
Citation: Kaczmarek, S.; Sac, M.;

Bachorski, K. Implementation of

IMS/NGN Transport Stratum Based

on the SDN Concept. Sensors 2023, 23,

5481. https://doi.org/10.3390/

s23125481

Academic Editor: Jordi Mongay

Batalla

Received: 31 March 2023

Revised: 7 June 2023

Accepted: 8 June 2023

Published: 10 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Implementation of IMS/NGN Transport Stratum Based on the
SDN Concept
Sylwester Kaczmarek 1,* , Maciej Sac 1,* and Kamil Bachorski 2

1 Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology,
Narutowicza 11/12, 80-233 Gdańsk, Poland

2 ADVA Optical Networking, Łużycka 8C, 81-537 Gdynia, Poland
* Correspondence: kasyl@eti.pg.edu.pl (S.K.); maciej.sac@eti.pg.edu.pl (M.S.)

Abstract: The paper presents the development and verification of software and a testbed aiming to
demonstrate the ability of two telecommunication network concepts—Next Generation Network
(NGN) and Software-Defined Networking (SDN)—to cooperate. The proposed architecture includes
components of the IP Multimedia Subsystem (IMS) in its service stratum and of the SDN (controller
and programmable switches) in its transport stratum, providing flexible transport resource control
and management via open interfaces. One important feature of the presented solution is the inclusion
of ITU-T standards for NGN networks, which are not considered in other related works. The paper
includes details regarding the hardware and software architecture of the proposed solution as well as
results of the performed functional tests, which confirm its proper operation.

Keywords: IMS; NGN; ONOS; SDN

1. Introduction

Due to the significant amount of new and dynamically changing traffic (concerning
distance learning, remote work, remote handling of official matters, etc.), the COVID-19
pandemic significantly increased the demand for flexible transport resource control and
management mechanisms in telecommunication networks. These requirements can be
fulfilled using the Software-Defined Networking (SDN) concept [1–5], which makes it
possible to increase the level of network automation via programmable resource control
and management. This is facilitated by separating the control plane from the data plane
within network devices. According to this concept, SDN controllers that manage network
resources operate within the control plane. The data plane contains programmable switches,
which can be devices based on various technologies, such as SD-WAN [6]. The SDN
architecture ensures the controller and switch solutions, as well as the protocols used for
communication between these devices, are open. The Open Networking Operating System
(ONOS) [7] and Floodlight [8] are two of the most popular SDN controllers, while in the
SDN concept, the OpenFlow protocol [9] is used in most cases for exchanging information
between the control and data plane in order to manage and control flows.

The SDN controller is a central component responsible for resource control in the
supported network of programmable switches. Centralized transport resource control
functions also form the basis of the Next Generation Network (NGN) [10] concept. The
basic reference model of the NGN architecture is developed by the International Telecom-
munication Union Telecommunication Standardization Sector (ITU-T). The NGN network
consists of two strata. The service stratum is based on the IP Multimedia Subsystem (IMS)
architecture components [11], which are also an important part of the 4G and 5G mobile
networks and use the SIP [12] and Diameter [13] communication protocols, among others.
The architecture is referred to as the IMS/NGN network, as the IMS is applied in the NGN
service stratum. The main function of the IMS is the Call Session Control Function (CSCF)
servers. They control end user sessions, which can be terminated in the IMS/NGN network

Sensors 2023, 23, 5481. https://doi.org/10.3390/s23125481 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s23125481
https://doi.org/10.3390/s23125481
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-2932-5610
https://orcid.org/0000-0002-6734-3046
https://doi.org/10.3390/s23125481
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s23125481?type=check_update&version=1

Sensors 2023, 23, 5481 2 of 25

or other networks. They also provide service-related information to the transport stratum,
namely to the Resource and Admission Control Function (RACF) unit, via the Diameter
communication protocol. RACF is the central network resource control point, capable of
interpreting received Diameter protocol messages as well as managing and controlling
transport stratum resources.

After analyzing the SDN and IMS/NGN architectures and functionalities, an integra-
tion concept and its rules were proposed. This proposal assumes the SDN controller in the
transport stratum of the IMS/NGN network will be used as the component controlling the
programmable switches as network resources. This requires preserving the RACF com-
ponent’s functionality of interpreting Diameter messages received from the Proxy-CSCF
(P-CSCF) and translating them into the API of the selected SDN controller.

The aim of this paper is to describe the implementation and testing process for the
above-mentioned solution. The developed software and testbed prove that applying the
SDN concept in the IMS/NGN network transport stratum is possible and may increase
the automation of transport resource control and management. It is worth mentioning that
the described solution takes into account ITU-T NGN standards, which are not considered
in other related works. The preliminary results of our work on integrating the SDN and
IMS/NGN concepts were described in the conference paper [1]. The extended research
on this topic is presented in detail in this paper, which is organized as follows. Section 2
contains a review of related work. Section 3 describes the proposed architecture of the
IMS/NGN network using the SDN concept in the transport stratum and details on the
cooperation of these concepts. It also contains the steps necessary to implement the
proposed integration of SDN and IMS/NGN. Section 4 provides details on the practical
implementation of the solution based on open-source software and the resulting difficulties
and consequences. It also contains the results of the performed functional tests. The paper
is summarized in Section 5 where further work planned is also indicated.

2. Related Work

The purpose of this review was to identify current research works concerning the
practical implementations of cooperation between the SDN and IMS/NGN concepts,
especially those that take into account both service and resource control procedures. During
the review, the following features were especially relevant: taking into account ITU-T
standards for NGN networks, available results of functional and performance tests, access
to the source code of the software (which can be further used and modified).

The review showed that work is underway to integrate and ensure the cooperation of
the IMS/NGN and SDN concepts; however, no papers that fully met the above-mentioned
requirements were found. In some of the works, only the network architecture and service
scenarios concepts were proposed, but these concepts were not implemented and tested in
practice, e.g., Ref. [14]. Other works focused on resource control (OpenFlow protocol) and
did not consider service control (SIP and Diameter protocols), e.g., Ref. [15].

Moreover, several scientific papers were found concerning the implementation of
the IMS network cooperating with the SDN concept. The common features of these
solutions are a focus on the pure IMS architecture (without considering the ITU-T NGN
standards) and a lack of access to the source code. An example is the OSIMS project
carried out at the University of Patras [16,17]. The authors prepared a test environment in
which they integrated the functionality of the IMS and SDN networks and implemented
communication between them. They used the Open IMS Core project to implement the core
functionality of the IMS network. The SDN network was implemented using the Floodlight
controller, which controls programmable Open vSwitch switches. Several projects similar
to OSIMS were found, even using the same sets of open-source software, e.g., Refs. [18,19].

Ref. [20] provides a different approach to the cooperation of IMS and SDN concepts.
In the proposed architecture and service scenarios, the SIP Application Server (SIP AS)
mediates every multimedia session and uses the REST API to communicate with the SDN
controller and manage the flow tables in the programmable switches. Such an approach

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 3 of 25

does not conform with ITU-T standards [10], which specify that the P-CSCF server is
responsible for communication with the resource control unit (RACF).

The most important features of the above-mentioned related works are summarized
in Table 1. The consecutive columns of this table have the following meaning:

• Work: reference number;
• Concept implemented: “yes” when the work concerns a practical implementation,

“no” when only a concept is presented;
• Service control: “yes” when service control elements from IMS are included,

“no” otherwise;
• ITU-T NGN standards: “yes” when ITU-T standards for NGN networks are included,

“no” otherwise;
• Source code available: “yes” when the project source code is obtainable, “no” otherwise.

Table 1. Comparison of the available approaches to cooperation between IMS/NGN and SDN.

Work Concept
Implemented Service Control ITU-T NGN

Standards
Source Code

Available

[14] no yes no not applicable

[15] yes no no no

[16,17] yes yes no no

[18] yes yes no no

[19] yes yes no no

[20] yes yes no no

this
paper yes yes yes yes

Summarizing the presented considerations, no solutions were found concerning the
cooperation of IMS/NGN and SDN that meet all the assumed requirements expressed in
columns 2–5 of Table 1. This fact led to the implementation of a project of integrating the
IMS/NGN and SDN concepts at the Gdańsk University of Technology—GUT (last row of
Table 1), which is described in this paper and overcomes the drawbacks of the other existing
solutions. The GUT project is based on open-source software, which is partly different
to those utilized in Refs. [16–19]. The Open Networking Operating System (ONOS) [7],
developed by the Open Networking Foundation (ONF) consortium, was used as the
SDN controller. The selected functionality of the IMS network was implemented using
the CDiameterPeer [21] application, which generates Diameter protocol messages, among
others. The CDiameterPeer application is a part of the Open IMS Core project, which enables
further integration with the project’s software. In the solution implemented at GUT, as in the
case of Refs. [16–19], Open vSwitch [22] functions as a cluster of programmable switches.

