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Abstract

Non-contact evaluation of vital signs has been becoming

increasingly important, especially in light of the COVID-

19 pandemic, which is causing the whole world to exam-

ine people’s interactions in public places at a scale never

seen before. However, evaluating one’s vital signs can be a

relatively complex procedure, which requires both time and

physical contact between examiner and examinee. These re-

quirements limit the number of people who can be efficiently

checked, either due to the medical station throughput, pa-

tients’ remote locations or the need for social distancing.

This study is a first step to increasing the accuracy of com-

puter vision-based respiratory rate estimation by transfer-

ring texture information from images acquired in different

domains. Experiments conducted with two deep neural net-

work topologies, a recursive convolutional model and trans-

formers, proved their robustness in the analyzed scenario by

reducing estimation error by 50% compared to low resolu-

tion sequences. All resources used in this research, includ-

ing links to the dataset and code, have been made publicly

available.

1. Introduction

Non-contact evaluation of breathing anomalies and, in

general, interest in the state of human health has gained in

significance due to the recent pandemic and the increased

need for social distancing. Researchers from MIT, Boston

Dynamics, and Brigham & Women’s Hospital proposed a

method to reduce the risk of contracting viruses by using

their Spot robot to remotely measure patients’ vital signs

[1]. Artificial Intelligence (AI) research has also shifted to-

wards studies of vital signs, resulting in novel architectures

focused on real-time person monitoring, e.g., as presented

by Liu X. et al. [2] in their Multi-task Temporal Shift At-

tention Network. Nevertheless, the need for delivering non-

contact solutions emerged a decade ago catalyzed by the

rapidly increasing number of aging societies and require-

ments needed to support at-home medicine [3].

All these factors are contributing to the rapidly increas-

ing research interest in camera-based evaluation of physio-

logical signals. Innovations in this area will bring enormous

advantages to society, not only by enhancing the comfort of

humans but also significantly reducing latency of obtained

responses, enabling simultaneous reception of signals from

multiple people and allowing for continuous evaluation of

individuals in order to provide them precise medical so-

lutions. Video-based analysis of physiological signals and

high-level image semantics can greatly benefit from the use

of data obtained in different ranges of the electromagnetic

spectrum. Visible light sequences can provide us with de-

tails about heart rate [4], emotional status [5], quantitative

movement analysis [6], and many other things as well. Yet,

processing of images acquired in other ranges of the electro-

magnetic spectrum, e.g., infrared image sequences, can be



even more powerful due to revealing information not visi-

ble to the naked eye, such as body temperature [7] or res-

piratory data [8]. Yet, there are some factors which make

processing of infrared data challenging that should be care-

fully weighed and mitigated if necessary. One of the main

limitations is the relatively small spatial resolution of ther-

mal image sequences compared to the visible light cameras.

This results in a high level of blurriness and a low contrast

between image regions, what has already been proven to

negatively affect accuracy of facial area detection [9]. This

concern is especially valid in the IoT and embedded edge

markets, where the device footprint influences the size of

the imaging sensors and thus its resolution. By using cer-

tain image processing techniques, specifically AI-based su-

per resolution, this issue can be resolved without increas-

ing the cost or size of the platform. A very interesting re-

search question is whether accuracy of the non-contact vi-

tal signs estimation can be also improved by restoring or

transferring high resolution details to lower quality input se-

quences. The main motivation behind this hypothesis is the

estimators utilize temporal changes of pixel values within

specific facial regions. If the images have low resolution,

these differences may become indistinguishable due to the

smoothed transitions, blurriness and low contrast between

adjacent image regions.

In light of this, the main contribution of this study lies

in evaluating whether the performance of the non-contact

respiratory rate (RR) estimation benefits from the thermal

data enhancement with two different deep neural network

architectures: TTSR [10] aimed at solving the RefSR task

(Reference-based Super Resolution which transfers high

resolution details from the reference data to the low reso-

lution input) and the DRESNet [11] model designed for the

SISR problem (Single Image Super Resolution - image en-

hancement learned using a pair of high and low resolution

images). To the best of our knowledge, this is the first work

focusing on texture restoration with transformers in order

to improve accuracy of vital signs estimation. In addition,

the possibility of transferring features and textures between

different image domains is verified by using models trained

on visible light data for enhancement of thermal sequences.

