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Abstract
Fighting medical disinformation in the era of the pandemic is an increasingly important 
problem. Today, automatic systems for assessing the credibility of medical information do 
not offer sufficient precision, so human supervision and the involvement of medical expert 
annotators are required. Our work aims to optimize the utilization of medical experts’ time. 
We also equip them with tools for semi-automatic initial verification of the credibility of 
the annotated content. We introduce a general framework for filtering medical statements 
that do not require manual evaluation by medical experts, thus focusing annotation efforts 
on non-credible medical statements. Our framework is based on the construction of filter-
ing classifiers adapted to narrow thematic categories. This allows medical experts to fact-
check and identify over two times more non-credible medical statements in a given time 
interval without applying any changes to the annotation flow. We verify our results across 
a broad spectrum of medical topic areas. We perform quantitative, as well as exploratory 
analysis on our output data. We also point out how those filtering classifiers can be modi-
fied to provide experts with different types of feedback without any loss of performance.
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1  Introduction

The spread of medical misinformation on the World Wide Web is a critical problem in 
today’s society. We face a global ”infodemic” of outright health-related falsehoods, con-
spiracy theories, and dubious medical advice circulating in social media. The recent SARS-
CoV-2 pandemic has exacerbated the existing distrust in pharmaceutical companies, low 
confidence in medical science, medical institutions, and governmental agencies responsible 
for public health [19, 32]. On the other hand, more and more people rely on online health 
information for self-treatment [6] while lacking the necessary skill to evaluate the cred-
ibility of such information. Given the possible consequences of using online health advice 
ungrounded in medical science, the task of aiding Web users in assessing the credibility of 
online health information becomes a high priority.

Distinguishing between credible and non-credible online medical information poses 
a substantial challenge even for experienced medical professionals, and even more so for 
ordinary Web users whose evaluation may be impacted by cognitive biases or psychologi-
cal factors [1, 34]. Labeling source websites as either credible or non-credible is insuf-
ficient since false claims can be a part of an article originating from a credible source and 
vice versa. Often, disinformation is woven into factually correct medical statements that 
serve as camouflage. Even subtle changes to the wording, strength, or overtone of a medi-
cal statement can change its meaning, for instance, by exaggerating the side effects of a 
drug or by conflating relative and absolute risks of a medical procedure. As an example, 
consider the following phrase: ”Aspirin should not be consumed during pregnancy”. This 
phrase is generally true but does not apply to an early pregnancy at risk of miscarriage — 
then, consuming small doses of aspirin can significantly lower the risk. The credibility of 
medical statements may also significantly depend on the context. For example, the phrase 
”For starters, statin drugs deplete your body of coenzyme Q10 (CoQ10), which is benefi-
cial to heart health and muscle function”, despite factual correctness, would raise objec-
tions from medical professionals as it may discourage a patient from taking statins. In this 
example, the expert uses external knowledge from their clinical practice that benefits pro-
vided by statins far outweigh the potential risks associated with coenzyme Q10 deficiency 
for patients requiring statin therapy. This additional context of online health information 
evaluation makes it extremely difficult to frame the task in terms of machine learning.

Because assessing the truthfulness of medical statements is subjective, context-depend-
ent, and challenging, in our research we formulate a different task for machine learning 
models: that of credibility evaluation. Credibility is a concept that can depend on the truth-
fulness of information, but also on other aspects, such as the potential for causing harm or 
misleading persuasion [45]. Consequently, credibility also applies to statements that cannot 
be directly verified but may still be harmful or misleading.

We define a medical statement to be non-credible if the statement is not in accord with 
current medical knowledge or entices a patient to make harmful health-related decisions, 
or inspires actions contrary to the current medical guidelines. We also use the general term 
misinformation to represent information that is not credible (regardless of the intention of 
the author, which may be malicious or benign).

Because of the critical costs of errors, it is paramount that credibility evaluation of 
health-related Web content is performed or supervised by trained medical practitioners. 
Those can be annotators who curate training data for statistical models or experts who pro-
vide final scores. Unfortunately, such experts’ availability, time and attention are scarce 
resources. Over-worked medical practitioners struggle to secure the time required for 
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debunking online medical falsehoods and cannot keep up with the flood of online medical 
misinformation. Scarce human resources, stifling automatic online assessment methods, 
are the bottleneck. To address this issue, we propose to frame the problem of online health 
information evaluation as a machine learning problem. We formulate the business objec-
tive as the optimization of the utilization of medical experts’ time.

Such business objective has yet to be formulated as an objective function driving 
the training of statistical models. We treat the total time budget of a medical expert for 
debunking online medical information as a fixed value. Similarly, we treat the average 
time required by a medical expert to evaluate a single medical statement as a fixed value 
(the results of our experiments indicate that the average time to evaluate a statement by 
an expert is about 30 seconds). On average, a medical expert will evaluate a fixed number 
of statements. Optimizing the expert’s time utilization means increasing the proportion of 
non-credible statements discovered within her/his time budget.

We propose to focus medical experts’ attention on statements that are presumably non-
credible and contain medical misinformation. This, in turn, requires the development of 
methods for the automatic discovery of credible statements. The objective is to maximize 
the precision with respect to non-credible medical statements (precision for the negative 
class) at a fixed, high precision threshold of filtering credible statements (precision for the 
positive class). In this way, we can extract a large set of medical statements which are guar-
anteed to contain credible medical information due to fixed precision and remove these 
statements from the queue of statements for human annotation, allowing medical experts 
to focus their limited time on the discovery of non-credible statements. Our experiments 
show that this approach increases the utilization of medical experts’ time by the factor of 2.