3. Application of SDN in the Transport Stratum of the IMS/NGN Network

This section contains a proposal of an integrated (IMS/NGN and SDN) network
architecture and resource control scenarios. It is the basis for the work on the practical
implementation of the integrated network, whose details are provided in Section 4.

3.1. Architecture of the IMS/NGN Network Using the SDN Concept

The first task of this project was to propose the integrated network architecture,
including the IMS/NGN and SDN elements, which is depicted in Figure 1.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 4 of 25Sensors 2023, 23, x FOR PEER REVIEW 4 of 24

Figure 1. Proposed IMS/NGN architecture using the SDN concept in the transport stratum.

From this project’s point of view, the most important element of the IMS/NGN net-
work service stratum is the set of CSCF servers, especially the P-CSCF server. It sends
Diameter protocol messages determining the parameters of the requested services to the
transport stratum. The recipient of these messages is the RACF unit, visible from the ser-
vice stratum as a Gateway Application (GA). The GA functionality includes interpreting
Diameter protocol messages and then calling the API of the SDN controller, which
properly controls the network resources. The Gateway Application and the SDN control-
ler (with SDN control logic and abstraction functionality) are included in the proposed
architecture as the resource control functions and are located in the transport stratum.
These functions use the OpenFlow protocol to communicate via the resource–control in-
terface with the transport functions, which include programmable switches.

It should be mentioned that the interface between the P-CSCF and the Gateway Ap-
plication is standardized [23]. Therefore, it can be implemented using available applica-
tions supporting Diameter protocol communication after appropriate source code adap-
tation. A similar situation exists for the resource–control interface, which exchanges infor-
mation using the OpenFlow protocol [9]. The only interface which is not standardized is
the application–control interface between the Gateway Application and the SDN control-
ler.

3.2. Service Scenarios in the Integrated Network
The proposed network architecture considers two service scenarios. They take into

account different states (availability and unavailability) of the transport resources and are

Figure 1. Proposed IMS/NGN architecture using the SDN concept in the transport stratum.

From this project’s point of view, the most important element of the IMS/NGN
network service stratum is the set of CSCF servers, especially the P-CSCF server. It sends
Diameter protocol messages determining the parameters of the requested services to the
transport stratum. The recipient of these messages is the RACF unit, visible from the
service stratum as a Gateway Application (GA). The GA functionality includes interpreting
Diameter protocol messages and then calling the API of the SDN controller, which properly
controls the network resources. The Gateway Application and the SDN controller (with
SDN control logic and abstraction functionality) are included in the proposed architecture
as the resource control functions and are located in the transport stratum. These functions
use the OpenFlow protocol to communicate via the resource–control interface with the
transport functions, which include programmable switches.

It should be mentioned that the interface between the P-CSCF and the Gateway Appli-
cation is standardized [23]. Therefore, it can be implemented using available applications
supporting Diameter protocol communication after appropriate source code adaptation.
A similar situation exists for the resource–control interface, which exchanges information
using the OpenFlow protocol [9]. The only interface which is not standardized is the
application–control interface between the Gateway Application and the SDN controller.

3.2. Service Scenarios in the Integrated Network

The proposed network architecture considers two service scenarios. They take into
account different states (availability and unavailability) of the transport resources and
are presented in this subsection (Figures 2 and 3). The functionality of the Gateway

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 5 of 25

Application, which integrates the concepts of IMS/NGN and SDN, is implemented based
on these scenarios.

Sensors 2023, 23, x FOR PEER REVIEW 5 of 24

presented in this subsection (Figures 2 and 3). The functionality of the Gateway Applica-
tion, which integrates the concepts of IMS/NGN and SDN, is implemented based on these
scenarios.

The prepared service scenarios provide a better overview of the stages of software
implementation and testing, which are described in the next section. The first scenario
assumes a successful call set-up between two end devices in the IMS/NGN network (Fig-
ure 2). The case of insufficient transport resources, resulting in an unsuccessful call set-
up, is considered in the second scenario (Figure 3).

Figure 2. Service scenario for a successful call (transport resources available). Figure 2. Service scenario for a successful call (transport resources available).

Sensors 2023, 23, 5481 6 of 25Sensors 2023, 23, x FOR PEER REVIEW 6 of 24

Figure 3. Service scenario for an unsuccessful call (transport resources unavailable).

In both scenarios, elements of the IMS network, such as P-CSCF and Serving-CSCF
(S-CSCF), were included along with the end users (User Equipment—marked as UE 1 and
UE 2 in Figures 2 and 3). These elements communicate with each other using the SIP pro-
tocol. Moreover, elements of the SDN concept were included: the controller and program-
mable switches. Each scenario covers the end-to-end process of making a call, from gen-
erating a service request to reserving resources and releasing them when the call is disen-
gaged. Not all the above-mentioned steps are performed when the transport resources for
the call are insufficient. All the presented scenarios contain SIP (black arrows) and Diam-
eter (red arrows) signaling messages. They also include the process of network resource
control using the OpenFlow protocol (blue arrows) for operations on flow tables. The sce-
narios do not take into account invoking the SDN controller API by the Gateway Appli-
cation because it is a non-standardized interface and dependent on the choice of controller
software.

The initial OpenFlow protocol messages for both considered scenarios (unnumbered
messages in Figures 2 and 3) concern establishing communication between the SDN con-
troller and programmable switches: negotiating the protocol version, checking the capa-
bilities of the switches, obtaining their detailed configuration, etc. The most critical events
occurring during the successful call set-up scenario (Figure 2) are as follows:
• UE 1 generates a call set-up request, which is passed to the P-CSCF, S-CSCF and P-

CSCF again (messages 2–7);
• resource reservation for the call—exchange of Diameter messages between the P-

CSCF and SDN controller (messages 8 and 14; this communication is performed via
the Gateway Application not depicted in Figures 2 and 3) and OpenFlow messages
between the SDN controller and programmable switches (messages 10–12);

• UE 2 is notified about the call request. It rings and accepts the call (messages 15–21);
• SIP 200 OK (INVITE) message (acceptance of the call) is exchanged between the IMS

servers (P-CSCF, S-CSCF—messages 22–23);

Figure 3. Service scenario for an unsuccessful call (transport resources unavailable).

The prepared service scenarios provide a better overview of the stages of software
implementation and testing, which are described in the next section. The first scenario
assumes a successful call set-up between two end devices in the IMS/NGN network
(Figure 2). The case of insufficient transport resources, resulting in an unsuccessful call
set-up, is considered in the second scenario (Figure 3).

In both scenarios, elements of the IMS network, such as P-CSCF and Serving-CSCF
(S-CSCF), were included along with the end users (User Equipment—marked as UE 1
and UE 2 in Figures 2 and 3). These elements communicate with each other using the
SIP protocol. Moreover, elements of the SDN concept were included: the controller and
programmable switches. Each scenario covers the end-to-end process of making a call,
from generating a service request to reserving resources and releasing them when the
call is disengaged. Not all the above-mentioned steps are performed when the transport
resources for the call are insufficient. All the presented scenarios contain SIP (black arrows)
and Diameter (red arrows) signaling messages. They also include the process of network
resource control using the OpenFlow protocol (blue arrows) for operations on flow tables.
The scenarios do not take into account invoking the SDN controller API by the Gateway
Application because it is a non-standardized interface and dependent on the choice of
controller software.

The initial OpenFlow protocol messages for both considered scenarios (unnumbered
messages in Figures 2 and 3) concern establishing communication between the SDN con-
troller and programmable switches: negotiating the protocol version, checking the capabil-
ities of the switches, obtaining their detailed configuration, etc. The most critical events
occurring during the successful call set-up scenario (Figure 2) are as follows:

Sensors 2023, 23, 5481 7 of 25

• UE 1 generates a call set-up request, which is passed to the P-CSCF, S-CSCF and
P-CSCF again (messages 2–7);

• resource reservation for the call—exchange of Diameter messages between the P-
CSCF and SDN controller (messages 8 and 14; this communication is performed via
the Gateway Application not depicted in Figures 2 and 3) and OpenFlow messages
between the SDN controller and programmable switches (messages 10–12);

• UE 2 is notified about the call request. It rings and accepts the call (messages 15–21);
• SIP 200 OK (INVITE) message (acceptance of the call) is exchanged between the IMS

servers (P-CSCF, S-CSCF—messages 22–23);
• UE 1 is notified that UE 2 accepts the call and sends a confirmation to UE 2 (mes-

sages 24–28);
• UE 1 and UE 2 are participating in a voice connection (RTP session);
• UE 1 generates a call disengagement request, which is passed to P-CSCF (message 29);
• allocated transport resources are released—Diameter and OpenFlow communication

(messages 30–36);
• SIP BYE message (call disengagement request) is exchanged between the IMS servers

(P-CSCF, S-CSCF—messages 37–38);
• UE 2 is notified about the call disengagement (message 39) and sends a confirmation

to UE 1 (messages 40–43).