Finally, quality performance metrics produced by both ar-

chitectures are compared against results obtained by other

conventional image processing techniques commonly used

for magnification of color changes related to the physiolog-

ical signals, i.e., Eulerian Video Magnification (EVM) [12].

2. Related Work

The respiratory rate is a very important vital sign [13]

that is used to evaluate patients with different health prob-

lems, including COVID-19 (e.g., respiratory rate as a lead-

ing indicator of SARS-CoV-2 [14]). The respiratory activ-

ity and its parameters (including rate) is measured using

accelerometers or gyroscope sensors [15], oxygen masks

[16], bioacoustic sensors [17], inductive plethysmographs

or thoracic impedance systems [18], and thermal imaging

[19]. The use of thermal cameras is very important for the

remote measurement procedure. The sequence of face im-

ages is recorded and the temperature changes are observed

in areas of the increased air flow (nostrils, mouth). As a re-

sult of data processing, a signal containing information on

the temperature changes is extracted that represents breath-

ing activities of a person. In [20, 21] the authors used a

thermal camera in a study of healthy volunteers and patho-

logical subjects (suffering from sleep apnea). The source of

the respiratory-related signal was the set of Region Of Inter-

ests (ROIs) extracted from images of the nostrils. The ex-

tracted signals contained the mean temperature in each ROI

and were first normalized and then processed with wavelet

analysis to estimate the respiratory rate. A thermistor was

used to obtain the reference signals. A high correlation was

observed between the thermal-based respiratory rate values

and the reference values. Abbas et al. [22] proposed a

method based on the temperature difference between two

respiration phases: inspiration and expiration. The selected

thermal frames and related ROIs were processed using the

continuous wavelet transform (Debauchies wavelet). The

validation performed on five babies showed high correla-

tion between the proposed method and the reference val-

ues (mean respiratory rate difference below 1.2 breaths per

minute (BPM)). The authors of [23, 24] proposed a method

to detect the area of the nostrils that could be used as an ROI

for further processing of thermal face images. Each ROI

was divided into 8 smaller regions and the values within

these regions were averaged. Extracted signals (including

5th-order Butterworth filtration) for each region were pro-

cessed to obtain peak-to-peak time intervals and to calculate

respiratory rates. The method was validated for measure-

ments performed on 20 children demonstrating high corre-

lation (R2 = 0.994) between the thermal-based method and

reference methods (thermistor and chest belt). Later, many

papers were focused on the investigation of different mea-

surement conditions (e.g., measurement during the move-

ment of a person [25, 26] or during speech [27]), different

quality of images (e.g., [28]), automatic face/ROI detection

and tracking ([29, 30]), improving the quality of images

(e.g., [11], etc. Technological progress led to the availabil-

ity of small and thermal camera modules that could be used

for the estimation of respiratory rates in many applications

(including smart cars to monitor drivers). However, these

modules are usually characterized by the smaller spatial res-

olution of images so the detection of facial regions can be

difficult due to the blurring effects (small resolution, out of

focus, etc.).
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3. Problem Statement

Image enhancement based on increasing image resolu-

tion, known as super resolution (SR), is a well-known tech-

nique. In general, the goal of SR is to restore high resolu-

tion (HR) outputs from corresponding low resolution (LR)

sequences. If only a single image is used for the image

restoration, the approach is known as single image super

resolution (SISR). The SR task aims at restoring the HR

data Ŷ to be as close as possible to the original HR input

(Ŷ = Y ) by solving the inverse problem:

X = (Y ⊛K) ↓s +n (1)

