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Liquid biopsy demonstrates excellent potential in patient management by

providing a minimally invasive and cost-effective approach to detecting

and monitoring cancer, even at its early stages. Due to the complexity of

liquid biopsy data, machine-learning techniques are increasingly gaining

attention in sample analysis, especially for multidimensional data such as

RNA expression profiles. Yet, there is no agreement in the community on

which methods are the most effective or how to process the data. To cir-

cumvent this, we performed a large-scale study using various

machine-learning techniques. First, we took a closer look at existing data-

sets and filtered out some patients to assert data collection quality. The

final data collection included platelet RNA samples acquired from 1397

cancer patients (17 types of cancer) and 354 asymptomatic, presumed

healthy, donors. Then, we assessed an array of different machine-learning

models and techniques (e.g., feature selection of RNA transcripts) in

pan-cancer detection and multiclass classification. Our results show that

simple logistic regression performs the best, reaching a 68% cancer detec-

tion rate at a 99% specificity level, and multiclass classification accuracy of

79.38% when distinguishing between five cancer types. In summary, by

revisiting classical machine-learning models, we have exceeded the previ-

ously used method by 5% and 9.65% in cancer detection and multiclass
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classification, respectively. To ease further research, we open-source our

code and data processing pipelines (https://gitlab.com/jopekmaksym/

improving-platelet-rna-based-diagnostics), which we hope will serve the

community as a strong baseline.

1. Introduction

Cancer is a devastating illness that claims millions of

lives worldwide every year. In 2020 alone, it is esti-

mated that approximately 10 million deaths were

attributed to cancer [1]. There are numerous solutions

for cancer diagnosis, but many techniques have certain

limitations, such as invasiveness and high cost, or are

not available in less developed parts of the world [1].

Furthermore, despite being highly specific, some

methods may lack sensitivity in the early stages of the

disease. Early detection of cancer is crucial for increas-

ing the likelihood of successful treatment and survival

[2]. As a result, it is essential to develop accurate and

easily accessible diagnostic tools that are minimally

invasive, especially for detecting early-stage cancer.

Liquid biopsy has the potential to revolutionize cancer

diagnosis as a less invasive and innovative approach [3–8].
This technique provides valuable insights into tumors’

genetic makeup by evaluating circulating biomarkers (i.e.

circulating free DNA, cfDNA; circulating free RNA,

cfRNA; extracellular vesicles; and circulating tumor cells,

CTCs) predominantly in blood, with urine proving valu-

able for urothelial cancers [9–21]. In this manuscript, we

focus on blood platelet RNA profiling as even aberrant

platelet counts in morphology can alone serve as a marker

of diseases such as bladder carcinoma or prostate cancer

[22–25]. The material especially valuable in this aspect is

platelet and cancer detection is their RNA content which

mirrors the host’s response to the disease [26]. Platelets

modify their RNA repertoire as a result of local and sys-

temic signals. They play a crucial role in various biological

processes such as inflammation, cancer progression, and

metastasis, making their RNA signatures effective for can-

cer detection [27,28]. By utilizing platelet RNA for detect-

ing early-stage cancer, clinicians can initiate timely

interventions, thereby improving therapeutic efficacy and

patient prognosis, especially when cancer detection is chal-

lenging. However, identifying the presence of cancer alone

may not suffice for therapeutic decision-making [29].

Dealing with highly dimensional RNA profiles is a

complex task requiring robust computational techniques.

Typically, this task involves working with thousands of

features obtained from a relatively small number of sam-

ples. That is why many recent studies are using machine

learning (ML) and deep learning (DL) to process and

analyze samples to improve the accuracy of diagnosis

[30]. Using advanced methods to tackle this problem does

not always provide better outcomes, as simpler models

are easier to interpret and thus provide some extent of

explainability, making the method more reliable [31].