The unsuccessful call set-up scenario (Figure 3) begins similarly to the successful
one (Figure 2). However, in this case, there are insufficient transport resources for the
call, which is signaled by the SDN controller (message 14). The remaining SIP messages
(messages 15–20) are used to inform UE 1 about this fact.

It should be emphasized that the implemented project focuses on the Diameter pro-
tocol communication between the P-CSCF and the SDN controller (via the API called by
the GA), as well as the OpenFlow protocol communication between the SDN controller
and the programmable switches, as they are crucial for checking the interoperability of the
IMS/NGN and SDN concepts. For this reason, implementing the SIP protocol communi-
cation between user terminals and CSCF servers is not necessary and was not performed.
As a result, the following network elements shown in Figures 2 and 3 are implemented in
the considered project: P-CSCF, SDN controller (supported by the GA), emulated network
of programmable switches. The included communication procedures concern resource
reservation (successful—messages 8–14 from Figure 2; unsuccessful—messages 8–14 from
Figure 3) and resource release (messages 30–36 from Figure 2).

3.3. Mapping between Diameter and HTTP REST/JSON Message Fields

This subsection presents the Diameter and HTTP REST/JSON message fields, which
are mapped by the Gateway Application (Tables 2 and 3) during transport resource reser-
vation and release procedures. In the presented mappings, it is assumed that the HTTP
REST API of the ONOS controller [7] is used (the choice of this controller is justified later).
It should be mentioned that the described mappings are not given in the standards and are
not present in any of the related papers analyzed (Section 2). Therefore, they represent an
original contribution of this paper, which is very important in implementing the GA.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 8 of 25

Table 2. Mappings between Diameter and HTTP REST/JSON message fields for resource reservation.

Diameter
Message

Diameter
AVP (Code)

Sample
AVP Value

HTTP
Message

JSON
Field

Sample
JSON Field

Value
Comment

AAR, AAA *Session-Id (263) 192.168.56.106;
592269514;4

Diameter session Id generated in
P-CSCF.

AAR, AAA *Origin-Host (264) 192.168.56.106 IP address of Diameter message
sender.

AAR, AAA *Origin-Realm (296) open-ims.test Diameter origin realm name.

AAR *Destination-Realm (283) open-ims.test Diameter destination realm name.

AAR, AAA *Auth-Application-Id (258) 16777235

This AVP will always be set to
16777235 (standardized Id of the

ITU-T Rs interface between
P-CSCF and GA).

AAR, AAA *Auth-Request-Type (274) 2 This AVP will always be set to
AUTHORIZE_ONLY (2).

AAR, AAA Authorization-Lifetime
(291) 4294967295 POST *"timeout" 0

Resource reservation holding time;
the presented values mean “no

timeout”.

AAA *Result-Code (268) 2001 response to POST

Resource reservation result taken
from the HTTP response code. For
example, a successful reservation
(HTTP 200 OK message) results in

the AVP value of 2001.

POST, response to POST *"deviceId" of:000000000000001 OpenFlow identifier of a
programmable switch.

response to POST *"flowId" 281476241443288 OpenFlow identifier of a created
flow.

POST "treatment":{"instructions":[
. . .]} {"type":"OUTPUT"," port": "1"}

Treatment instructions for the flow
packets in a particular

switch—forwarding to a specified
output port.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 9 of 25

Table 2. Cont.

Diameter
Message

Diameter
AVP (Code)

Sample
AVP Value

HTTP
Message

JSON
Field

Sample
JSON Field

Value
Comment

AAR
Media-Component-

Description
(517)

refer to Ref [23] POST "selector":{"criteria":[. . .]}

{"type":"ETH_TYPE",
"ethType":"0x8800"},
{"type":"IP_PROTO",

"protocol":6},
{"type":"IPV4_SRC",
"ip":"10.0.0.0/24"},

{"type":"IPV4_DST",
"ip":"10.0.0.0/24"},

{"type":"TCP_SRC",
"tcpPort":1},{"type":"TCP_DST",

"tcpPort":1}

Criteria for classifying packets to a
given flow. They can be based on,

among others, Ethernet frame
type, IP transport protocol type, IP
source and destination addresses

and ports.

An asterisk (*) before the name of an element indicates that it is mandatory.

Table 3. Mappings between Diameter and HTTP URI parameters for resource release.

Diameter
Message

Diameter
AVP (Code)

Sample
AVP Value

HTTP
Message

URI
Parameter

Sample
URI

Parameter
Value

Comment

STR, STA *Session-Id (263) 192.168.56.106;
592269514;4

Diameter session Id generated in
P-CSCF during resource reservation

(AAR message).

STR, STA *Origin-Host (264) 192.168.56.106 IP address of Diameter message
sender.

STR, STA *Origin-Realm (296) open-ims.test Diameter origin realm name.

STR *Destination-Realm (283) open-ims.test Diameter destination realm name.

STR *Termination-Cause (295) 1

Reason for resource release. The
most common value of 1 means

resource release upon user request
(call disengagement request sent to

service stratum).

STR *Auth-Application-Id (258) 16777235

This AVP will always be set to
16777235 (standardized Id of the

ITU-T Rs interface between P-CSCF
and GA).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 10 of 25

Table 3. Cont.

Diameter
Message

Diameter
AVP (Code)

Sample
AVP Value

HTTP
Message

URI
Parameter

Sample
URI

Parameter
Value

Comment

STA *Result-Code (268) 2001 response to DELETE

Resource release result taken from
the HTTP response code. For

example, a successful release (HTTP
204 No Content message) results in

the AVP value of 2001.

DELETE *"flowId" "281476241443288"

OpenFlow identifier of the flow,
which needs to be removed from a
particular flow table. It should be

filled by the GA based on the
Diameter session Id.

DELETE *"deviceId" "of:000000000000001"

OpenFlow identifier of a
programmable switch. It should be

filled by the GA based on the
Diameter session Id.

An asterisk (*) before the name of an element indicates that it is mandatory.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 11 of 25

The Gateway Application maps the Diameter messages exchanged over the Rs in-
terface (between the P-CSCF server and GA) to the HTTP REST/JSON API messages
(exchanged between the GA and ONOS controller) and vice versa. During resource reser-
vation (Table 2), the Diameter message fields (called Attribute–Value Pairs, AVPs [13,23])
are mapped to the equivalent JSON fields carried in HTTP messages (HTTP POST and
responses) [7]. For resource release (Table 3), the set of required ONOS API parameters is
small and is passed in the request URI of the HTTP DELETE message. Thus, the Diameter
AVPs are mapped to these HTTP URI parameters.

An asterisk (*) before the name of an AVP, JSON field or URI parameter (Tables 2 and 3)
indicates that this element is mandatory and must be present in a particular message. The
following conclusions can be drawn from an analysis of Tables 2 and 3:

1. There are several Diameter AVPs, which are not directly mapped to HTTP JSON fields
or URI parameters:

a. Diameter session identifier generated in P-CSCF (Session-Id);
b. AVPs resulting from Diameter peers’ (P-CSCF, GA) IP addresses or domain

parameters (Origin-Host, Origin-Realm, Destination-Realm);
c. AVPs with constant values (Auth-Application-Id, Auth-Request-Type);
d. other AVPs without ONOS API equivalents (Termination-Cause);

2. There are several Diameter AVPs, which are mapped to HTTP JSON fields or URI
parameters (Authorization-Lifetime, Media-Component-Description). The Media-
Component-Description AVP containing the requested QoS parameters and IP flows
classifiers is very important for resource reservation. This AVP includes several other
AVPs and has a very complicated structure [23]. Therefore, instead of presenting its
example contents, a reference is given in Table 2;

3. The Result-Code AVP is set based on the HTTP response code;
4. The "deviceId" and "treatment": {"instructions":[. . .]} JSON fields (Table 2) must

be present in HTTP POST messages sent from the GA to the ONOS controller for
resource reservation. These parameters are related to the path in the programmable
switches network whose resources should be modified—identifiers of switches and
their output ports. As the service stratum does not provide these transport network
topology parameters, they should be gathered by the GA;

5. For each successful resource reservation, the GA should store the Diameter Session-Id
AVP, the identifiers of the related programmable switches and the identifiers of the
flows created in these switches. During the resource release process, the service
stratum provides the Session-Id AVP (in the STR message). Other identifiers must be
determined by the GA and used in the "flowId", "deviceId" URI parameters for the
HTTP DELETE message.

Section 3.4 describes the set of open-source software used to implement the integrated
network functionality. As the chosen open-source software required extensive adaptation,
the project implementation process was divided into stages.