Ŷ = SR(X) (2)

where K is the degradation operator applied to the orig-

inal HR input Y, ↓s is the down-scaling operation with a

scale s and n is noise. Since a single LR input image

X can result in various model outputs, the SR problem

is very challenging. To alleviate this challenge, the so-

lution space is constrained by the use of the structure or

color information of an image occurring in input sub-parts

[31, 32, 33, 34] or correspondence between LR and HR

inputs[35, 36, 37, 38, 39]. The fundamental interpolation

SISR uses bicubic scaling [32]. However, this and simi-

lar interpolation techniques lack the ability to discriminate

between edges and centers of image regions which leads

to significant image blur [39]. To mitigate this limitation,

example-based solutions are often proposed. Such studies

focus on preserving consistency between LR and HR data

pairs by applying learning to restore detailed features. Thus,

better results are produced than for random variables which

are usually poorer representations of real images due to their

higher variability [37].

Recent progress in artificial intelligence research has

resulted in the development of a wide range of various

topologies producing state-of-the-art image quality met-

rics, specifically Peak Signal to Noise Ratio (PSNR) and

Structural Similarity Index Metric (SSIM). The pioneer-

ing work in AI-based SISR uses Convolutional Neural Net-

works (SRCNN [40]) and their enhanced versions, includ-

ing deeper topologies [41], skip connections combined with

gradient clipping [42], recursive connections [43], residual

blocks [44, 45, 46], and other approaches. Later studies fo-

cused on exploring additional modifications to the overall

residual CNN-based SR idea, such as the use of multiscale

input data [47]. Simultaneously, research on deconvolution-

based SR networks has also been conducted. In 2016, Dong

C. et al. introduced Fast SRCNN [48] - a model aimed at ac-

celerating the breakthrough CNN SR architecture [40]. Due

to the use of the transposed convolution layer at the end of

the model, the need for the image to be interpolated before

being fed into the network was eliminated. Another suc-

cessful image upscaling-based architecture was proposed

by Shi et al. [49]. The scheme of the introduced ESPCN

model was motivated by the assumption that the standard

deconvolution layer lead to redundant information due to

repeated pixel values interpolated with the nearest neigh-

bor approach. Thus, the alternative solution proposed in

ESPCN was based on a novel subpixel convolutional layer,

which stores additional pixel values in the expanded depth

of feature maps. Some architectures combined both de-

convolution operation and residuals introduced by ResNet.

Many of these effective skip connection-based models are

inspired by DenseNet [50], as it turns out that mapping be-

tween each layer and all preceding representations is very

efficient for new feature exploration and as a result image

enhancement [51]. Subsequently, recursive usage of resid-

ual units instead of standard convolutions led to further per-

formance gains as shown in MemNet - the Persistent Mem-

ory Network for image restoration [52]. Applied local resid-

ual connections allow for preserving short-term memory in-

formation, which is beneficial for feature restoration in the

SR task. A separate group of SR networks make use of

generative models [53], e.g., a topology proposed by Ledig

C. et al. [45], which allows for synthesizing detailed com-

ponents of the HR image and outperforming previous solu-

tions even when using bigger scaling factors (4x). Another

GAN-based SR model is based on the idea of the texture

synthesis instead of image manipulation at pixel levels [54].

Although various deep neural networks have been pro-

posed and proven to restore accurate HR representations,

two architectures are of a particular interest to us. The first

one, DRESNet [9], is based on the idea of increasing the

receptive field while keeping the number of network param-

eters constant by using recursions and residuals with shared

weights. The increased size of the receptive field has turned

out to be crucial for the thermal data enhancement task due

to the characteristics of thermal imagery. The heat flow

between facial regions leads to a much lower contrast be-

tween image parts that is not correctly captured by smaller

kernel sizes. DRESNet has also already demonstrated su-

perior performance in remote medical diagnostic studies,

allowing for estimation of vital signs from sequences as

small as 15x20 pixels [9]. However, SISR solutions, such

as DRESNet, can cause shape and structure deformations

[55] as shown in the nostril area depicted in Fig. 1. We

believe that this problem may lead to distortion in the phys-

iological signals extracted as pixel values change over time,

negatively affecting estimation accuracy. Taking this into

account, we propose to apply the Reference-based Super

Resolution (RefSR) technique for improving the quality of

thermal sequences. Compared to the SISR problem solved

by DRESNet, RefSR uses an additional HR reference image

with textures that are helpful in super-resolving image com-

ponents. Specifically, we evaluate different types of refer-

ence data in the thermal image enhancement pipeline based
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on the Texture Transformer Super Resolution (TTSR) net-

work [10], one of the first transformer architectures applied

to the image generation task, achieving significant gain in

image quality metrics over previous models. Based on ex-

tensive benchmarking analysis, we define what texture de-

tails lead to the best RR estimation accuracy and compare

the achieved performance with other types of SR solutions,

such as CNN-based SISR.