Our main contributions presented in this paper include:

–	 introduction of a general framework to optimize the utilization of medical experts’ time 
when annotating data for downstream training of machine learning models,

–	 evaluation of the framework on the task of medical misinformation annotation,
–	 developing a set of filtering classifiers for assessing the credibility of medical state-

ments with the precision ranging from 83.5% to 98.6% for credible statements across 
ten different medical topics,

–	 analysis of most significant features that are used by filtering classifiers,
–	 providing human-interpretable explanations of filtering classifiers.

2 � Related work

There are multiple strategies for improving the credibility of online health information. 
They include information corrections, both automatically-generated and user-generated [4], 
and the manipulation of the visual appeal and presentation of medical information [11]. A 
recent meta-analysis [41] shows, however, that the average effect of correction of online 
health information on social media is of weak to moderate magnitude. The authors point 
out that interventions are more effective in cases when misinformation distributed by news 
organizations is debunked by medical experts. When misinformation is circulated on social 
media by peers, or when non-experts provide corrections, interventions have low impact.

The approaches to automatic classification of online medical misinformation differ 
depending on the media and content type. Most studies employ content analysis, social net-
work analysis, or experiments, drawing from disciplinary paradigms [42]. Online medical 
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misinformation can be effectively classified by using so-called peripheral-level features 
[48] which include linguistic features (length of a post, presence of a picture, inclusion 
of an URL, content similarity with the main discussion thread), sentiment features (both 
corpus-based and language model-based), and behavioral features (discussion initiation, 
interaction engagement, influential scope). Peripheral-level features proved to be useful for 
detecting the spread of false medical information during the Zika virus epidemic [10, 38]. 
Stylistic features can be used to identify hoaxes presented as genuine news articles and pro-
moted on social media [33]. Along with identifying hoaxes, it is possible to identify social 
media users who are prone to disseminating these hoaxes among peers [13]. An applied 
machine learning-based approach, called MedFact, is proposed in [37], where the authors 
present an algorithm for trusted medical information recommendation. The MedFact algo-
rithm relies on keyword extraction techniques to assess the factual accuracy of statements 
posted in online health-related forums.

More advanced methods of online medical information evaluation include video analy-
sis (extracting medical knowledge from YouTube videos [22]), detecting misinformation 
based on multi-modal features (both text and graphics [43]), and website topic classifica-
tion. The latter approach was successfully applied by [2, 21] using topic analysis (either 
Latent Dirichlet Annotation or Term-Frequency). Alternatively, text summarization may 
be used for this purpose [3]. In addition, Afsana et al. use linguistic features, such as word 
counts, named entities, semantic coherence of articles, the Linguistic Inquiry Word Count 
(LIWC), and external metrics such as citation counts and Web ranking of a document. A 
similar multi-modal approach is presented by Dhoju et al. [9] to distinguish with very high 
precision between reliable and unreliable media outlets publishing health-related informa-
tion. Also, Wagle et  al. use multi-modal analysis to evaluate the credibility of health & 
beauty blogs by analyzing the credibility of the platform, author, and images embedded in 
the blog [40].

An important aspect of our approach is the interpretability and explainability of filtering 
classifiers [27]. The description of recent advances in the field of machine learning inter-
pretability is beyond the scope of this paper, interested reader is referred to a very thor-
ough survey of explainable methods for supervised learning [5] and to an excellent book by 
Molnar [25]. In our work we utilize the Local Interpretable Model-agnostic Explanations 
(LIME) [35] technique to gain insights into features used by filtering classifiers to identify 
credible statements. LIME is an example of the black-box approach to model interpretabil-
ity. Other popular black-box approaches include using Shapley values [24], partial depend-
ence plots [12], and Morris sensitivity analysis [16, 26]. Alternatively, glass-box models 
can be used to explain algorithmic decisions of machine learning models. The most popu-
lar approaches include decision tree-based explainers [15], using Boolean rules to identify 
target classes [7], and Explainable Boosting Machines [23]. Implementations of many rule-
based glass-box models are readily available in the imodels library [39].

This paper is the extension of work originally presented during the 22th International 
Conference on Web Information Systems Engineering WISE’2021 [28]. The original paper 
focused on improving the utilization of human annotators’ time when manually annotat-
ing the credibility of medical statements. This work extends previous report in a number 
of dimensions. We broaden the related literature review, in particular discussing relevant 
work on explainable machine learning models. We make a detailed report on annotation 
times recorded during the experiments. We add transformer-based models to the evaluation 
(BioBERT) and we include the results of these models in the summary of experiments. 
We present a new section pertaining to the generalization capabilities of tested mod-
els. The entire new section is devoted to the issue of explainability of models: we apply 
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LIME to our filtering classifiers and we compare these explanations with more traditional 
approach based on Logistic Regression coefficient analysis. Detailed reports on the experi-
mental results (TPOT configurations, Logistic Regression per topic) are included in two 
appendices.

3 � Methods

In this section we introduce the dataset compiled as the result of our project. We describe 
the annotation protocol and the annotation procedure, albeit in an abridged manner. For the 
detailed description of the dataset and the annotation process we refer the reader to [29]. 
We also present the augmentations applied to the data and the set of features used to train 
filtering classifiers. We conclude the section with the short overview of the training proce-
dure and the introduction of explainable models used in the experiments.