3.4. Choice of Software and Stages of Implementation

The project began with selecting and integrating open-source software, implementing
the required IMS/NGN and SDN network functionalities. The first piece of selected
open-source software was CDiameterPeer [21], a peer-to-peer application providing the
ability to send and interpret Diameter messages. Thus, it can be used to implement the
functionality of P-CSCF (generating Diameter messages from the service stratum) and
the Gateway Application component. The SDN network was built using several other
open-source software solutions. The ONOS SDN controller [7] was chosen due to its
extensive documentation and our experience from previous projects. This choice made it
efficient to write the software code and to carry out functional tests of the cooperation of
the IMS/NGN and SDN concepts, which was the aim of the paper. The controller manages
network resources implemented by programmable switches (Open vSwitch [22]) emulated

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 12 of 25

in the Mininet environment [24]. The communication over the SDN resource–control
interface is based on the OpenFlow protocol.

The large amount of work related to implementing the project and its complexity
required dividing the work into the following four stages (which will be described in more
detail later in the paper):

1. Preparing the IMS/NGN and SDN environment (creating virtual machines, in-
stalling operating systems, configuring IP connectivity, installing the chosen open-
source software).

2. Configuring the basic Diameter and OpenFlow communication (configuring the
CDiameterPeer applications to provide the basic Diameter protocol communication
between P-CSCF and GA—Figure 1; detailed standardized Diameter communication
procedures will be implemented in the next stage; creating an emulated transport
network in the Mininet environment and enabling its management by the ONOS
controller using the OpenFlow protocol—Figure 1).

3. Implementing the interface with the Diameter protocol (implementing communication
between P-CSCF and GA according to the ITU-T standards).

4. Implementing the interface with the HTTP REST/JSON protocol (implementing the
GA functionality of translating Diameter protocol messages to the HTTP REST/JSON
API messages of the ONOS controller for controlling transport resources).

4. Concept Implementation and Software Tests

Based on the proposed concept (Figure 1) and scenarios (Figures 2 and 3), the im-
plementation of the project began according to the architecture depicted in Figure 4. The
consecutive stages of the performed work are presented in this section.

Sensors 2023, 23, x FOR PEER REVIEW 11 of 24

interface is based on the OpenFlow protocol.
The large amount of work related to implementing the project and its complexity

required dividing the work into the following four stages (which will be described in more
detail later in the paper):
1. Preparing the IMS/NGN and SDN environment (creating virtual machines, installing

operating systems, configuring IP connectivity, installing the chosen open-source
software).

2. Configuring the basic Diameter and OpenFlow communication (configuring the
CDiameterPeer applications to provide the basic Diameter protocol communication
between P-CSCF and GA—Figure 1; detailed standardized Diameter communication
procedures will be implemented in the next stage; creating an emulated transport
network in the Mininet environment and enabling its management by the ONOS
controller using the OpenFlow protocol—Figure 1).

3. Implementing the interface with the Diameter protocol (implementing communica-
tion between P-CSCF and GA according to the ITU-T standards).

4. Implementing the interface with the HTTP REST/JSON protocol (implementing the
GA functionality of translating Diameter protocol messages to the HTTP REST/JSON
API messages of the ONOS controller for controlling transport resources).

4. Concept Implementation and Software Tests
Based on the proposed concept (Figure 1) and scenarios (Figures 2 and 3), the imple-

mentation of the project began according to the architecture depicted in Figure 4. The con-
secutive stages of the performed work are presented in this section.

Figure 4. Architecture of the prepared environment. Figure 4. Architecture of the prepared environment.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 13 of 25

4.1. Preparation of the IMS/NGN and SDN Environment

The structure of the prepared IMS/NGN and SDN environment is illustrated in
Figure 4. The experiments described below were run on a computer with an Intel Core
i7-4790K processor (four cores, eight threads), 32 GB RAM, SSD drive and Windows
10 operating system. Three virtual machines running Ubuntu Linux distributions were
created using the Oracle VM VirtualBox hypervisor. All machines were allowed to access
the internet and an internal IP network, which was set up for their direct communication.
Ubuntu distribution 16.04.7 LTS was installed on the first machine (CDiameterPeer 1).
This system contains the CDiameterPeer software, which is used to generate Diameter
messages and implements the selected functionality of the P-CSCF server. The second
virtual machine contains the same version of the operating system and two open-source
software solutions: CDiameterPeer, acting as a component of the Gateway Application
(marked as CDiameterPeer 2), and the ONOS controller. The third virtual machine is based
on the Ubuntu 20.04.2 LTS operating system and contains the Mininet software, which
emulates the programmable switches implemented by Open vSwitch.

The created environment uses communication through three interfaces. The first is
based on the Diameter protocol and is used for communication between CDiameterPeer 1
and CDiameterPeer 2. The HTTP REST/JSON protocol is used in the second interface for
CDiameterPeer 2 to call the ONOS controller API. The OpenFlow protocol is applied in the
third interface (interface of the SDN network) for the ONOS controller to manage the Open
vSwitch programmable switches. The next subsection describes the process of configuring
basic communication in the Diameter and OpenFlow interfaces.

4.2. Configuration of Basic Diameter and OpenFlow Communication

Preparing the interface with the Diameter protocol required installing and running the
CDiameterPeer 1 and 2 applications, as demonstrated in Figure 4. Both applications operate
in a peer-to-peer topology by definition. They are written in C++ and compiled using
GCC. A log file is created on startup by each application, which can be used to examine the
operation of its individual processes.

Further configuration of individual Diameter peers involved modifying the config-
uration files stored in the XML format. For each peer, it was necessary to set the Fully
Qualified Domain Name (FQDN) in the format of the IP address and the vendor ID of
11502 associated with the application ID of 16777235. According to the ITU-T standard [23],
the last two values are used to indicate the Diameter Rs interface between the P-CSCF and
RACF. For each Diameter peer, the XML configuration files also indicate the parameters of
its neighboring peer: IP address and ISO/OSI layer 4 port.

After modifying the XML configuration files for both CDiameterPeer instances (CDi-
ameterPeer 1 and 2), basic Diameter communication between the peers was established.
The task was verified based on the CDiameterPeer application log for both instances
(Figure 5), containing information about the established connection and open port 3868 (de-
fault Diameter port). The performed configuration was also confirmed using the Wireshark
network sniffer. The exchange of the Capabilities-Exchange Request and Capabilities-
Exchange Answer messages was captured (Figure 6), which are used to negotiate Diameter
communication parameters (including the supported Diameter protocol applications).

In the next step, the OpenFlow interface was prepared (Figure 4). Initially, ONOS
controller 2.6.0.b was installed from the GitHub repository. The installation required
the following components of the Ubuntu operating system: Python modules, the Git
version control system, tools to support the ZIP compression format, and OSGI libraries.
It is worth mentioning that after installing all the necessary modules, problems were
encountered during the compilation of the ONOS controller image, which were related to
its cooperation with the installed version of the Ubuntu Linux system. The compilation
failed on the latest versions of Ubuntu, i.e., 20 and 18. Eventually, the image was successfully
built on Ubuntu 16. The described compatibility issues were not included in the ONOS
controller documentation.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 14 of 25Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Figure 5. Log of CDiameterPeer 1 illustrating the establishment of a connection with CDiame-
terPeer 2.

Figure 6. Diameter messages exchange when establishing a connection between peers.

In the next step, the OpenFlow interface was prepared (Figure 4). Initially, ONOS
controller 2.6.0.b was installed from the GitHub repository. The installation required the
following components of the Ubuntu operating system: Python modules, the Git version
control system, tools to support the ZIP compression format, and OSGI libraries. It is
worth mentioning that after installing all the necessary modules, problems were encoun-
tered during the compilation of the ONOS controller image, which were related to its co-
operation with the installed version of the Ubuntu Linux system. The compilation failed
on the latest versions of Ubuntu, i.e., 20 and 18. Eventually, the image was successfully
built on Ubuntu 16. The described compatibility issues were not included in the ONOS
controller documentation.

After building the ONOS controller image, it had to be configured. This involved
using the provided CLI interface to set the IP address and launch the proper ONOS ap-
plications, among other things. These tasks are necessary for further work and enable, for
example, the OpenFlow protocol support and activating the REST API. It was especially
necessary to run the reactive relay application, i.e., the mechanism for installing flows on
demand in the flow tables of programmable switches.

The second prepared element of the SDN network were the programmable switches
(Open vSwitch 2.3.0), emulated in the Mininet 2.13.3 environment. The GitHub repository
was used to install Mininet. Open vSwitch is built into Mininet by default. All that was
required was to run it and check the status of the relevant processes from the Linux com-
mand line.

Open vSwitch and Mininet can be integrated with the ONOS controller by invoking
a command in the Linux terminal (Figure 7, first two lines). For this operation to be suc-
cessful, it is crucial to provide the appropriate parameters of the controller, the network
of programmable switches and the communication between them. In the presented case
(Figure 7), the mn command was run with arguments defining:

Figure 5. Log of CDiameterPeer 1 illustrating the establishment of a connection with CDiameterPeer 2.