(a) Original (b) Bicubic (c) DRESNet

Figure 1: Shape and structure deformations produced by the

SISR model, scale 4

4. Proposed Methods for Texture Restoration

Camera-based measurements of breathing signals bring

a lot of advantages compared to traditional estimation tech-

niques (e.g., by using respiratory belts) such as the possi-

bility to maintain social distancing, analyze RR of multiple

people at once, or capture more reliable data by monitor-

ing people without imposing any special behavior. How-

ever, low spatial resolution of the sensors leads to signifi-

cant blurriness and as a result the lack of clear boundaries

between facial regions (Fig. 4). At the same time, the pre-

cise localization of the ROI used for signal extraction is

crucial for the accurate estimation of physiological signals

[56]. In addition, reduced spatial resolution causes signif-

icant smoothing of data that might result in the high simi-

larity of sequence frames and an inability to capture pixel

value changes associated with inhaling and exhaling events.

Fig. 2 shows a comparison of signals constructed by taking

the skew of the pixel values within the facial area over time

for the same ROI used in low resolution and high resolution

sequences.

To mitigate this issue, we restore information about the

image texture and high frequency features (such as edges

and contours) in low resolution thermal sequences using

deep neural networks: DRESNet and TTSR. Such a com-

parison allows for determining which topologies have a pos-

itive impact on the accuracy of the non-contact estimation of

physiological signals in order to enable a new remote diag-

nostic solution without increasing the cost or size of acquisi-

tion devices. An overview of both architectures is shown in

(a) Original

(b) Bicubic

Figure 2: While using the bicubic algorithm to upscale the

LR image may generate a visually appealing HR image, it

may not preserve the quality of other signals encoded in

the original image, such as pixel value dynamics associated

with physiological signs. (a) and (b) depict a signal con-

structed using skewness within the area over time.

(a) DRESNet Architecture

(b) TTSR Architecture

Figure 3: Overview of deep neural network topologies used

for texture restoration and image resolution enhancement

Fig. 3. The DRESnet model [11] specifically addresses data

acquired in the infrared range of the electromagnetic spec-

trum. The core idea of this model is based on the widening

of the receptive field in order to take into account the more
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distant relationship between image components caused by

the heat flow. Because simple stacking of multiple layers is

inefficient, the authors proposed to use residuals and recur-

sions with weights shared at each step of the SISR pipeline,

defined as:

Ŷ = Fr(Fnlm(Ffe(X))) (3)

where Ŷ is the restored HR data, X is the LR input,

Ffe/nlm/r are sub-networks responsible for feature extrac-

tion, non-linear mapping and reconstruction tasks. In the

simplest setting, assuming a single convolution per layer,

and similarly to SRCNN [40], all these steps can be solved

by using convolutions (symbol ⊛) with trainable weights

Wfe/nlm/r and biases Bfe/nlm/r:

Ŷ = Wr⊛(σ(Wnlm⊛(σ(Wfe⊛X+Bfe))+Bnlm))+Br

(4)

where σ is a non-linear activation function.

Due to the increased interest of transformer networks

in computer vision studies and the very promising results

achieved by TTSR for image generation tasks, we apply this

architecture in our non-contact RR estimation pipeline.