Employing the support vector machine (SVM) algorithm

to analyze platelet RNA samples has already demon-

strated remarkable success, starting a new era of

non-invasive cancer detection [15]. Advanced techniques

such as the DL-based imPlatelet classifier merge

image-based deep learning with transcriptomics to

improve diagnostic precision [12]. In [13], a comprehen-

sive analysis of platelet RNA using large-scale datasets

and advanced computational techniques such as convolu-

tional neural networks and boosting achieved remarkable

diagnostic accuracy in detecting cancer [14] utilized com-

parable CNN methods on platelet RNA data in the case

of a multiclass classification task of six types of cancer. In

[11], the authors developed RNA-based blood tests using

a particle swarm optimized support vector machine

(PSO-SVM) that could detect up to 18 cancer types by

leveraging the unique properties of platelet RNA. This

method identified cancer samples from asymptomatic

individuals with 63% specificity at 99% specificity and

accurately pinpointed the origin site of tumors for five dif-

ferent types of cancer with 68% accuracy. This research

motivated us to apply our expertise in ML methods to

enhance the diagnostic technique that uses platelet RNA

for identifying cancer types.

This manuscript utilizes platelet RNA data collected

from 354 healthy donors and 1397 cancer patients sup-

plied in [11] and aims to enhance machine learning models

for improved diagnostic accuracy. In this study, we:

• compare the performance of various machine learn-

ing models in differentiation between healthy and

cancerous samples,

• compare the performance of various machine learn-

ing models in the multiclass,

• classification of five types of cancer, and

• investigate the impact of RNA transcript feature

reduction on model performance.
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2. Materials and methods

2.1. Dataset and sample processing

This investigation is based on publicly available raw

platelet RNA samples from In ’t Veld et al. [11]. Sam-

ples were collected and processed according to the

guidelines established by Best et al. [17]. The dataset

contained samples collected from January 2013 to June

2021 by 11 institutes from presumed healthy, asymp-

tomatic controls (AC) and 17 types of cancer: breast

cancer (BRCA), cholangiocarcinoma (CHOL), colorec-

tal cancer (CRC), endometrial cancer (ENDO), esoph-

ageal cancer (ESO), glioma (GLIO), hepatocellular

carcinoma (HCC), head and neck squamous cell carci-

noma (HNSCC), lymphoma (LYM), melanoma

(MELA), multiple myeloma (MM), non-small cell lung

cancer (NSCLC), ovarian cancer (OVCAR), pancreatic

ductal adenocarcinomas (PDAC), prostate cancer

(PRCA), renal cell carcinoma (RCC), and urothelial

carcinoma (URO). Samples of ENDO and OVCAR

patients were collected at the Department of Gynecol-

ogy, Gynecological Oncology, and Gynecological

Endocrinology at the Medical University of Gdansk

(MUG). The study was approved by the Independent

Ethics Committee of the Medical University of

Gdansk (NKBBN/434/2017). All patients from all

included hospitals signed informed consent forms. Pro-

cedures involving human subjects were in accordance

with the Helsinki Declaration, as revised in 1983. All

publicly available data was anonymized. An encom-

passing overview of the dataset’s composition is pro-

vided in Table 1.

Based on the methodology described in Pastuszak

et al. [12], we employed the DESeq2 package in R [32]

for normalizing expression data through the variance

stabilizing transformation [33]. The human reference

genome (hg19) served as an annotative reference point

in this process. To maintain the integrity and quality

of our dataset, we omitted samples with fewer than

100 k total reads and solely incorporated genes backed

by confirmed Gencode status. All the samples under-

went uniform pre-processing and were normalized col-

lectively. Expression analysis of available samples

highlighted significant differences between

samples from the Netherlands Cancer Institute (NKI)

and the remaining part of the cohort. These samples

consisted of healthy donors (36), sarcoma (51), and

former sarcoma (26) patients, NSCLC patients (167),

ovarian cancer patients (9), and CRC and prostate

cancer patients. Since sarcoma patients were underrep-

resented in other involved locations (2 sarcoma

patients and no former sarcoma patients from outside

NKI), further analysis was focused on healthy donors

and NSCLC patients. After applying Benjamini–Hoch-

berg FDR correction, 4916 transcripts out of 5346

considered were differentially expressed between NKI

healthy donors and healthy donors from other loca-

tions. In the next step, a logistic regression classifier

was trained to distinguish NKI samples from

non-NKI ones. 60% of healthy donors were assigned

to the training set. Proportions between NKI and

non-NKI donors were preserved. The classifier was

then tested on the remaining 40% of the healthy

donors. Despite the class imbalance, the classifier man-

aged to reach perfect classification with 100% accuracy

and 100% ROC AUC. Feature importance analysis

was performed, and features with the highest weights

were selected for the pathway analysis. None of the

pathways were significantly enriched after applying

FDR correction. The same process was repeated for

the NSCLC patients. After applying Benjamini–Hoch-

berg FDR correction, 4626 transcripts out of 5346

considered were differentially expressed between NKI

NSLC patients and NSCLC patients from other loca-

tions. The classifier managed to reach 88% accuracy

and 86% balanced accuracy with 91.6% ROC AUC.