Sensors 2023, 23, x FOR PEER REVIEW 13 of 24

Figure 5. Log of CDiameterPeer 1 illustrating the establishment of a connection with CDiame-
terPeer 2.

Figure 6. Diameter messages exchange when establishing a connection between peers.

In the next step, the OpenFlow interface was prepared (Figure 4). Initially, ONOS
controller 2.6.0.b was installed from the GitHub repository. The installation required the
following components of the Ubuntu operating system: Python modules, the Git version
control system, tools to support the ZIP compression format, and OSGI libraries. It is
worth mentioning that after installing all the necessary modules, problems were encoun-
tered during the compilation of the ONOS controller image, which were related to its co-
operation with the installed version of the Ubuntu Linux system. The compilation failed
on the latest versions of Ubuntu, i.e., 20 and 18. Eventually, the image was successfully
built on Ubuntu 16. The described compatibility issues were not included in the ONOS
controller documentation.

After building the ONOS controller image, it had to be configured. This involved
using the provided CLI interface to set the IP address and launch the proper ONOS ap-
plications, among other things. These tasks are necessary for further work and enable, for
example, the OpenFlow protocol support and activating the REST API. It was especially
necessary to run the reactive relay application, i.e., the mechanism for installing flows on
demand in the flow tables of programmable switches.

The second prepared element of the SDN network were the programmable switches
(Open vSwitch 2.3.0), emulated in the Mininet 2.13.3 environment. The GitHub repository
was used to install Mininet. Open vSwitch is built into Mininet by default. All that was
required was to run it and check the status of the relevant processes from the Linux com-
mand line.

Open vSwitch and Mininet can be integrated with the ONOS controller by invoking
a command in the Linux terminal (Figure 7, first two lines). For this operation to be suc-
cessful, it is crucial to provide the appropriate parameters of the controller, the network
of programmable switches and the communication between them. In the presented case
(Figure 7), the mn command was run with arguments defining:

Figure 6. Diameter messages exchange when establishing a connection between peers.

After building the ONOS controller image, it had to be configured. This involved using
the provided CLI interface to set the IP address and launch the proper ONOS applications,
among other things. These tasks are necessary for further work and enable, for example,
the OpenFlow protocol support and activating the REST API. It was especially necessary to
run the reactive relay application, i.e., the mechanism for installing flows on demand in the
flow tables of programmable switches.

The second prepared element of the SDN network were the programmable switches
(Open vSwitch 2.3.0), emulated in the Mininet 2.13.3 environment. The GitHub repository
was used to install Mininet. Open vSwitch is built into Mininet by default. All that
was required was to run it and check the status of the relevant processes from the Linux
command line.

Open vSwitch and Mininet can be integrated with the ONOS controller by invoking
a command in the Linux terminal (Figure 7, first two lines). For this operation to be
successful, it is crucial to provide the appropriate parameters of the controller, the network
of programmable switches and the communication between them. In the presented case
(Figure 7), the mn command was run with arguments defining:

• IP address of the controller with the default port of 6653;
• OpenFlow protocol version 1.3 (using the latest supported version of 1.5, Mininet

encountered problems cooperating with the ONOS controller, which were not reported
in the documentation);

• target network topology (two-dimensional toroidal topology with a total number of
nine switches; Figure 8).

Sensors 2023, 23, 5481 15 of 25

Sensors 2023, 23, x FOR PEER REVIEW 14 of 24

• IP address of the controller with the default port of 6653;
• OpenFlow protocol version 1.3 (using the latest supported version of 1.5, Mininet

encountered problems cooperating with the ONOS controller, which were not re-
ported in the documentation);

• target network topology (two-dimensional toroidal topology with a total number of
nine switches; Figure 8).

Figure 7. Mininet test result.

After executing the mn command shown in Figure 7 (first two lines), the requested
programmable switch network topology was created and successfully connected to the
ONOS controller. Information about these events is provided in the Mininet log (Figure
7). In the next step, the Mininet CLI is started and used to verify the communication be-
tween the emulated switches (pingall command in Figure 7). The creation of the desired
network topology was also monitored on the web interface of the ONOS controller (Figure
8). Finally, the OpenFlow protocol communication between the controller and program-
mable switches was captured using Wireshark (Figure 9). The communication process in-
cluded, among others, confirming the protocol version used (Hello packets), determining
the available switch ports (Features Request, Features Reply packets), obtaining detailed
switch configurations (Get Config Request, Get Config Reply packets). The order of ex-
changing specific messages was as expected.

The results confirmed the correctness of the basic communication with the Diameter
and OpenFlow protocols in their interfaces. The next subsection focuses on implementing
the operation of the Diameter protocol interface in accordance with the ITU-T recommen-
dation [23] for the Rs interface located between the P-CSCF and RACF.

Figure 7. Mininet test result.
Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

Figure 8. Topology of the network managed by the ONOS controller.

Figure 9. Packet dump on the OpenFlow interface.

Figure 8. Topology of the network managed by the ONOS controller.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 16 of 25

After executing the mn command shown in Figure 7 (first two lines), the requested
programmable switch network topology was created and successfully connected to the
ONOS controller. Information about these events is provided in the Mininet log (Figure 7).
In the next step, the Mininet CLI is started and used to verify the communication between
the emulated switches (pingall command in Figure 7). The creation of the desired network
topology was also monitored on the web interface of the ONOS controller (Figure 8).
Finally, the OpenFlow protocol communication between the controller and programmable
switches was captured using Wireshark (Figure 9). The communication process included,
among others, confirming the protocol version used (Hello packets), determining the
available switch ports (Features Request, Features Reply packets), obtaining detailed switch
configurations (Get Config Request, Get Config Reply packets). The order of exchanging
specific messages was as expected.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 24

Figure 8. Topology of the network managed by the ONOS controller.

Figure 9. Packet dump on the OpenFlow interface.

Figure 9. Packet dump on the OpenFlow interface.

The results confirmed the correctness of the basic communication with the Diameter
and OpenFlow protocols in their interfaces. The next subsection focuses on implementing
the operation of the Diameter protocol interface in accordance with the ITU-T recommen-
dation [23] for the Rs interface located between the P-CSCF and RACF.

4.3. Implementation of the Interface Running the Diameter Protocol

After implementing and testing the basic functionality of the Diameter interface, it was
necessary to implement its full operation to control the transport resources in accordance
with the ITU-T recommendation [23]. As illustrated in Figure 2, the following messages are
exchanged over this interface:

• transport resources reservation requests—AA Request (AAR) messages;
• responses to transport resources reservation requests—AA Answer (AAA) messages;
• transport resources release requests—Session-Termination Request (STR) messages;
• responses to transport resources release requests—Session-Termination Answer

(STA) messages.

The CDiameterPeer 1 virtual machine from Figure 4 generates individual types of
Diameter requests (AAR and STR messages) in response to Unix signals sent to the main
process of its CDiameterPeer application. For this purpose, the request_init() function was
created in the main.c file of this application. Depending on the Unix signal type received
(e.g., SIGUSR2), it generates an AAR or STR message with the Attribute–Value Pair (AVP)
fields described by the ITU-T standard [23]. For example, for AAR messages, apart from
the default AVP fields created by CDiameterPeer, other AVPs had to be added, including

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 17 of 25

“Auth-Application-Id (258)”, “Auth-Request-Type (274)”, “Resource-Reservation-Mode
(1003)” and “Destination-Realm (283)”. The second virtual machine in Figure 4 (containing
the CDiameterPeer 2 software) required editing the server.c file of its CDiameterPeer
application in order to process the AAR and STR messages. Its purpose is to call the REST
API of the ONOS controller in response to the received Diameter messages (details are
given in the next subsection) and to send the replies to these messages (containing the
result of the transport resources reservation—AAA—or release—STA).

The implementation of the Diameter interface was confirmed by analyzing the CDiam-
eterPeer 1 and 2 logs and the Diameter message dumps created using the Wireshark packet
sniffer for all kinds of generated requests. The captured Diameter messages related to re-
source reservation are presented in Figure 10. In addition to messages, which are character-
istic of the Diameter protocol (Capabilities-Exchange Request/Answer, Device-Watchdog
Request/Answer [13]), one can also see an AAR message containing standardized AVP
fields and an AAA message, which is a response to the AAR. A Diameter message exchange
concerning transport resource release is shown in Figure 11. It contains a resource release
request (STR message with proper AVPs) and a response to this request (STA message). All
the performed tests confirmed that the implementation of the Diameter interface in the
described project is correct.