The TTSR model consists of 4 blocks: texture extractor,

embedding module, feature transfer and feature synthesis

modules. Simultaneously, the LR data is fed through the

backbone model to produce low resolution features. The

inputs to the texture extractor are the upscaled low resolu-

tion image, the reference image which has reduced quality

(by scaling with inverse scale factors) and the original refer-

ence image to produce texture components. After that, the

embedding module calculates the inner product between the

textures extracted from the upscaled LR image and the ref-

erence image which has reduced quality. Next, using the at-

tention mechanism, the texture is transferred from the orig-

inal reference input. Finally, the synthesis of the LR em-

bedding and produced textures is performed using the soft-

attention block to enhance relevant features and drop the

noisy ones. In a simplified form, the TTSR can be denoted

as:

Ŷ = Ffe(X) + (Ffe(X)&T )⊙ S (5)

where Ŷ is the restored HR data, X is the LR input, Ffe

is the network used for extracting embeddings from the LR

data, S is the output from the soft attention block, T rep-

resents transferred texture and the ⊙ symbol denotes the

element wise multiplication and the & symbol denotes the

concatenation operation.

Because the choice of the reference image is arbitrary,

we are particularly interested whether the texture can be

transferred between images acquired in different domains,

i.e., visible light details used to restore features of low

resolution thermal data. Thermal image enhancement is

solved by us by using three elements: single HR thermal

image used across all LR thermal inputs (referred hereafter

as TTSR-singleT); HR thermal images of each volunteer

used for enhancing his/her LR thermal inputs (referred here-

after as TTSR-mulT); single HR visible light image used

across all LR thermal inputs (referred hereafter as TTSR-

singleVL).

For both architectures, the available pre-trained check-

points are directly used for image enhancement to verify

their generalization abilities and provide accurate remote

diagnostic solutions across different data sets and image do-

mains even if huge training data sets are not available for the

tuning of the models.

Figure 4: HR image and synthetically generated LR image

5. Datasets

For the purpose of this research, we prepared a test set

consisting of thermal sequences saved in a raw format an-

notated with reference breathing rates. Data was collected

with the help of 25 volunteers (age 34.11 ± 12). Partic-

ipants were seated in front of the FLIR® SC3000 thermal

camera and asked to breathe normally for a period of 2 min-

utes. The sensor was set up on a tripod at a distance of

1.2m from the volunteer’s face, approximately 1m above the

ground. This particular model of the thermal camera is ca-

pable of capturing a raw 14-bit radiometric infrared digital

image in 320x240 spatial resolution in temperatures rang-

ing from -20°C to 2000°C with 20 mK at 30°C sensitivity

at up to 900 Frames Per Second (FPS). In the process of

data acquisition, the frame rate was capped at 30 FPS in

order to ensure that the temporal resolution is sufficient to

capture breathing episodes. Due to the average respiratory

rate of an adult human (10-14 BPM (Breaths Per Minute)

[57]), using higher frame rates would not contribute sig-

nificantly to make the measurement more precise. Given

the FPS cap, an annotated set of 3600 thermal images per

volunteer was generated (90000 frames in total). A sim-

ple yet effective method was used to obtain a ground truth

frequency of breathing to evaluate the respiratory rate. Dur-

ing the data acquisition, all volunteers were instructed to

signal exhaling by bending a finger and straighten it when

taking a breath in. Excerpt frames from one of the gathered

sequences showing this procedure are presented in Fig. 5.
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Figure 5: Reference breathing signals were based on finger bending (exhaling) and straightening (inhaling)

(a) Original (b) Bicubic (c) EVM (d) DRESNet (e) TTSR-singleT (f) TTSR-mulT (g) TTSR-singleVL

Figure 6: Visualization of respective frames extracted from original HR sequence (a), sequence (c) with magnified changes

using the EVM method, and HR sequences restored from LR ones using the Bicubic algorithm (b) and Super Resolution

models - Convolution-based DRESNet (d) and Transformer-based TTSR (e, f, g) with various reference image setting.

The data has been linearly scaled down to 8-bit and saved

as an image in a lossless grey-scale PNG format in post-

processing. To accommodate for the decrease of contrast

caused by down-scaling, the data set also offers raw data

up-scaled to 16-bit. We plan to investigate the impact of

using data of higher bit-resolution on respiratory rate esti-

mation using Transformer-based SR in the future work.