The confusion matrix is presented in Fig. S1. Addi-

tionally, gene ontology analysis of the most important

Table 1. Data overview. The aggregate count of samples included

in the study are divided into the training, validation, and test sets

and utilized during the machine learning process.

Cancer type

Data split [n]

Train Validation Test Total

Asymptomatically healthy

controls

104 104 146 354

Breast cancer 20 20 53 93

Cholangiocarcinoma 20 19 46 85

Colorectal cancer 19 19 46 84

Endometrial cancer 14 13 12 39

Esophageal cancer 0 0 15 15

Glioma 30 29 73 132

Hepatocellular carcinoma 7 8 8 23

Head and neck squamous cell

carcinoma

20 20 61 101

Lymphoma 0 0 20 20

Melanoma 20 20 28 68

Multiple myeloma 10 10 11 31

Non-small cell lung cancer 6 8 341 355

Ovarian cancer 16 17 102 135

Pancreatic ductal

adenocarcinomas

20 20 86 126

Prostate cancer 12 11 11 34

Renal cell carcinoma 10 9 9 28

Urothelial carcinoma 10 9 9 28

Total 338 338 1077 1751
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features in the classifier revealed, that five most

enriched pathways were related to hemostasis and coag-

ulation. These results are shown in Fig. S2. To further

highlight the batch effect present in NKI samples, a

heatmap was prepared (Fig. S3) showing that NKI

samples tended to cluster together regardless of the

patient group (NSCLC vs. HC). Since the contamina-

tion was suspected, the expression of hemoglobin was

compared between NKI and non-NKI samples. The

observed hemoglobin expression levels were significantly

higher in NKI samples. Results are presented in

Fig. S4. This investigation showed that NKI samples

might have been exposed to technical processing errors

during the collection process, which has likely caused

severe hemolysis and platelet activation. We excluded

all NKI samples from the final dataset. Eventually, this

bioinformatic processing yielded a data table of 1751

samples with 5349 transcript features each.

2.2. Sample classification

Our study focused on determining the optimal cancer

diagnosis model for multiclass classification scenarios.

We have compared multiple machine learning algo-

rithms, such as logistic regression (LogReg), random

forest (RF), balanced random forest (BalancedRF),

and XGBOOST, and juxtaposed them with the origi-

nal PSO-SVM study [11]. Firstly, we tackled the

pan-cancer diagnosis task, differentiating between

healthy controls and samples from all available cancer

types grouped under one label, ‘Cancer’. In total, 2180

models were trained using train-validation-test data

split from the original study, configured to a specificity

threshold exceeding 99% to account for the larger pro-

portion of healthy individuals within the population

and ensure effective cancer identification for a future

early cancer screening tool.

Secondly, we evaluated the performance of these

algorithms for a multiclass classification task, identify-

ing the tissue-of-origin of five cancer types with a min-

imal number of samples above one hundred to

maintain a reliable sample size for training and

testing purposes: GLIO, HNSCC, NSCLC, OVCAR,

and PDAC. We employed a fivefold stratified

cross-validation [34] approach, training the models on

all available transcript data as features, the 500 most

variable features, and 500 features that scored the

highest importance for each model on their first train-

ing. We reserved 20% of the data for testing and

trained the models using 80% of the data (sampling

based on various random seeds).

We leveraged PYTHON (version = 3.10) packages such

as scikit-learn (1.2.0), xgboost (1.7.6), imblearn (0.11.0),

numpy (1.22.4), and pandas (1.2.4) to construct our

machine learning models and software. We fine-tuned

the models’ hyperparameters with GridSearchCV and

provided a comprehensive list of parameters in the

Table S2. Our testing metrics comprised specificity,

sensitivity, accuracy (based on the initial prediction,

and for the multiclass model, based on the second-

best prediction as well), balanced accuracy, f1 metric,

and AUC (Area Under Curve) ROC (receiver operat-

ing characteristic). The bootstrap method was used

to compute 95% CI (Confidence Interval). Code,

package versions, and models are available at https://

gitlab.com/jopekmaksym/improving-platelet-rna-based-

diagnostics.