Sensors 2023, 23, x FOR PEER REVIEW 16 of 24

4.3. Implementation of the Interface running the Diameter Protocol
After implementing and testing the basic functionality of the Diameter interface, it

was necessary to implement its full operation to control the transport resources in accord-
ance with the ITU-T recommendation [23]. As illustrated in Figure 2, the following mes-
sages are exchanged over this interface:
• transport resources reservation requests—AA Request (AAR) messages;
• responses to transport resources reservation requests—AA Answer (AAA) messages;
• transport resources release requests—Session-Termination Request (STR) messages;
• responses to transport resources release requests—Session-Termination Answer

(STA) messages.
The CDiameterPeer 1 virtual machine from Figure 4 generates individual types of

Diameter requests (AAR and STR messages) in response to Unix signals sent to the main
process of its CDiameterPeer application. For this purpose, the request_init() function was
created in the main.c file of this application. Depending on the Unix signal type received
(e.g., SIGUSR2), it generates an AAR or STR message with the Attribute–Value Pair (AVP)
fields described by the ITU-T standard [23]. For example, for AAR messages, apart from
the default AVP fields created by CDiameterPeer, other AVPs had to be added, including
“Auth-Application-Id (258)”, “Auth-Request-Type (274)”, “Resource-Reservation-Mode
(1003)” and “Destination-Realm (283)”. The second virtual machine in Figure 4 (contain-
ing the CDiameterPeer 2 software) required editing the server.c file of its CDiameterPeer
application in order to process the AAR and STR messages. Its purpose is to call the REST
API of the ONOS controller in response to the received Diameter messages (details are
given in the next subsection) and to send the replies to these messages (containing the
result of the transport resources reservation—AAA—or release—STA).

The implementation of the Diameter interface was confirmed by analyzing the
CDiameterPeer 1 and 2 logs and the Diameter message dumps created using the
Wireshark packet sniffer for all kinds of generated requests. The captured Diameter mes-
sages related to resource reservation are presented in Figure 10. In addition to messages,
which are characteristic of the Diameter protocol (Capabilities-Exchange Request/An-
swer, Device-Watchdog Request/Answer [13]), one can also see an AAR message contain-
ing standardized AVP fields and an AAA message, which is a response to the AAR. A
Diameter message exchange concerning transport resource release is shown in Figure 11.
It contains a resource release request (STR message with proper AVPs) and a response to
this request (STA message). All the performed tests confirmed that the implementation of
the Diameter interface in the described project is correct.

Figure 10. Diameter message dump for transport resource reservation. Figure 10. Diameter message dump for transport resource reservation.

Sensors 2023, 23, x FOR PEER REVIEW 17 of 24

Figure 11. Diameter message dump for transport resource release.

4.4. Implementation of the Interface with the HTTP REST/JSON Protocol
As already mentioned, in response to the received Diameter AAR and STR messages,

CDiameterPeer 2 (the second virtual machine in Figure 4) generates HTTP REST/JSON
messages to the ONOS controller to reserve or release transport resources. The operation
of the interface with the HTTP REST/JSON protocol is implemented in the server.c file of
the CDiameterPeer 2 application.

In preparing this implementation, the REST API of the ONOS controller was investi-
gated using a web browser, which can generate simple HTTP requests without a JSON
body. A response to a request generated in this way is demonstrated in Figure 12. Based
on this, the libcurl [25] (HTTP protocol) and JsonCpp [26] (JSON data exchange format)
C++ libraries were used to implement the HTTP REST/JSON interface. The correctness of
this implementation was confirmed based on a detailed analysis of message exchanges for
complete resource reservation (Figure 13) and release (Figure 14) procedures. During the
testing process, emphasis was placed on the contents of the messages sent over the HTTP
REST/JSON interface.

It should be emphasized that Figures 13–15 show the OpenFlow message exchange
with only one programmable switch to be more compact. The communication with the
other switches on the path is analogous.

For transport resource reservation, an HTTP POST message (Figure 13) is sent from
the CDiameterPeer 2 application to the ONOS controller. The parameters of the requested
flow are described in the JSON body of this message, a fragment of which is presented in
Figure 13. After receiving the HTTP POST message, the ONOS controller uses the Open-
Flow protocol messages (the FlowMod and BarrierRequest messages are sent in one TCP
packet—Figure 15) to modify the flow tables in the required switches. It then sends an
HTTP 200 OK response to the CDiameterPeer 2 application, informing about the success-
ful resource reservation (it contains the ID of the created flow). The success of the resource
reservation can be confirmed by analyzing the flow tables in the switches involved, using
the ONOS controller GUI and Mininet CLI, which now include the requested flow (it is
marked using a red rectangle in Figures 16 and 17). The same requested flow characteris-
tics (among others, priority = 23 and cookie = 0x00b000006d0f345a) can be identified in
Figures 13 and 15–17.

Figure 11. Diameter message dump for transport resource release.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 18 of 25

4.4. Implementation of the Interface with the HTTP REST/JSON Protocol

As already mentioned, in response to the received Diameter AAR and STR messages,
CDiameterPeer 2 (the second virtual machine in Figure 4) generates HTTP REST/JSON
messages to the ONOS controller to reserve or release transport resources. The operation of
the interface with the HTTP REST/JSON protocol is implemented in the server.c file of the
CDiameterPeer 2 application.

In preparing this implementation, the REST API of the ONOS controller was inves-
tigated using a web browser, which can generate simple HTTP requests without a JSON
body. A response to a request generated in this way is demonstrated in Figure 12. Based
on this, the libcurl [25] (HTTP protocol) and JsonCpp [26] (JSON data exchange format)
C++ libraries were used to implement the HTTP REST/JSON interface. The correctness of
this implementation was confirmed based on a detailed analysis of message exchanges for
complete resource reservation (Figure 13) and release (Figure 14) procedures. During the
testing process, emphasis was placed on the contents of the messages sent over the HTTP
REST/JSON interface.

Sensors 2023, 23, x FOR PEER REVIEW 18 of 24

Figure 12. ONOS controller REST API testing.

For transport resource release, an HTTP DELETE message (Figure 14) is sent from
the CDiameterPeer 2 application to the ONOS controller. The ID of the deleted flow is
given in the request URI. The ONOS controller uses OpenFlow protocol messages to mod-
ify the flow tables in the required switches (the same set of messages is used as for resource
reservation, but with slightly modified content) and sends an HTTP 204 No Content re-
sponse to the CDiameterPeer 2 application, confirming the resource release. The HTTP
response sent contains no information in its message body. The ONOS controller GUI and
Mininet CLI were also used to confirm that the requested flow was deleted from the flow
tables in the required switches, analogous to the way presented in Figures 16 and 17.

Figure 12. ONOS controller REST API testing.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 19 of 25Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Complete message dump for transport resource reservation with selected content of the
HTTP/REST API message (HTTP POST) sent to the ONOS controller.

Figure 14. Complete message dump for transport resource release with selected content of the
HTTP/REST API message (HTTP DELETE) sent to the ONOS controller.

Figure 13. Complete message dump for transport resource reservation with selected content of the
HTTP/REST API message (HTTP POST) sent to the ONOS controller.

Sensors 2023, 23, x FOR PEER REVIEW 19 of 24

Figure 13. Complete message dump for transport resource reservation with selected content of the
HTTP/REST API message (HTTP POST) sent to the ONOS controller.

Figure 14. Complete message dump for transport resource release with selected content of the
HTTP/REST API message (HTTP DELETE) sent to the ONOS controller.

Figure 14. Complete message dump for transport resource release with selected content of the
HTTP/REST API message (HTTP DELETE) sent to the ONOS controller.

It should be emphasized that Figures 13–15 show the OpenFlow message exchange
with only one programmable switch to be more compact. The communication with the
other switches on the path is analogous.

Sensors 2023, 23, 5481 20 of 25Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 15. Selected content of the OpenFlow messages used by the ONOS controller to reserve
transport resources (there are two messages in TCP packet no. 5—FlowMod and BarrierRequest).

Figure 16. Flow table of a selected switch displayed using the ONOS controller GUI.

Figure 17. Flow table of a selected switch displayed using the Mininet CLI.

4.5. Final Functional Tests
The previous subsections presented the stages of software development for the

IMS/NGN network based on the SDN concept in the transport stratum. After each of these

Figure 15. Selected content of the OpenFlow messages used by the ONOS controller to reserve
transport resources (there are two messages in TCP packet no. 5—FlowMod and BarrierRequest).

For transport resource reservation, an HTTP POST message (Figure 13) is sent from
the CDiameterPeer 2 application to the ONOS controller. The parameters of the requested
flow are described in the JSON body of this message, a fragment of which is presented in
Figure 13. After receiving the HTTP POST message, the ONOS controller uses the OpenFlow
protocol messages (the FlowMod and BarrierRequest messages are sent in one TCP packet—
Figure 15) to modify the flow tables in the required switches. It then sends an HTTP 200
OK response to the CDiameterPeer 2 application, informing about the successful resource
reservation (it contains the ID of the created flow). The success of the resource reservation
can be confirmed by analyzing the flow tables in the switches involved, using the ONOS
controller GUI and Mininet CLI, which now include the requested flow (it is marked using a
red rectangle in Figures 16 and 17). The same requested flow characteristics (among others,
priority = 23 and cookie = 0x00b000006d0f345a) can be identified in Figures 13 and 15–17.