3.1 � Dataset

We consider the credibility prediction of the full article as an insufficiently defined task 
burdened with source bias. That is why, instead of articles, we chose to classify smaller 
chunks of text (triplets of sentences, in particular). In previous approaches, the classifiers 
rated entire documents. For example, in the study evaluating entire articles [2], they were 
assessed against 10 criteria, none of which directly determines whether the content is cred-
ible or not. Our method differs from the approaches presented in the literature earlier in 
two important aspects: we leverage the context of medical expert’s annotation by data and 
label augmentation, and we modify the objective function to optimize for the recall of the 
positive class given the fixed precision threshold.

Our dataset consists of over 10000 sentences extracted from 247 online medical arti-
cles. The articles have been manually collected from health-related websites. The choice 
of major categories (cardiology, gynecology, psychiatry, and pediatrics) has been dictated 
by the availability of medical experts participating in the experiment. After consulting with 
medical experts, we have selected certain topics known to produce controversy in online 
social networks. For each topic, we have collected a diversified sample of articles pre-
senting contradicting views (either supportive or contrarian) and we have extracted state-
ments for manual evaluation by medical experts. The dataset is open-sourced and publicly 
available.1

Nine medical experts took part in the experiment, including 2 cardiologists, 1 gynecolo-
gist, 3 psychiatrists, and 3 pediatricians. All experts have completed 6-years medical stud-
ies and then a 5-year residency program. The experts were paid for a full day of work 
(approximately 8 hours each). Each medical expert had at least 10 years of clinical experi-
ence, except for the gynecologist who was a resident doctor. We have accepted his partici-
pation in the experiment due to his status as a Ph.D. candidate in the field of medicine. One 
of the psychiatrists held a Ph.D. in medical sciences. Given the high qualifications of par-
ticipants, we consider their judgments as the ground truth for medical statement evaluation. 
The experts were allowed to browse certified medical information databases throughout the 
experiment. Each expert evaluated the credibility of medical statements only within their 
specialization.

1  https://​github.​com/​alena​bozny/​medic​al_​credi​bility_​corpus
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Collected online articles were automatically divided into sentences and presented to the 
medical experts in random order. Sentence segmentation has been done using the depend-
ency parser from the spaCy text processing library. Since input text follows closely the 
general-purpose news style, the default spaCy processing pipeline produces very robust 
sentence segmentation. Along with each sentence we have displayed a limited number of 
automatically extracted keywords. If the medical expert decided that a sentence could not 
have been assessed due to insufficient context, he or she could have expanded the annota-
tion view by showing preceding and succeeding sentences. Each medical expert was asked 
to annotate approximately 1000 sentences. Medical experts evaluated the credibility of sen-
tences with the following set of labels and the corresponding instructions:

–	 CRED (credible) — a sentence is reliable, does not raise major objections, contains ver-
ifiable information from the medical domain.

–	 NONCRED (non-credible) — a sentence contains false or unverifiable information, con-
tains persuasion contrary to current medical recommendations, contains outdated infor-
mation.

–	 NEU (neutral) — a sentence does not contain factual information (e.g., is a question) or 
is not related to medicine.

Table  1 presents the number of sentences in each class summarized by category and 
topic. Within the four larger topical categories (cardiology, gynecology, psychiatry, or 
pediatrics), our dataset is divided into smaller subsets (topics). Considering these topics 
separately dramatically improves the performance of the classifiers. However, some topics 
included in the dataset were too small for training a classifier. Thus, we do not consider 
them further in this article.

3.2 � Data augmentation

The annotation of the dataset by medical experts has revealed the importance of context for 
providing a label (see Table 2). Over 25% of non-credible sentences required the surround-
ing context of one sentence, with 20% of credible sentences and 12% neutral sentences 
requiring similar context. To provide this context for statistical models, we have decided 
to transform single sentences into sequences of consecutive non-overlapping triplets of 

Table 1   Number of sentences from each class by the topic

Category Topic CRED NEU NONCRED

Cardiology Antioxidants 375 175 144
Cardiology Heart supplements 221 124 78
Cardiology Cholesterol and statins 1058 565 406
Gynecology Cesarean section vs. natural birth 275 53 31
Pediatry Children & antibiotics 298 52 82
Pediatry Diet and Autism 236 71 124
Pediatry Steroids for kids 560 101 40
Pediatry Vaccination 730 223 309
Pediatry Allergy testing 790 398 214
Psychiatry Psychiatry 1194 676 402
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sentences. Since individual sentences have already been labeled by medical experts, we 
have transferred ground truth sentence labels to triplet labels in the following way:

–	 negative: a triplet is negative if any of the sentences constituting the triplet has the 
label NONCRED,

–	 positive: a triplet is positive if all of the sentences constituting the triplet are either 
CRED or NEU.

Example of a positive triplet (from ”Statins & cholesterol”): 

”Not smoking could add nearly 10 years and quitting increases life expectancy by 
reducing the chances of emphysema, many cancers, and heart disease. Although my 
doctor checks my cholesterol every year, it remains low and taking a statin will have 
a very small, if any, effect on my life expectancy. What’s worse, my doctor has never 
asked if I smoke cigarettes, exercise regularly, or eat a healthy diet.”