3. Results

3.1. Binary classification: pan-cancer algorithm

First, we trained and tested all binary classification

models on the same train-validation-test data split

used in In ’t Veld et al. [11] (with and without the

excluded samples). Next, we compared their perfor-

mance against the previously proposed PSO-SVM

model. When comparing LogReg, RF, BalancedRF

and XGBOOST methods, our investigation revealed

that LogReg (hyperparameters: regularization = 0.1,

penalty = l2, solver = newton-cg, class-weights = bal-

anced) was the top-performing model in terms of sen-

sitivity at 99% specificity, achieving an impressive

detection rate of 68% (64% after the inclusion of the

excluded samples), as opposed to the 63% reached by

In ’t Veld et al. [11]. In all the performed experiments,

XGBOOST was usually the second most sensitive

model, reaching a higher score than LogReg in a few

cases, but this algorithm was also the most dependable

on random seed (the highest standard deviation

between results). The performance of the logistic

regression model compared to other tested machine

learning algorithms is shown in Fig. 1.

Beyond achieving remarkable performance, the Log-

Reg model underscores the critical aspect of the inter-

pretability of the classifier’s predictions. By examining

the significance of coefficients, LogReg facilitates the

evaluation of the relative importance of various predic-

tor variables (transcripts) in delineating the outcome,

whether denoting ‘cancer’ or ‘healthy’. This affords a

nuanced understanding of the particular RNAs that

exert the most significant influence on the model’s pre-

dictive capacity. The exploration of the feature impor-

tance of the cancer detection model has pinpointed the

top five transcripts characterized by their largest

weight on prediction outcomes: FKBP5, TMSB4XP8,

4 Molecular Oncology (2024) ª 2024 The Author(s). Molecular Oncology published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies.
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MTRNR2L12, HBB, and SPDYC. Notably, LogReg

demonstrated unparalleled performance in detecting

BRCA, CHOL, CRC, GLIO, ENDO, HNSSC,

MELA, OVCAR, and PDAC. However, it underper-

formed PSO-SVM in detecting LYM and PRCA.

These findings are visualized in Fig. 2.

Cancer stage-based analysis of the trained models

showed that detecting cancer in its early stages still

remains more challenging than detecting it in more

advanced stages. Nevertheless, here, the LogReg model

emerged as an especially effective method for detecting

PDAC and OVCAR types of cancer, outperforming

other methods by more than 20%. This is especially

valuable given the poor outcomes of these types of

cancer, with possible application for a screening test.

Regrettably, none of the classifiers (including

PSO-SVM) could detect early-stage esophageal (ESO)

cancer. A comprehensive visual representation of

stage-based cancer detection using the LogReg model

is available in Fig. 3.

Detailed performance comparison for pan-cancer

models’ with respect to each stage is shown in Fig. S5

and stage-based comparison is shown in Fig. S6, along

with the detailed results for the most sensitive model

in Table S3.

3.2. Multi-class cancer sample classification

Our next step was to find the most accurate model in

the multiclass classification of samples from five types

of cancer: GLIO, HNSCC, NSCLC, OVCAR, and

PDAC. Comparing the performance of all tested

algorithms, The LogReg algorithm once again proved

to be the most effective approach. It achieved an

impressive 77.65% mean accuracy across all folds in

the first prediction, whereas the previously proposed

method, PSO-SVM, reached 68%. In the second-best

prediction, the LogReg model achieved an accuracy of

93.06%, while the PSO-SVM model reached 85%.

Compared to other tested models, LogReg exhibited

the lowest standard deviation across the folds and ran-

dom seeds compared to other models’ performance,

further indicating its robustness. Upon analyzing

the accuracy of multiclass classification with respect to

the stage of cancer, the results revealed that stage II

cancer was the most challenging to classify and dis-

played the highest standard deviation among folds.

Surprisingly, stage I cancer was the easiest to classify,

scoring 99.9% accuracy in each fold. These findings

are further visualized in Fig. 4. Detailed per-stage per-

formance of the most accurate model is shown in

Table 2. As for the classification of specific cancer

types, GLIO scored the highest overall accuracy of

85%. The second most correctly classified was

NSCLC, but this cancer type also had the highest false

discovery rate. A comprehensive confusion matrix is

shown along the ROC curves in Fig. 5.