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 15. Selected content of the OpenFlow messages used by the ONOS controller to reserve
transport resources (there are two messages in TCP packet no. 5—FlowMod and BarrierRequest).

Figure 16. Flow table of a selected switch displayed using the ONOS controller GUI.

Figure 17. Flow table of a selected switch displayed using the Mininet CLI.

4.5. Final Functional Tests
The previous subsections presented the stages of software development for the

IMS/NGN network based on the SDN concept in the transport stratum. After each of these

Figure 16. Flow table of a selected switch displayed using the ONOS controller GUI.

Sensors 2023, 23, 5481 21 of 25

Sensors 2023, 23, x FOR PEER REVIEW 20 of 24

Figure 15. Selected content of the OpenFlow messages used by the ONOS controller to reserve
transport resources (there are two messages in TCP packet no. 5—FlowMod and BarrierRequest).

Figure 16. Flow table of a selected switch displayed using the ONOS controller GUI.

Figure 17. Flow table of a selected switch displayed using the Mininet CLI.

4.5. Final Functional Tests
The previous subsections presented the stages of software development for the

IMS/NGN network based on the SDN concept in the transport stratum. After each of these

Figure 17. Flow table of a selected switch displayed using the Mininet CLI.

For transport resource release, an HTTP DELETE message (Figure 14) is sent from the
CDiameterPeer 2 application to the ONOS controller. The ID of the deleted flow is given in
the request URI. The ONOS controller uses OpenFlow protocol messages to modify the flow
tables in the required switches (the same set of messages is used as for resource reservation,
but with slightly modified content) and sends an HTTP 204 No Content response to the
CDiameterPeer 2 application, confirming the resource release. The HTTP response sent
contains no information in its message body. The ONOS controller GUI and Mininet CLI
were also used to confirm that the requested flow was deleted from the flow tables in the
required switches, analogous to the way presented in Figures 16 and 17.

4.5. Final Functional Tests

The previous subsections presented the stages of software development for the
IMS/NGN network based on the SDN concept in the transport stratum. After each of
these stages, the new functionalities and code fragments were tested. After verifying the
correctness of the last stage described in Section 4.4, additional final tests were carried
out. They concerned a detailed analysis of the signaling message flows for resource reser-
vation and release, analysis of the content of these messages and the flow tables in the
programmable switches.

As a summary of the final tests, comparisons of the obtained and assumed communica-
tion scenarios for transport resource reservation and release are presented in Tables 4 and 5.
A dash (–) in these tables means that HTTP REST/JSON API messages are not presented
in Figure 2, as this figure is intended to be independent of the chosen controller software,
while API messages are specific to particular controllers.

Table 4. Comparison of the obtained (Figure 13) and assumed (messages 8–14 from Figure 2)
communication scenario for transport resource reservation.

Message No.
in Figure 13

Message No.
in Figure 2 Message Name Comment

1 8 Diameter AAR (AA Request) Resource reservation request sent from the
P-CSCF to the GA.

2 – HTTP POST

API request for adding a flow to the flow
tables of the programmable switches sent

from the GA to the ONOS controller
(without authentication credentials).

3 – HTTP 401 Unauthorized API response indicating that authentication
is required.

4 – HTTP POST

API request for adding a flow to the flow
tables of the programmable switches sent
from the GA to the ONOS controller (with

authentication credentials).

Sensors 2023, 23, 5481 22 of 25

Table 4. Cont.

Message No.
in Figure 13

Message No.
in Figure 2 Message Name Comment

5 10, 11 OpenFlow FlowMod,
BarrierRequest

OpenFlow messages sent from the ONOS
controller to the programmable switches

(FlowMod—request to add a flow;
BarrierRequest—request to confirm the

completion of the previous operations, which
include adding a flow). These two OpenFlow
messages are transported in one TCP packet

(Figure 15).

6 12 OpenFlow BarrierReply
Confirmation of the completion of previous

operations sent by the programmable
switches to the ONOS controller.

7 – HTTP 200 OK
API response indicating that a flow was
successfully added, sent by the ONOS

controller to the GA.

8 14 Diameter AAA (AA Answer) Resource reservation response (success) sent
by the GA to the P-CSCF.

Table 5. Comparison of the obtained (Figure 14) and assumed (messages 30–36 from Figure 2)
communication scenario for transport resource release.

Message No.
in Figure 14

Message No.
in Figure 2 Message Name Comment

1 30 Diameter STR (Session-Termination
Request) Resource release request sent from the

P-CSCF to the GA.

2 – HTTP DELETE API request for removing a flow from the
flow tables of the programmable switches
sent from the GA to the ONOS controller

(without authentication credentials).

3 – HTTP 401 Unauthorized API response indicating that authentication
is required.

4 – HTTP DELETE API request for removing a flow from the
flow tables of the programmable switches
sent from the GA to the ONOS controller

(with authentication credentials).

5 32, 33 OpenFlow FlowMod,
BarrierRequest OpenFlow messages sent from the ONOS

controller to the programmable switches
(FlowMod—request to remove a flow;

BarrierRequest—request to confirm the
completion of the previous operations, which

include removing a flow). These two
OpenFlow messages are transported in one

TCP packet (analogous to Figure 15).

6 34 OpenFlow BarrierReply Confirmation of the completion of previous
operations sent by the programmable

switches to the ONOS controller.

7 – HTTP 204 No Content API response indicating that a flow was
deleted, sent by the ONOS controller to the

GA.

8 36 Diameter STA (Session-Termination
Answer) Resource release response sent by the GA to

the P-CSCF.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 23 of 25

In addition to the comparisons presented in Tables 4 and 5, during the final tests, a
detailed analysis of the content of the transmitted messages and the verification of the
flow tables in the programmable switches were also performed for both the resource
reservation and release procedures. As presented in Figures 16 and 17, the flow tables
were checked using two methods: the ONOS controller GUI and the Mininet CLI. The
final tests of the software developed under the project were fully successful and proved
that it is possible to apply the SDN concept in the transport stratum of the IMS/NGN
network, which will contribute to increasing the possibilities of programmable resource
control and management.

5. Conclusions

The concept presented in this paper corresponds to the directions of work carried
out in leading research centers and demonstrates the possibility of integrating modern
telecommunication technologies, such as IMS/NGN and SDN. This is in line with the
current effort put into optimizing management and control in telecommunication systems
by increasing the level of automation. The possibility of using solutions from open-source
projects is also very important here, as it reduces the implementation costs and shortens
the time from concept to implementation.

The described project uses many open-source software solutions, implementing the
specific functionality of IMS/NGN networks (CDiameterPeer) and SDN networks (ONOS
controller with programmable Open vSwitch switches emulated in Mininet). In addition,
tools were utilized that fit into the latest trends of using virtualization (Oracle VM Virtual-
Box hypervisor). This variety of open-source software and tools, as well as the deficiencies
in the available documentation, require a high degree of proficiency in recognizing software
configuration and modification problems.

Due to the large amount of work related to the implementation of the project and its
complexity, the work was divided into four stages: preparing the IMS/NGN and SDN
environment; configuring the basic Diameter and OpenFlow communication; implementing
the interface with the Diameter protocol; and implementing the interface with the HTTP
REST/JSON protocol. After completing each stage, the developed software was tested
by analyzing the available logs and message dumps obtained using the Wireshark packet
sniffer, among other things. Each successful test made it possible to start the next stage
of project implementation. Additionally, when the whole implementation process was
completed, a final detailed analysis of the message exchanges for resource reservation
and release processes was performed. The results proved that the SDN concept can be
successfully integrated and applied to cooperate with IMS/NGN networks.

The current project architecture (consisting of P-CSCF, GA, SDN controller and emu-
lated network of programmable switches) was successfully used to achieve the aim of this
paper, which was confirming the interoperability of the IMS/NGN and SDN concepts. Fu-
ture work will include extending this architecture to investigate more complex services and
service scenarios, which requires implementing the full IMS functionality in the service stra-
tum. Functional and performance tests of such an extended architecture will be conducted.
The results of performance tests are particularly important when considering industrial
applications. The knowledge about the performance of particular system elements can be
used, for example, to dynamically launch additional instances when the load increases
in order to preserve low response times. Based on the results of the above-mentioned
tests, we intend to propose analytical and simulation traffic models for the IMS/NGN
network, similar to those proposed in Refs [27,28], but including the SDN concept in the
transport stratum.