Because sequences in this data set were captured using

a single camera at a fixed resolution, LR inputs have to be

generated synthetically. For this purpose, a downscaling op-

eration (↓) with a scale Sdown was applied to the original

HR frames, producing image sequences with a decreased

quality. In particular, a scale of Sdown = 1

4
was used to

verify that the RR can be estimated from extremely small

thermal sequences (for the whole image measuring 80x60,

a face occupies approximately 30% of a frame, which trans-

lates to 25x20 pixels). Later in the data pipeline the LR im-

ages were upscaled back to their original spatial resolution

with a scale Sup = 1

Sdown

and fed to both DRESNet and

TTSR neural networks in order to restore texture informa-

tion. After super resolving all inputs, they were combined

back into sequences with the same frame per second (FPS)

as the source data and processed to extract the RR.

At the same time, acquired sequences were also pro-

cessed with the Eulerian Video Magnification (EVM) algo-

rithm, usually used for enhancing color changes associated

with the presence of the physiological signals [12]. In the

EVM algorithm, recorded video sequences are first decom-

posed into different frequency bands and then filtered sep-

arately to reveal changes corresponding to blood flow, vein

pulsation or other information associated with physiological

signals. After this, the extracted signals are magnified and

added back to the original recording for visualization. In

our case, the filtering frequency used in the EVM procedure

was set to 0.16-0.33 Hz, given the fact that a normal RR

of an adult ranges between 10-20 breaths per minute. The

magnification factor was set to 20 as this value proved to

have the highest estimation accuracy. Fig. 6 shows the orig-

inal, magnified with EVM and super-resolved sequences.

6. Evaluation of Respiratory Rate

Non-contact estimation of respiratory rate has been al-

ready studied in-depth and various methods have been pro-

posed to address this problem, e.g., using chest motion [58],

or COTS Wi-Fi devices [59]. Yet, it’s important to note

that this study doesn’t aim at proposing better RR evalua-

tion techniques. Instead, the main goal of our research was

to evaluate the possibility of improving accuracy of vital

signs extracted in a non-contact way by enhancing the tex-

ture and details of low resolution thermal sequences. Thus,

we don’t compare different respiration monitoring systems,

but analyze how various resolution enhancement techniques

affect the accuracy of the exemplary RR evaluation method,

previously verified in the literature to produce satisfactory

estimation results [27].

Specifically, the analysis was conducted for pixel value

changes associated with temperature differences occurring

during inhalation and exhalation events within facial areas.

To avoid the results being influenced by incorrectly marked

ROIs, areas were marked manually by an expert. However,

to provide a fully automated solution, we want to combine

the proposed technique with object detection models in fu-
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ture studies. Ground truth annotations of the ROI used for

signal extraction were done in the original HR sequences,

as the location of facial features (mainly the nostril area,

where the signal is visible) is much more clear and precise

than in LR inputs or SR outputs that may suffer from shape

distortions. For a fair comparison, the same ROI was used

for extracting signals in all inputs, i.e., original HR, bicu-

bic, EVM, DRESNet SISR, TTSR RefSR (singleT, mulT,

singleVL).

We were mainly interested whether the accuracy of the

RR estimation increases if proper texture and high resolu-

tion details are restored in LR sequences with the means of

Deep Neural Networks. Solutions targeted by us include

non-contact medical diagnostics performed in emergency

rooms, principal care doctors’ offices, autonomous vehicles,

smart homes, etc. For such applications, latency of response

is very crucial, thus the data fragments shouldn’t be very

long. Taking this into account, signals were extracted using

up to 300 frames (10 sec.). The first few inputs in each se-

quence were removed to eliminate possible motion artifacts

usually occurring during position adjustment at the begin-

ning of the data acquisition process [56].