Performance comparison for all tested multiclass

models’ is shown as Figs S7 and S8.

3.3. Impact of feature reduction

During our work with cancer detection algorithms and

feature reduction, we have discovered that reducing

0.63

0.465

0.63
0.68

0.551

0.673

0.335

0.232

0.34

0.464

0.314

0.478 0.464

0.313

0.468

PSO-SVM Logistic Regression Balanced 
Random Forest Random Forest XGBOOST

0.00

0.25

0.50

0.75

1.00

Stage Group
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ns

iti
vi

ty

All stages I–II III–IV

Fig. 1. Performance comparison of models across test samples grouped into sets of all samples, early-stage samples (stage I–II), and late

stages (III–IV). PSO-SVM (particle swarm optimized support vector machine) model metrics from the original study were added for

comparison.
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the number of features can boost the models’ perfor-

mance in some cases. Re-training the models on a sub-

set of features that showed the highest impact on the

classifier decision usually improved the accuracy by

approximately 10%. The implementation of this

approach yielded the highest performance improve-

ments for the random forest and balanced random for-

est models. However, despite this advantage, their

predictive scores remained inferior to those of the

other models, namely LogReg, XGBOOST, and PSO-

SVM. The only model that did not take advantage of

the implementation of feature reduction was LogReg.

Contrary to these findings, it was observed that in the

case of multiclass classification, the reduction in fea-

ture count did not exhibit a notable impact on the effi-

cacy of the models. In the majority of instances, the

accuracy only displayed negligible variability of less

than 10%, depending on the feature set. A detailed

comparison is presented in Figs S9 and S10.

4. Discussion

The realm of cancer diagnosis is constantly evolving,

with liquid biopsy emerging as an increasingly valuable

asset. As platelets possess distinctive RNA profiles,

measuring the host response to disease shows promise

in patient management. The pathological alterations

that mirror an individual’s response to illness can be

leveraged by integrating the computational capabilities

of machine learning [16].

Our study delved into the diagnostic efficiency of

various machine learning models, yielding enlightening

findings. In the case of cancer detection, logistic regres-

sion scored 68% sensitivity at 99% specificity thresh-

old on the test set of 931 cancer samples belonging to

17 different types and 146 healthy donor samples, con-

sistently outperforming all other tested models and the

PSO-SVM model previously proposed by [11]. Accord-

ing to our knowledge, this is the highest detection

accuracy result obtained for platelet RNA studies on

such a large set of data. This suggests that while

advanced algorithms such as PSO-SVM offer reason-

able accuracy, traditional models such as logistic

regression can sometimes deliver superior results,

depending on the data’s context and characteristics as

well as on the process of hyperparameter optimization.

Moreover, our methods achieved comparable results

to the model performance described in Cygert et al.,

and the Galleri� test from Grail (branded as a break-

through device by FDA) which is based on cfDNA
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Fig. 2. Sensitivity of the logistic regression model. The class ‘Cancer’ shows the overall performance of the classifier in detecting cancer

(binary classification: ‘Healthy’ vs. ‘Cancer’). The remaining bars show the performance of the classifier across each cancer type separately.

BRCA, breast cancer; CHOL, cholangiocarcinoma; CRC, colorectal cancer; ENDO, endometrial cancer; ESO, esophageal cancer; GLIO,

glioma; HCC, hepatocellular carcinoma; HNSCC, head and neck squamous cell carcinoma; LYM, lymphoma; MELA, melanoma; MM,

multiple myeloma; NSCLC, non-small cell lung cancer; OVCAR, ovarian cancer; PDAC, pancreatic ductal adenocarcinoma; PRCA, prostate

cancer; RCC, renal cell carcinoma; URO, urothelial cancer.
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circulating in blood [5,13]. While Cygert et al. [13]

obtained slightly higher accuracy (89%), our models’

performance can be considered more robust because of

the greater number of samples (343 platelet RNA sam-

ples in the described article) and cancer types (17, as

opposed to 6 in Cygert et al. [13]). Furthermore, we

have obtained significantly higher performance in the

case of healthy donor classification. In contrast,

the Galleri test used by [5] scored only 55% sensitivity

at 99% specificity level, despite the fact that there were

more samples used, namely 1422 cancer cases belong-

ing to above 20 different types and 879 healthy

donors. The recent Pathfinder study aimed to evaluate

methylated cfDNA of cancer patients further, provid-

ing new insights on test applications in real-world

data [35]. Another promising, clinically available

diagnostic test is CancerSEEK reported by Cohen

et al. [6]. The latter platform would combine protein
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Fig. 3. The sensitivity of the logistic regression model across all the cancer types and stages grouped into early stages (stage I–II) and late