Author Contributions: Conceptualization, S.K. and M.S.; methodology, S.K. and M.S.; software, K.B.;
validation, S.K. and M.S.; investigation, S.K., M.S. and K.B.; writing—original draft preparation, M.S.;
writing—review and editing, S.K.; visualization, M.S. and K.B.; supervision, S.K. All authors have
read and agreed to the published version of the manuscript.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

Sensors 2023, 23, 5481 24 of 25

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bachorski, K.; Kaczmarek, S.; Sac, M. Zastosowanie koncepcji SDN w warstwie transportowej sieci IMS/NGN. Przegląd Telekomun.

+ Wiadomości Telekomun. 2022, 4, 271–277. (In Polish) [CrossRef]
2. ITU-T Recommendation Y.3300: Framework of Software-Defined Networking. June 2014. Available online: https://www.itu.int/

rec/T-REC-Y.3300/en (accessed on 9 June 2023).
3. Hussain, M.; Shah, N.; Amin, R.; Alshamrani, S.S.; Alotaibi, A.; Raza, S.M. Software-Defined Networking: Categories, Analysis,

and Future Directions. Sensors 2022, 22, 5551. [CrossRef] [PubMed]
4. Urrea, C.; Benítez, D. Software-Defined Networking Solutions, Architecture and Controllers for the Industrial Internet of Things:

A Review. Sensors 2021, 21, 6585. [CrossRef] [PubMed]
5. Fathy, C.; Saleh, S.N. Integrating Deep Learning-Based IoT and Fog Computing with Software-Defined Networking for Detecting

Weapons in Video Surveillance Systems. Sensors 2022, 22, 5075. [CrossRef] [PubMed]
6. Ouamri, M.A.; Barb, G.; Singh, D.; Alexa, F. Load Balancing Optimization in Software-Defined Wide Area Networking (SD-WAN)

using Deep Reinforcement Learning. In Proceedings of the 2022 International Symposium on Electronics and Telecommunications
(ISETC), Timisoara, Romania, 10–11 November 2022; pp. 1–6.

7. Open Network Operating System (ONOS) SDN Controller. Available online: https://opennetworking.org/onos/ (accessed on
26 May 2023).

8. Floodlight Controller. Available online: https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview (accessed on
26 May 2023).

9. ONF TS-025: OpenFlow Switch Specification Version 1.5.1. April 2015. Available online: https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf (accessed on 9 June 2023).

10. ITU-T Recommendation Y.2012: Functional Requirements and Architecture of Next Generation Networks. April 2010. Available
online: https://www.itu.int/rec/T-REC-Y.2012/en (accessed on 9 June 2023).

11. 3GPP TS 23.228: IP Multimedia Subsystem (IMS); Stage 2 (Release 18). v18.1.0. March 2023. Available online: https://www.3gpp.
org/ftp/Specs/archive/23_series/23.228/23228-i10.zip (accessed on 9 June 2023).

12. Rosenberg, J.; Schulzrinne, H.; Camarillo, G.; Johnston, A.; Peterson, J.; Sparks, R.; Handley, M.; Schooler, E. IETF RFC 3261: SIP:
Session Initiation Protocol. June 2002. Available online: https://www.ietf.org/rfc/rfc3261.txt (accessed on 9 June 2023).

13. Fajardo, V.; Arkko, J.; Loughney, J.; Zorn, G. IETF RFC 6733: Diameter Base Protocol. September 2003. Available online:
https://www.ietf.org/rfc/rfc6733.txt (accessed on 9 June 2023).

14. Katov, A.N.; Anggorojati, B.; Kyriazakos, S.; Mihovska, A.D.; Prasad, N.R. Towards Internet of Services—SDN-enabled IMS
Architecture for IoT Integration. In Proceedings of the 18th International Symposium on Wireless Personal Multimedia Commu-
nications, WPMC 2015, Hyderabad, India, 13–16 December 2015.

15. Kang, S.; Yoon, W. SDN-based resource allocation for heterogeneous LTE and WLAN multi-radio networks. J. Supercomput. 2016,
72, 1342–1362. [CrossRef]

16. OSIMS—An Open Source IMS Experimentation Platform. Available online: http://nam.ece.upatras.gr/ppe/?q=node/2
(accessed on 26 May 2023).

17. Tranoris, C.; Denazis, S.; Mouratidis, N.; Dowling, P.; Tynan, J. Integrating OpenFlow in IMS Networks and Enabling for Future
Internet Researchand Experimentation. In The Future Internet. FIA 2013. Lecture Notes in Computer Science; Galis, A., Gavras, A.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2013; Volume 7858, pp. 77–88.

18. Khairi, S.; Raouyane, B.; Bellafkih, M. Towards Enhanced QoS Management SDN-based for Next Generation Networks with QoE
Evaluation: IMS Use Case. J. Mob. Multimed. 2017, 13, 183–196.

19. Liu, Z.; Lee, J.-O. An IMS based Architecture Using SDN Controller. J. Korea Acad.-Ind. Coop. Soc. 2018, 19, 19–24. [CrossRef]
20. Tang, C.-S.; Twu, C.-Y.; Ju, J.-H.; Tsou, Y.-D. Collaboration of IMS and SDN to enable new ICT service creation. In Proceedings

of the 16th Asia-Pacific Network Operations and Management Symposium, Hsinchu, Taiwan, 17–19 September 2014; pp. 1–4.
[CrossRef]

21. Open IMS Core CSCFs: The CDiameterPeer Module (cdp). Available online: http://OpenIMSCore.sourceforge.net/docs/ser_
ims/CDP.html (accessed on 26 May 2023).

22. Open vSwitch. Available online: https://www.openvswitch.org/ (accessed on 26 May 2023).
23. ITU-T Recommendation Q.3301: Resource Control Protocol No. 1, Version 3—Protocol at the Rs Interface between Service Control

Entities and the Policy Decision Physical Entity. August 2013. Available online: https://www.itu.int/rec/T-REC-Q.3301.1/en
(accessed on 9 June 2023).

24. Mininet. Available online: http://mininet.org/ (accessed on 26 May 2023).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://doi.org/10.15199/59.2022.4.38
https://www.itu.int/rec/T-REC-Y.3300/en
https://www.itu.int/rec/T-REC-Y.3300/en
https://doi.org/10.3390/s22155551
https://www.ncbi.nlm.nih.gov/pubmed/35898063
https://doi.org/10.3390/s21196585
https://www.ncbi.nlm.nih.gov/pubmed/34640905
https://doi.org/10.3390/s22145075
https://www.ncbi.nlm.nih.gov/pubmed/35890755
https://opennetworking.org/onos/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.itu.int/rec/T-REC-Y.2012/en
https://www.3gpp.org/ftp/Specs/archive/23_series/23.228/23228-i10.zip
https://www.3gpp.org/ftp/Specs/archive/23_series/23.228/23228-i10.zip
https://www.ietf.org/rfc/rfc3261.txt
https://www.ietf.org/rfc/rfc6733.txt
https://doi.org/10.1007/s11227-016-1662-6
http://nam.ece.upatras.gr/ppe/?q=node/2
https://doi.org/10.5762/KAIS.2018.19.8.19
https://doi.org/10.1109/APNOMS.2014.6996528
http://OpenIMSCore.sourceforge.net/docs/ser_ims/CDP.html
http://OpenIMSCore.sourceforge.net/docs/ser_ims/CDP.html
https://www.openvswitch.org/
https://www.itu.int/rec/T-REC-Q.3301.1/en
http://mininet.org/
http://mostwiedzy.pl

Sensors 2023, 23, 5481 25 of 25

25. libcurl. Available online: https://curl.se/libcurl/ (accessed on 26 May 2023).
26. JsonCpp. Available online: https://github.com/open-source-parsers/jsoncpp (accessed on 26 May 2023).
27. Kaczmarek, S.; Sac, M. Performance Models of a Multidomain IMS/NGN Service Stratum. In Proceedings of the 29th International

Conference on Software, Telecommunications and Computer Networks, SoftCOM 2021, Hvar, Croatia, 23–25 September 2021.
[CrossRef]

28. Kaczmarek, S.; Sac, M. Performance Evaluation of a Multidomain IMS/NGN Network Including Service and Transport Stratum.
Appl. Sci. 2022, 12, 11643. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://curl.se/libcurl/
https://github.com/open-source-parsers/jsoncpp
https://doi.org/10.23919/SoftCOM52868.2021.9559109
https://doi.org/10.3390/app122211643
http://mostwiedzy.pl

	Introduction
	Related Work
	Application of SDN in the Transport Stratum of the IMS/NGN Network
	Architecture of the IMS/NGN Network Using the SDN Concept
	Service Scenarios in the Integrated Network
	Mapping between Diameter and HTTP REST/JSON Message Fields
	Choice of Software and Stages of Implementation

	Concept Implementation and Software Tests
	Preparation of the IMS/NGN and SDN Environment
	Configuration of Basic Diameter and OpenFlow Communication
	Implementation of the Interface Running the Diameter Protocol
	Implementation of the Interface with the HTTP REST/JSON Protocol
	Final Functional Tests

	Conclusions
	References

