. Three 
lamination schemes are studied: cross-ply (90,0)2s, 
quasi-isotropic (90,±45,0)s and angle-ply (±45)2s. 
 

 
 
Figure 1. Axially compressed cylindrical panel. 

 

Figure 2 illustrates the comparison between linear 
solution (linearized buckling analysis) and 
geometrically nonlinear incremental analysis. In all 
cases the shell was discretized with 4-node elements 
QUAD4. Convergence studies have confirmed that 
the mesh of 60x60 elements provided acceptable 
accuracy of results. Solid lines in Figure 2 represent 
the equilibrium paths for axial displacement of 
loaded edge (u) versus normalized load 
(P=PactL/t

3
E1, where L and t are the length and the 

thickness of the panel respectively and Pact is the 
actual applied force). Dashed lines depict the level 
of the lowest critical load obtained from the linear 
eigenvalue problem for each lamination scheme.  

A visible disagreement can be observed in Figure 
2 between the lowest critical load and the limit load 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://www.researchgate.net/publication/224999368_Robust_design_of_composite_cylindrical_shells_under_axial_compression-simulation_and_validation_Thin-Walled_Struct?el=1_x_8&enrichId=rgreq-da1019ef-deba-40ad-b2e8-eb88175146bb&enrichSource=Y292ZXJQYWdlOzI1NjQ0MjU4NDtBUzoxMDMxNTUxNDAzOTkxMTBAMTQwMTYwNTUxMDY4NA==
https://www.researchgate.net/publication/222250258_Future_directions_and_challenges_in_shell_stability_analysis?el=1_x_8&enrichId=rgreq-da1019ef-deba-40ad-b2e8-eb88175146bb&enrichSource=Y292ZXJQYWdlOzI1NjQ0MjU4NDtBUzoxMDMxNTUxNDAzOTkxMTBAMTQwMTYwNTUxMDY4NA==
http://mostwiedzy.pl


level determined in nonlinear incremental analysis in 
the case of angle-ply lay-up. This is a direct 
consequence of the nonlinear response of the shell in 
the pre-buckling range. With regard to the fact, that 
the disturbances of the perfect geometry are assumed 
in a form of the first eigenmode, the imperfection 
sensitivity is studied only for cross-ply and quasi-
isotropic case. Additionally, Figures 3 and 4 
illustrate the comparison between the first 
eigenmode shape and the deformation pattern at the 
maximum load level computed in the nonlinear 
incremental analysis. An evident similarity of the 
deformation patterns obtained in the nonlinear 
analysis for the perfect structure and the first 
eigenmodes seems to justify the presumption of the 
imperfection pattern in the form of the first 
eigenmode. 
 

 
 
Figure 2. Axial displacement vs. normalized load. Comparison 
between the results of the linearized buckling analysis and 
nonlinear incremental analysis. 

 

 
 
Figure 3. First eigenmode shape and deformation at maximum 
load level in nonlinear incremental analysis. Cross-ply shell. 

 

 
 
Figure 4. First eigenmode shape and deformation at maximum 
load level in nonlinear incremental analysis. Quasi-isotropic 
shell. 

 

Figures 5 and 6 illustrate the imperfection 
sensitivity for the cross-ply and the quasi-isotropic 
panel, respectively. The equilibrium paths for the 
transverse deflection (w) at the central point of the 
panel vs. the normalized load are presented for 
various imperfection levels which are defined as the 
proportional ratio between the central initial 
deflection and the shell thickness. 

The bold solid lines in Figures 5 and 6 depict the 
equilibrium paths obtained for the perfect geometry. 
Other lines are related to the imperfect geometry 
modeled in a form of the first eigenmode with 
amplitude related with respect to the shell thickness 
as described above. Several levels of imperfection 
were studied, considering the initial central 
deflection directed inward as well as outward of the 
ideal shell curvature.  
 

Figure 5. Influence of geometrical imperfections. Cross-ply 
shell. 

 

Figure 6. Influence of geometrical imperfections. Quasi-

isotropic shell. 

 

The increasing level of initial disturbances causes 
the decrease of the critical load level regardless of 
the imperfection sign. The equilibrium path for the 
perfect cross-ply panel (Fig. 5) corresponds to a 
classical solution for the structure with a 
symmetrical bifurcation point. After applying 
imperfections one can observe load limit points and 
turning points occurring on the paths. A response for 
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the quasi-isotropic shell (Fig. 6) is slightly different; 
here the equilibrium paths possess only load limit 
points and turning points. The character of the 
critical point depends on the level and sign of the 
imperfection.  

Due to the symmetry of the geometry, boundary 
conditions and specific material features distribution 
in the case of cross-ply shell the obtained results are 
similar to the isotropic plate stability problem. 
However, because of the curvature of the shell, there 
is no symmetry in the graph. The structure 
undergoes little smaller displacements if the initial 
central deflection displaces outward. From another 
point of view, the load capacity is comparable for 
the same level but opposite sign of imperfection. 

Nonsymmetrical distribution of material 
parameters in the case of quasi-isotropic lay-up is 
responsible for the significant difference of solution 
if compared with the results for cross-ply lamination 
scheme. The limit load is a little bit bigger if 
outward initial central deflection is presumed. 
Remarkably is the fact, that with increase of the 
outward initial central deflection finally after the 
turning point, the inward movement of the shell 
center takes place. 

The obtained results show that the lamination 
scheme and global anisotropy of the shell play a 
very important role and influence significantly the 
response of structure. Firstly the changes of stiffness 
are observed, so that not all lay-up cases preserve 
linear behavior in the pre-buckling range. Secondly, 
depending on lamination scheme, the behavior of an 
imperfect shell is in a certain sense unpredictable if 
one compares the analyzed two lamination schemes.  

5 CONCLUSIONS 

The stability of composite multilayered shells under 
in-plane axial compression was studied. The critical 
load level was obtained in linear eigenvalue problem 
and geometrically nonlinear incremental static 
analysis. The role of geometrical imperfections, 
which were defined as the first eigenmode, was 
examined. The analysis was performed with 
commercial FEM code NX-Nastran Ver. 6.0. 
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