Example of a negative triplet (from ”Statins & cholesterol”): 

”OK, maybe the benefits of taking a statin are small, but many smart doctors say a 
reduction of five-tenths or six-tenths of 1% is worthwhile. Yet the few published obser-
vations on people over the age of 70 do not show any statistically significant statin-
related reductions in deaths from any cause. Of course, not everyone is like me.”

3.3 � Feature set

Features that have been selected for credibility classification purposes are based on the 
qualitative analysis of the dataset concerning the findings reported in Section 2. The ulti-
mate number of features varies between categories. The feature set has been created manu-
ally and feature selection methods have been used to remove non-informative features. The 
choice of traditional NLP features has been deliberate as we want to maintain the explain-
ability of filtering classifiers. However, we compare them to the compressed lexical fea-
tures obtained by the state-of-the-art deep learning language model BioBERT [20] trained 
on clinical data.

3.3.1 � Uncased TF‑IDF (number of features: varying from 920 to 4103)

Bag of words, n-gram, term frequency (TF), term frequency inverted document frequency 
(TF-IDF) are the most commonly used textual features in natural language processing [47]. 

Table 2   Number m of surrounding sentences needed to understand the context and evaluate the credibility 
of a sentence for credible, non-credible, neutral, and all sentences

m Credible [%] Non-credible [%] Neutral [%] All [%]

0 80.07 71.27 88.30 80.43
1 18.83 26.60 11.03 18.39
> 1 0.18 0.37 0.04 0.18
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In this work, we chose TF-IDF values to account for the importance of each word. We use 
the Python package spaCy to perform sentence tokenization and lemmatization.

3.3.2 � BioBERT vectors (number of features: up to 768)

BioBERT is a pre-trained language representation model for the medical domain. It was 
designed for linguistic tasks of Medical Entity Recognition, relation extraction, and ques-
tion answering [8, 49]. The model we use was trained on a combination of general purpose 
and medical corpora (English Wikipedia, Books Corpus, PubMed Abstracts and PMC full 
articles). In our work, we decided to use the sentence vectorization module of BioBERT. 
This module transforms each paragraph in the corpus into a numerical vector. This vector 
is an aggregation of word embeddings generated for each word in the paragraph by the 
BioBERT model.

3.3.3 � Dependency tree‑labels count (number of features: up to 45)

Overly complex sentences have a higher probability to contain the hedging part than sim-
ple sentences (the base of a sentence may contain a factually false statement, but the other 
part would soften its overtone so that it seems credible). Thus, we count the base elements 
of dependency trees to model the potential existence of such phenomena.

3.3.4 � Named entities counter (number of features: up to 18)

There are some indicators of conspiratorial and/or science-skeptical language (hence the 
popularity of using agent-action-target triples in the study of conspiratorial narratives 
[36]). Those narratives may be captured by counting named entities of specified categories, 
such as false authority (PERSON), Big Pharma blaming (ORGANIZATION, PRODUCT), 
distrust to renowned institutions (ORGANIZATION), facts and statistics (NUMBER). In 
the experiment we have used the NER labeling scheme available in the English language 
model offered by the spaCy library.

3.3.5 � Polarity and subjectivity (number of features: 2)

Sentiment analysis is a broadly-used feature set for misinformation detection classifiers. It 
has been used, for example, for detecting anti- and pro-vaccine news headlines [46]. Highly 
polarized and/or emotional language can indicate misinformation Figs. 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12 and 13.

3.3.6 � LIWC (number of features: 93)

Aggressive, overly optimistic, advertising language (e.g. for a drug or novel therapy) or 
other patterns can affect the credibility of textual information [18]. The LIWC offers a cor-
pus-based sentiment analysis approach by counting words in different emotion categories. 
Empirical results using LIWC demonstrate its ability to detect meaning in emotionality. In 
addition, it has been employed to extract the sentiment features for the detection of mis-
information in online medical videos [17]. LIWC provides features regarding emotional 
dimensions, the formality of the language, spatial and temporal features, as well as struc-
tural information (e.g. word per sentence count).
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Fig. 1   ROC curves of cross-validated classification results for each medical topic

Fig. 2   Times needed to assess a single statement by the medical expert. White dots indicate the average 
evaluation times, which are explicitly stated in seconds next to each distribution graph
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Fig. 3   Cross-validated proportions of positive and negative samples (a) below the cutoff (b) above the cut-
off (c) in the entire test set. This corresponds to precision for the negative class, precision for the positive 
class and total label proportions, respectively. Black labels indicate the mean number of samples in each 
group. Each bar has the standard deviation indicator (white vertical line)
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3.4 � Feature selection and model training

The workflow for training statistical models is identical for each topic and includes two 
steps: feature selection and model selection. Feature selection is performed using Logis-
tic Regression and Recursive Feature Elimination (RFE) [14]. RFE conducts a backward 
selection of features, starting from a predictive model using all available features. For each 
feature, the importance score is computed, and the least important feature is removed. The 
model is retrained with remaining features and the procedure is repeated until the desired 
number of features remains. We use Logistic Regression as the baseline model for RFE, 
limiting the number of features to 30% of the number of samples in a given topic. In this 
paper, we assume that the list of topics is known in advance and that each sentence is 
already assigned to a topic. This, of course, raises the question of the practical applicabil-
ity of our method when the topic of an article is unknown. Recent advances in automatic 
medical subdomain classification [44] suggest that the topic of the article can be success-
fully extracted from the text.