stages (III–IV). Cancer types that lack the data for specific stages are tagged as ‘NA’. The class ‘Cancer’ shows the overall performance

across all the cancer types (binary classification ‘Healthy’ vs. ‘Cancer’). BRCA, breast cancer; CHOL, cholangiocarcinoma; CRC, colorectal

cancer; ENDO, endometrial cancer; ESO, esophageal cancer; GLIO, glioma; HCC, hepatocellular carcinoma; HNSCC, head and neck

squamous cell carcinoma; LYM, lymphoma; MELA, melanoma; MM, multiple myeloma; NSCLC, non-small cell lung cancer; OVCAR, ovarian

cancer; PDAC, pancreatic ductal adenocarcinoma; PRCA, prostate cancer; RCC, renal cell carcinoma; URO, urothelial cancer.
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Fig. 4. Detection accuracy for the first prediction and the second

prediction on the test samples across all the cancer stages for

multiclass models, based on five types of cancer. Error bars refer

to the standard deviation acquired from all folds.

Table 2. Performance of the most accurate model (LogReg).

Stages Accuracy [%]

All stages 79.38

Stage I 99.99

Stage II 50.00

Stage III 73.68

Stage IV 86.62

Unknown stage 80.00
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biomarker concentrations and mutations in cfDNA,

reaching a remarkable 70% sensitivity at a 98% speci-

ficity level. However, this test proved limited applica-

bility for the detection of early stages of cancer,

resulting in only 40% sensitivity for stage I patients.

As far as multiclass cancer classification is con-

cerned, our methods achieved remarkable results,

namely 77.65% accuracy in top-1 prediction and

93.06% in top-2 prediction, classifying 806 samples

into five types of cancer. However, we have observed a

sudden drop in models’ performance regarding the

classification of stage II cancer. While the platelet

transcriptome in healthy donors remains relatively sta-

ble, as we have proven before, what we believe hap-

pens is that the RNA profile changes very dynamically

in response to disease, even in the early stages [36].

The platelet pattern is indicative of the current disease

localization. As cancer progresses and spreads, the

clarity of the platelet RNA profile diminishes, resulting

in a decrease in accuracy. Furthermore, cancer-specific

features in transcriptomic platelet profiles of patients

with metastatic disease may be obscured by signals

coming from multiple tumor sites and the systemic

nature of the advanced disease likely introduces addi-

tional noise. To our best knowledge, this model per-

formance surpasses all previous results from the

current literature. Namely in [15] for the classification

of six types of cancer based on 283 samples and 55

healthy donors, top-1 accuracy was equal to 71% and

top-2 accuracy: 89%. Moreover, recent methods from

[11] are also characterized by lower performance than

our approach. Based on the same dataset and the same

types of cancers as in this study, the top-1 accuracy

was equal to 68% and top-2: 85%. This concludes that

our proposed methods achieve the highest performance

on a reliable number of samples.

Addressing the challenge of detecting cancer in its

early stages was evident across all our developed

models. Early detection is crucial for successful cancer

treatment; therefore, the models’ limitations in identi-

fying cancers such as HNSSC and ESO in their early

stages highlight an area that requires further investiga-

tion. However, the effectiveness of logistic regression

in detecting PDAC and OVCAR cancers, which is crit-

ical for the early diagnosis of these cancer types, pre-

sents an opportunity for future screening tests.

Logistic regression and PSO-SVM models demon-

strated high performance on different cancer types,

indicating that they could be used interchangeably to

improve overall cancer detection, depending on the

state of the patient’s health.

A deeper examination of the feature importance

of the cancer detection model has revealed the

top five transcripts at play: FKBP5, TMSB4XP8,

MTRNR2L12, HBB, and SPDYC. All of these genes

were upregulated in cancer patients. Among them, the

FKBP5 is reported to be overexpressed in the primary

tumors of brain cancer, prostate cancer, lymphoma,

head and neck cancer, colorectal cancer, and downre-

gulated in pancreatic cancer [37–39]. FKBP5 is a nega-

tive regulator of the AKT pathway, with potential

implications for response to chemotherapy [39].