The raw respiratory signal was produced by aggregating

values of pixels present in the marked ROI using a skew-

ness operator in each frame over time. The choice of the

skewness operator is motivated by the fact that it’s less sen-

sitive to specific ROI locations than the averaging method

which may cause too much smoothing of important color

changes. Constructed signals were filtered with a moving

average and 4th order Butterworth filter with the cut-off fre-

quency set to 0.125Hz. RR values were estimated by obtain-

ing the frequency value of the dominating peak in the signal

spectrum (estimator eRRsp[56]). Because the ROI position

was constant across all sequences, we were able to precisely

evaluate how the presence of texture information (and thus

different representations of pixels) affects computer vision

based estimation of physiological signals. All obtained RR

values were verified against the ground truth measurement

(self evaluation of volunteers) using Root Mean Square Er-

ror (RMSE).

7. Results

HR Bicubic DRESNet EVM
TTSR

singleT

TTSR

mulT

TTSR

singleVL

1.68

±1.71
3.60

±4.83
1.76

±1.90
3.42

±4.47
2.54

±3.69
2.40

±3.56
1.91

±2.16

Table 1: Mean values of the RMSE between estimated and

ground truth values of RR for the original sequence and se-

quences enhanced with EVM and super-resolution methods

Accuracy of the RR estimation has been verified based

Bicubic DRESNet
TTSR

singleT

TTSR

mulT

TTSR

singleVL

PSNR
33.49

±1.73
43.97

±0.22
37.60

±1.52
38.94

±0.93
37.44

±1.54

SSIM
0.94

±0.01
0.96

±0.01
0.96

±0.008
0.98

±0.004
0.96

±0.008

Table 2: Mean values of the PSNR and SSIM metrics cal-

culated across volunteers for sequences with restored spatial

resolution calculated against the original sequence

on the root mean squared error between the ground truth

measurement and the output from the eRRsp estimator for

each sequence separately. Table 1 presents the mean value

of the error across all processed test sequences (25 volun-

teers). In addition, the robustness of the SR techniques was

evaluated by calculating PSNR and SSIM between the orig-

inal HR frames and the outputs from image enhancement

algorithms, i.e., SISR DRESNet, RefSR TTSR and bicu-

bic interpolation. In this way we were able to determine

whether there is a potential gain of the RR estimation accu-

racy after improving data quality, restoring high frequency

details and transferring image textures. PSNR and SSIM

values are presented in Table 2.

8. Discussion

The presented research focused on verifying the effec-

tiveness of various image processing techniques in improv-

ing accuracy of non-contact estimation of physiological sig-

nals. Resolution enhancement has been previously proved

to bring benefits in the healthcare industry due to the pos-

sibility of restoring components important for making diag-

nostic decisions that are usually not visible in lower qual-

ity data [60]. Yet, only a limited number of studies were

conducted for usage of AI-based SR in remote diagnos-

tic solutions. Such analysis is very important, especially

in situations like the world has been facing recently. The

global pandemic has significantly increased a demand for

tools allowing for self monitoring at home, or evaluation

of a person’s state of health while maintaining social dis-

tancing. Inspired by promising findings of McDuff D. [61]

showing that convolutional models can improve accuracy

of video-based photoplethysmography, as well as other vi-

tal signs, e.g., respiratory rate [11], we decided to go one

step further and evaluate the robustness of other recent ar-

chitectures proven to be very successful in computer vision

studies.

Our study is a novel contribution to this area of research,

proving that transformer-based image enhancement can be

used in non-contact vital sign estimation systems leading

to improved accuracy without introducing more expensive

and larger imaging sensors. Specifically, to the best of our

knowledge, this work is a first attempt to provide thermal
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sequence enhancements with attention-based RefSR in or-

der to improve accuracy of non-contact measurements by

transferring textures between imaging domains.

Based on this analysis, it has been proven that the pro-

posed TTSR-based approach allows for decreasing the es-

timation error by 50% compared to LR data and achieving

almost the same accuracy as in the case of the original HR

inputs. Although both PSNR and RMSE of the SISR-based

solution are slightly better than for TTSR, it’s important to

note that DRESNet was trained using data from the same

imaging domain, while the TTSR was optimized using vis-

ible light images. We believe that even better results can be

achieved after fine-tuning the RefSR model. In the future

studies, we are planning to build bigger data sets of thermal

images to be able to retrain tested architectures. In addition,

the SSIM metric, which corresponds to the perceived qual-

ity of the image and thus should be more intuitive and easier

to interpret turned out to be better for the TTSR pipeline,

what might indicate that this model allows for producing

outputs which are more pleasant for the human eye.