We have also conducted model training on the unpruned feature set. The results were 
very disappointing, topical models performed on par with random classification. Thus, 
we do not include these models in the evaluation. The results for the unpruned feature set 
strengthen the intuition that credibility assessment is heavily domain-dependent. In our 
view, this has two consequences. Firstly, the prospects of training a universal credibility 
assessment model are unlikely as the credibility encoded in the syntax is limited. It seems 
that most of the credibility is hidden in semantically-loaded features that are specific to 
a topic. Secondly, the importance of subject matter experts in evaluating the credibility 
should not be ignored, because only these experts can properly evaluate the significance 
of topical features. It also stresses the need to augment credibility assessment models with 
explainability to assist the experts.

For training the model we use the TPOT library [31]. TPOT uses a genetic algorithm to 
optimize the workflow consisting of feature pre-processing, model selection, and param-
eter optimization, by evolving a population of workflows and implementing mutation and 
cross-over operators for workflows. To constrain the space of considered models we use 
Logistic Regression, XGBoost, and the Multi-layer Perceptron as the initial pool of avail-
able models. The optimization is driven by the F1 measure.

3.5 � Explainable models

3.5.1 � Models generalization

We try to answer the question about the ability of the models to generalize between sub-
domains. To achieve that, we analyzed the most important features for all subdomains with 
an emphasis on the similarities between the domains (Table 5). We also calculated the per-
centage of stylometric features from the sets of the most important model features for each 
sub-domain (Table 4).

3.5.2 � Feature weights from logistic regression

All pipelines selected by TPOT involve black-box classifiers and as such cannot be 
explained globally in terms of feature importance. Only local approximate explanations for 
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individual samples may be generated by techniques such as SHapley Additive exPlanations 
(SHAP) [24] or Local Interpretable Model-agnostic Explanations (LIME) [35].

For those subdomains where the F1 measure and the AUC​ achieved by Logistic Regres-
sion were close to the performance of the pipeline chosen by TPOT (see Appendix A) we 
used the coefficients of the Logistic Regression models to estimate the importance of each 
feature and its contribution to the final predictions (see Section  4.4). This may be done 
since the features were scaled to unit variance.

3.5.3 � Locally interpretable model‑agnostic explanations

To gain better insight into how filtering classifiers work and boost medical experts’ confi-
dence in the robustness of the filtering of credible statements, we perform additional analy-
sis using the locally interpretable model-agnostic explanations (LIME) method [35]. LIME 
encapsulates any black-box model by a glass-box model (e.g. linear regression or decision 
tree) operating in the close vicinity of the currently explained instance. The features of the 
current instance are slightly perturbed (the perturbation type depends on the modality of 
the instance and may include masking a word or a part of an image, adding noise to the 
numerical value, flipping of a Boolean value, etc.). The glass-box model is trained only on 
a small set of perturbations, providing a local approximation of the global (and possibly 
black-box) model. As the result, the glass-box model identifies features of the explained 
instance that contribute the most to the current decision of the black-box model.

4 � Results

In this section we present the results of conducted experiments. We begin by discussing the 
process of manual data annotation and its limitations. We show how our active annotation 
approach optimizes the utilization of subject matter experts’ time by re-ranking annotation 
tasks. We briefly discuss the issue of model generalization, and we conclude the section 
with extensive analysis of the usefulness of model explainability in credibility assessment.

4.1 � Times needed to assess a single statement

During our experiment, we have measured the times required by experts to evaluate the 
credibility of medical statements. This information is of crucial importance in practice, 
as the average time to evaluate a statement can be used to determine the throughput of an 
expert. Of course, it is necessary to keep in mind that experts cannot work indefinitely, and 
need to take periodic breaks in order to rest.

Figure 2 shows the distributions of evaluation time for all statements, and for statements 
in the four main disciplines of our study: gynecology, psychiatry, cardiology, and pediatry. 
The distribution is long-tailed, but the longer times of statement evaluation are infrequent. 
Overall, the distributions differ for various topics from 18 to 35 seconds, depending on the 
topic (experts in cardiology are the fastest, while in psychiatry - the slowest). For an expert 
who works 8 hours per day, with periodic breaks of 15 minutes every hour (leaving 6 hours 
of effective working time), this gives an average number of evaluated statements per day in 
the range of 617 to 1200 statements. Recall that, on average, one article in our dataset has 
approximately 40 statements (there are 10000 statements from 247 articles). This means 
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that an expert can evaluate from 15 to 30 articles per working day, depending on the topic 
of the article.

4.2 � Optimization of experts’ evaluation time

The main objective of our method is to maximize the utilization of medical experts’ time 
when annotating online medical statements. We optimize statistical models to find credible 
statements, thus increasing the number of non-credible statements that can be presented to 
medical experts. The results below analyze the efficiency of trained statistical models in 
finding credible statements. Recall from Section 3.2 that statistical models are trained on 
a binary dataset consisting of positive (credible and neutral) and negative (non-credible) 
triplets of sentences.

Figure  1 presents ROC curves for cross-validation. The number of folds depends on 
the number of samples in a given topic. Based on the ROC curves we have empirically 
adjusted the cutoff threshold for each classifier’s prediction of the positive class. Our goal 
was to maximize the precision of the negative class while preserving fixed high preci-
sion for the positive class. In other words, samples that fall above the cutoff threshold are 
assumed to contain solely credible or neutral sentences, and will not be presented to med-
ical experts for manual evaluation. We have selected the cutoff threshold for each topic 
using the following criteria:

–	 the difference between the proportion of true negative samples and the proportion of 
negative samples in the entire test set should be maximized, with minimum variance,

–	 the precision for the true positive class should be maximized,
–	 the number of samples above the cutoff should be maximized.

The results of the cutoff filtering are presented in Figure 3. For each topic, we show the 
distribution of positive and negative samples in the entire topic (the total column) and in 
the subsets defined by the cutoff. This corresponds to precision for the negative class (left 
bar), precision for the positive class (middle bar), and total label proportions (right bar). 
For instance, there are 44.7% of negative samples and 55.3% of positive samples in the 
Heart supplements topic. The subset of samples defined by the cutoff point of 0.97 con-
tains only 13.6% of negative samples, and the remaining subset contains 64.9% of negative 
samples. In other words, by removing the samples above the cutoff threshold from manual 
experts’ evaluation we are increasing the number of negative samples that the experts may 
annotate from 44.7% to 64.9%. We refer to the proportion of negative samples in the topic 
as the baseline utilization, and the proportion of negative samples after the intervention 
(i.e., below the cutoff threshold) as the optimized utilization.

In Table 3 we report baseline utilization, the difference in percentage points with respect 
to the optimized utilization, and the factor of improvement of medical experts’ time utiliza-
tion. Those values are reported for both models: with TF-IDF and BioBERT lexical fea-
tures. We denote the percentage point difference value as the pp. improv. - percentage point 
improvement, as for each topic the difference is in favor of using our filtering classifiers.

4.3 � Models generalization

Table  4 presents the distribution of significant features between feature sets for TF-IDF 
and BioBERT-based models. Generally speaking, models built upon TF-IDF vectors are 
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topic-specific, which may indicate the need for manual fact-checking. However, there are 
subdomains where the participation of the stylometric features is significant, e.g. ’antioxi-
dants’. It may be the result of the specificity of this category, where many of the texts were 
advertisements of either valid or dubious substances.

A much greater share in building filtering classifiers (up to 50% in the case of the cat-
egory ’heart supplements’) is when we apply stylometric features along with compressed 
lexical features, i.e., when the text is embedded using representations extracted from a lan-
guage model such as BioBERT. Although we lose the ability to directly interpret model 
decisions related to lexical features (it is not possible to explicitly interpret BioBERT vec-
tor’s dimension values), we gain a much greater share of meaningful stylometric features in 
model construction. There seems to exist a trade-off between lexical and stylometric model 
explainability, we either explain an algorithmic decision based on lexical features, or based 
on stylometric features, but not both.

Particularly noteworthy are those stylometric features which have a large share in 
building filtering classifiers based on BioBERT representations, in particular in the case 
of categories where models based on BioBERT outperformed models based on TF-IDF. 
Those models include (per category): statins, antioxidants, vaccination, steroids for kids, 
C-section vs. natural birth, and (although insignificantly) psychiatry. The features particu-
larly involved in model creation include mostly LIWC features, but also tags retrieved from 
dependency parsing.

From Table 5 we can see that there are not many stylometric features that are common 
to all categories (for models built upon TF-IDF vectors). This may indicate that models 
should be prepared for coherent datasets of very narrow domains.

4.4 � Explainable models

For all sub-domains in Appendix A, we present models selected by TPOT. We compare the 
results of the winning models with the base model, the logistic regression. There are often 

Table 3   Comparison of baseline and optimized utilization of medical experts’ time

 Results presented for both models: (1) using TF-IDF and (2) BioBERT vectors as lexical features. A - heart 
supplements; B - Antioxidants; C - Cholesterol & statins; D - Vaccination; E - Allergy testing; F - Children 
antibiotics; G - Diet & Autism; H - Steroids for kids; I - C-section vs. Natural Birth; J - Psychiatry

Category Baseline utiliza-
tion [%]

pp. improv. 
[TF-IDF]

factor [TF-IDF] pp. improv. 
[BioBERT]

factor 
[BioBERT]

A 44.7 20.2 1.5 27.6 1.6
B 18.7 17.2 1.9 30.7 2.6
C 20.2 33.9 2.7 21.9 2.1
D 41.3 22.2 1.5 28.1 1.7
E 18.4 40.8 3.2 17.0 1.9
F 19.5 47.4 3.4 35.7 2.8
G 46.7 22.4 1.5 12.2 1.3
H 12.4 22.4 2.8 26.8 3.2
I 16.4 21.2 2.3 25.0 2.5
J 37.7 11.4 1.3 12.9 1.3
Mean – 25.9 2.2 23.8 2.1
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cases where the logistic regression obtained only slightly worse results than the selected 
models. For such cases, we assumed that the weights of the logistic regression features 
are suitable for general explanations of the filtering classifiers’ decisions. Feature weight 
charts for logistic regression for all of the above-defined cases are shown in the Appendix 
B. Here we present exemplary explanations of models for two topics, antibiotics and diet-
ing in autism, to illustrate the usefulness of having human-interpretable explanations of 
algorithmic decisions.