On the other hand, one should be aware of TTSR limi-

tations, i.e., a need for providing reference high resolution

data, which frequently might be not available. On the other

hand, our study proposed to transfer textures from images

representing other objects, acquired in a different domain

(visible light). As presented in Table 1, such an approach

led to the second best RMSE result, what might allow for

eliminating the need for acquiring HR data and using other

images as a reference instead. This is a very interesting out-

come of the study which proves the importance of the pres-

ence of texture components in physiological signs estima-

tion using color information. Because visible light frames

usually contain more high frequency features, such as edges

and contours, texture transferred from them to thermal data

allowed for better restoration of color changes associated

with vital signs. The estimation error in this case was ap-

proximately 25% lower than for sequences enhanced using

thermal data as the reference, even though the PSNR was

lower as well. This also shows a weakness of the PSNR

metric in its applicability to determining accuracy of vital

signs estimation. When thermal images are used as a ref-

erence texture, the restored images might be closer to the

original data (higher PSNR) than when the visible image is

used. However, texture information transferred from ther-

mal images restores original representation of sequences,

which is very blurry. As a result, accuracy of RR estimation

might be lower due to smoother transitions between adja-

cent frames, lower dynamics of pixel values changes and

thus higher RMSE, as it was shown in our study. It has

been also proven that much better estimation accuracy can

be achieved by using any of the SR methods instead of color

magnification algorithms.

Although the results are very promising, they are pre-

liminary and should be further verified in the future work.

First of all, it’s very important to perform similar analysis

in less controlled environments, as various factors can in-

fluence the reliability of the estimation, i.e. camera angle,

body position, environment conditions, etc. Secondly, the

presented study addresses only a single person setting, at a

close proximity to a sensor, due to target applications, such

as vital signs deployed at the border control, computer sta-

tions, etc. However, real-life scenarios would require less

strict restrictions on the user, what should be further anal-

ysed. Moreover, in order to develop a solution which could

become an industry standard, the proposed methods have to

be first verified against professional vital signs estimation

devices, e.g., respiratory belts. This study aimed at ver-

ifying the performance gain, which could be obtained by

utilization of additional resolution enhancement techniques,

but it’s important to focus on verification of the method

against other ground truth measurements as well, and it will

be a subject of our future experiments.

The experiments conducted show the importance of SR

in the application of video-based vital signs estimation. We

believe that image enhancement can enable new applica-

tions, where higher resolution devices are simply not avail-

able, e.g., due to the footprint of the sensor, e.g., in embed-

ded edge solutions in autonomous vehicles, telemedicine,

robotics and other markets. In future work we would like to

evaluate other RR estimators as well, because even for sig-

nals other than vital sings, such as noise, a maximum value

in the frequency domain can be retrieved leading to false

outcomes. We will also explore other image enhancement

techniques using different scaling factors. Moreover, the

proposed methods can be combined with other deep topolo-

gies that will also benefit from image super resolution, e.g.,

face detection and recognition [62, 63, 64]. Such multi-

model pipelines will allow for the development of fully au-

tomated systems for patient monitoring.

9. Conclusion

We have performed a benchmark evaluation aimed at de-

termining what image domain contains textures that enable

improved estimation accuracy and whether the estimation

error can be reduced by super resolving source sequences.

Transfer of detailed components from the visible light im-

age domain to low resolution thermal sequences using an

attention-based transformer has been shown to reduce the

RR estimation error by half. This is a very important find-

ing for many non-contact monitoring solutions. Evaluated

algorithms can be deployed as a part of specialized ML-

powered embedded systems to promote a better patient ex-

perience and higher accuracy of measurements without in-

creasing the cost or size of the device. In this way, adoption

of automated medicine can be accelerated ensuring that AI

can really become a transformational force in healthcare.
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