4.4.1 � Children antibiotics

Figure 4 presents the most important features for distinguishing between credible and 
non-credible statements regarding the use of antibiotics in children. Features that con-
tribute to the credibility of statements include the use of the word antibiotic, the pres-
ence of subordinating conjunctions (which characterize complex sentences with con-
stituent subordinate clauses), the presence of ”social” vocabulary (i.e., words related 
to family and friends), as well as the presence of words marking tentative statements 
(maybe, perhaps). On the other side, non-credible statements are characterized mostly 

Table 4   Percentage of 
stylometric features from the 
sets of the most important model 
features for each sub-domain

 LIWC - Linguistic Inquiry Word Count; NER - Named entities count; 
POS - parts of speech count; DEP - dependency parsing elements 
count; sent - either polarity or subjectivity of the text; lexical - features 
that are not stylometric, retrieved either by TF-IDF transformation or 
the BioBERT model

Category LIWC NER POS DEP Sent Lexical

TF-IDF
statins 5.3% 0.0% 0.5% 0.5% 0.5% 93.2%
vaccines 2.8% 0.7% 0.7% 1.4% 0.0% 94.4%
psychiatry 4.3% 0.0% 0.0% 0.0% 0.0% 95.7%
allergy testing 8.2% 0.0% 0.0% 0.0% 0.0% 91.9%
antioxidants 14.7% 0.0% 0.0% 0.0% 0.0% 85.3%
steroids for kids 12.3% 0.0% 0.0% 0.0% 0.0% 87.7%
children antibiotics 3.1% 0.0% 0.0% 0.0% 0.0% 96.9%
diet and autism 5.5% 0.0% 0.0% 0.0% 0.0% 94.5%
heart supplements 12.0% 2.0% 0.0% 0.0% 0.0% 86.0%
cc vs. nb 3.9% 0.0% 0.0% 0.0% 0.0% 96.1%
BioBERT
statins 12.1% 3.2% 3.2% 4.2% 0.5% 76.8%
vaccines 13.9% 2.9% 2.9% 10.0% 0.7% 69.7%
psychiatry 10.7% 0.0% 2.9% 3.6% 0.0% 82.9%
allergy testing 10.4% 3.00% 2.2% 4.4% 0.0% 80.0%
antioxidants 14.7% 1.4% 0.0% 0.0% 0.0% 84.0%
steroids for kids 21.5% 0.0% 2.8% 8.3% 0.0% 67.4%
children antibiotics 13.9% 3.1% 3.1% 10.8% 0.0% 69.2%
diet and autism 14.6% 1.8% 1.8% 5.5% 0.0% 76.36%
heart supplements 22.0% 8.0% 2.0% 16.0% 2.0% 50.0%
cc vs. nb 22.0% 0.0% 2.0% 14.0% 4.0% 58.0%
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by the presence of specific keywords (nature, oil, allow, garlic, colloidal silver). Inter-
estingly, the only keyword marking credible statements is infection, which is probably 
the term avoided by people opposed to the use of antibiotics in children.

Consider the following statement: ”However, this study did not determine whether 
antibiotic use is causally related to breast cancer or if other factors were involved. Cer-
tain antibiotics, such as methicillin, vancomycin, sulfonamides, gentamicin, fluoroqui-
nolones, gatifloxacin, levofloxacin, moxifloxacin, and streptomycin, can be harmful for 
your kidneys. A 2013 study published in the Canadian Medical Association Journal 

Table 5   Number of appearances of those stylometric features that appear more than once per category

Feature name Number of 
appear-
ances

Long words (more than 6 letters) 4
Certainty (words such as ”always”, ”never”) 3
Emotional tone 2
First person plural count 2
First person singular count 2
Adjectives count 2
Causation (words such as ”because”, ”effect”) 2
Past focus (words such as ”ago”, ”did”, ”talked”) 2
Health-related words (”clinic”, ”flu”, ”pill”) 2
Assent words (”agree”, ”OK”, ”yes”) 2
Period count 2
Cognitive processes indicators (words such as ”cause”, ”know”, ”ought”) 2
Ingestive processes indicators (words such as ”dish”, ”eat”, ”pizza”) 2

Fig. 4   Feature weights retrieved from Logistic Regression model for ’children antibiotics’ category. Top 
absolute 16 feature weights are depicted
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found that there is an increase in risk of acute kidney injury among men with use of oral 
fluoroquinolones.”

This sentence is credible and in line with the current medical knowledge. Figure 5 pre-
sents the explanation of the sentence generated by LIME. A medical expert can see that 
the main reason why this sentence has been classified as credible is the presence of the 
word antibiotics combined with complex phrase structure and tentativeness of the language 
(however, whether, did not determine).

4.4.2 � Diet & autism

Most discriminative features for classifying sentences as either credible or non-credible in 
the domain of diet and autism are depicted in Figure 7. One should remember that this par-
ticular subject is extremely sensitive as parents with autistic children may be more vulner-
able to exploitation, or easier to accept scientifically unsound recommendations. Features 

Fig. 5   LIME explanation for a 
sentence on antibiotics
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Fig. 6   LIME explanation for a 
sentence on diet & autism

Fig. 7   Feature weights retrieved from Logistic Regression model for ’diet & autism’ category. Top absolute 
16 feature weights are depicted
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characteristic of non-credible statements include very general terms (product, blood, life, 
link, turn) as well as, surprisingly, excessive use of apostrophes. Credible statements also 
share general terms (will, made, know, speech, dramatic, relative), but also mention the 
Feingold diet, a well-known elimination diet introduced by Benjamin Feingold in the 
1970s.

Compare the example of a sentence on antibiotic use with the following non-credible 
sentence on diet & autism: ”These diets include the following: Casein-free diet (casein is a 
protein found in milk; this diet eliminates milk and all by-products of milk). In the case of 
the Autism Spectrum Disorders (ASDs), many parents have reported a reduction in autism 
symptoms when certain dietary interventions have been tried. For some children, dietary 
approaches have reportedly produced dramatic changes in overall functioning.”

Figure 6 shows the LIME explanation of the sentence. The sentence is correctly clas-
sified as non-credible due to the presence of keywords (product, function, approach, 
reported, dramatic). Keywords associated with credibility (these, overall, casein) are not 
specific enough to sway the decision of the classifier.

5 � Discussion

Evaluation of the credibility of online medical information is a very challenging task due to 
the subjective assessment of credibility, and the specialized medical knowledge required to 
perform the evaluation [30]. Fully automatic classification of online medical information as 
credible or non-credible is not a viable solution due to the complex externalities involved 
in such classification. For the foreseeable future, keeping a human judge in the annotation 
loop is a necessity. At the same time, qualified human judges are the scarcest resource and 
their time must be utilized efficiently. Previous approaches to automatically assessing the 
credibility of medical texts did not take into account the need to weave a human judge into 
the real-time verification process.

In our work, we present a framework for the optimization of the utilization of medi-
cal experts’ time when evaluating the credibility of online medical information. To 
prioritize the evaluation of non-credible information by medical experts, we train clas-
sifiers that can filter out credible and neutral medical claims with very high precision 
exceeding 90% for most medical topics considered in our study (vaccination, allergy 
testing, children antibiotics, steroids for kids, antioxidants, cholesterol & statins, and 
C-section vs. natural birth).

Table 3 depicts the key benefit for the potential human-in-the-loop fact-checking 
system that our solution provides — an increase in the probability that a medical 
expert will encounter a non-credible medical statement in the annotation batch. As we 
can see, for all topics the improvement in the utilization of medical experts’ time is 
substantial. The average improvement over all topics is 25.9 percentage points, which 
means that within the same amount of time and at the same average time needed to 
annotate a single sentence, medical experts using our method annotate over two times 
as many non-credible medical statements on average. It is a ”pure win” since this 
improvement does not require any changes to either the annotation protocol or the 
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annotation interface, we simply make much better use of the experts’ time allocated to 
data annotation.

In addition to the aforementioned important practical implications of using filter-
ing classifiers to prioritize the evaluation of non-credible statements, these clas-
sifiers can explain their decisions in a human-interpretable way. Many practical 
conclusions can be drawn from general and local explanations. For example, the 
overwhelming share of topic-specific characteristics in classification may indicate 
that medical fake news are based on certain specific narratives (e.g., vaccines cause 
autism, high cholesterol is not an indicator of cardiovascular disease) that spread 
online by copying and pasting or copying and rewriting. This in turn may suggest 
focusing on semantic similarity measurements as a primary tool for medical fake 
news detection.

6 � Conclusions and future work

One limitation of our method is a certain number of statements that contain misinformation 
that would not be seen by experts. However, we need to keep in mind that medical experts 
may not see all statements anyway, as their limited time and attention are not enough to 
process all suspicious information.

In a realistic use-case scenario, medical experts would continually evaluate a stream 
of statements derived from the ever-growing set of online articles on medical and 
health topics, as well as information from social media. Our method increases the effi-
ciency of misinformation detection by medical experts, who will discover more than 
twice as much misinformation without increasing the time spent on evaluation (or the 
number of evaluating experts), and without any changes to the annotation workflow. 
Our method can be regarded as a universal filter for medical Web content. Moreover, 
we show that we can modify the input features for the filtering classifiers to provide 
medical experts with different types of feedback, either lexical or stylometric, without 
any loss of performance. Because we cannot provide medical experts with both lexi-
cal and stylometric explanations, it remains to be examined which type of feedback is 
more useful for medical experts.

In our future work, we plan to focus on gathering more data by introducing the 
demo expert crowd-sourcing system in selected medical universities. We plan to 
emphasize the importance of the iterative process of adjusting proper annotation 
protocol and professional training for medical students. Our goal is to elevate medi-
cal students’ annotation accuracy to the expert level (like medical practitioners with 
at least a few years of experience), thus further reducing costs of expert medical 
credibility annotation.

Appendix A: filtering classifier models

Table  6 presents models selected by TPOT for each subdomain (category), their perfor-
mance and the comparison to baseline Logistic Regression.
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Appendix B: logistic regression topical models

Below we present feature weights for Logistic Regression models per each topic.

Fig. 8   Feature weights retrieved from Logistic Regression model for ’heart supplements’ category. Top 
absolute 16 feature weights are depicted (roughly 30% of all model features)

Fig. 9   Feature weights retrieved from Logistic Regression model for ’statins’ category. Top absolute 40 fea-
ture weights are depicted (roughly 20% of all model features)
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Fig. 10   Feature weights retrieved from Logistic Regression model for ’vaccination’ category. Top absolute 
40 feature weights are depicted (roughly 30% of all model features)

Fig. 11   Feature weights retrieved from Logistic Regression model for ’allergy testing’ category. Top abso-
lute 40 feature weights are depicted (roughly 30% of all model features)
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Fig. 12   Feature weights retrieved from Logistic Regression model for ’psychiatry’ category. Top absolute 
40 feature weights are depicted

Fig. 13   This data is mandatory. Please check.
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