Fig. 5. Classification results of the test samples for the most accurate model. (A) Mean, normalized confusion matrix across all the folds

and stages. (B) ROC curve for each analyzed cancer type. GLIO, glioma; HNSCC, head and neck squamous cell carcinoma; NSCLC, non-

small cell lung cancer; OVCAR, ovarian cancer; PDAC, pancreatic ductal adenocarcinoma.
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Furthermore, MTRNR2L12 pseudo-gene, HBB, and

SPDYC were already reported as possible prognostic

markers in breast cancer, where their overexpression in

tumor cells led to unfavorable prognosis [40–43]. The
HBB gene was also proposed as a possible biomarker

by Kurota et al. [44] HBB-positive renal cell carci-

noma patients had a higher recurrence rate and shorter

survival than HBB-negative patients. Importantly, our

investigation revealed a novel cancer disease indicator,

TMSB4XP8, potentially stemming from off-target

overexpression. This pseudogene has no previous evi-

dence of its relation to cancer in the literature, but is

related to TMSB4X, which is associated with tumor

progression, and metastasis, and was proposed as an

NSCLC prognostic biomarker by Yang et al. [45].

Even though pseudogenes are not directly implicated

in cancer progression, they may become transcription-

ally active due to alterations in regulatory elements of

chromatin structure [46]. Although biologically irrele-

vant, their deregulation might be indicative of cancer

and thus be of diagnostic significance.

The technique of feature reduction allowed us to

boost the sensitivity of most of our models, possibly

filtering the unnecessary noise. This change improved

the performance by around 10%, which was especially

observable among the tree-based models as their per-

formance was the lowest. Unfortunately, our methods

of the implementation of feature reduction did not

improve our most sensitive algorithm (LogReg). While

the change in model performance was usually not sig-

nificant, this approach effectively accelerated the algo-

rithm training process. Alternative feature reduction

methods may be better suited for this task.

Although our research provides valuable insights

further improving the current state of early cancer

detection methods, there are some limitations and

future works that need to be further investigated. Our

first concern is data availability. While ML methods

require a huge amount of data, there are not many

available datasets for working with platelet RNA data,

and some of them are provided with limited access

[47]. There is also a need for a well-described bench-

mark dataset for algorithm performance comparison

as it is commonly used in other ML appliances [48,49].

This way even more optimized algorithm could be

found. We also want to acknowledge that while blood

remains one of the most consistently reliable sources

for liquid biopsy-based cancer detection, it may not

always be the optimal choice for certain cancer types.

For example, in urological cancers, urine emerges as a

valuable alternative, offering useful insights at even

lesser invasiveness [18,50–54]. To serve the community,

we open-source our code with the hope that it can

serve as a strong baseline. In addition, we think that

there is still an open ground for the exploration of fea-

ture reduction methods that could not only enhance

the performance of models but also optimize the sam-

ple collection process. Extracting features based on

biological or therapeutic insights would be a valuable

next step in developing a clinic-ready cancer detection

toolkit.

5. Conclusions

Our research underscores the significant potential of

liquid biopsy and platelet RNA profiles in the early

detection and classification of various cancer types. By

leveraging machine learning models, we have demon-

strated that traditional algorithms such as logistic

regression can achieve superior diagnostic performance

compared to more complex models under certain con-

ditions. Our findings highlight the importance of

model selection and hyperparameter optimization in

enhancing diagnostic accuracy. Logistic regression

emerged as the most effective model, achieving a sensi-

tivity of 68% at a 99% specificity threshold, and

77.65% balanced accuracy in multiclass cancer predic-

tion of GLIO, HNSCC, NSCLC, OVCAR, and

PDAC, which is a notable improvement over previ-

ously proposed methods. This suggests that simpler

models, when properly optimized, can sometimes out-

perform advanced algorithms in specific applications.

The identification of key transcripts used in model

decision-making, such as FKBP5, TMSB4XP8,

MTRNR2L12, HBB, and SPDYC in our case, offers

promising biomarkers for future diagnostic applica-

tions. The novel discovery of TMSB4XP8 as a poten-

tial cancer indicator warrants further investigation.

Our approach to feature reduction boosted the cancer

detection performance of all models except our most

sensitive algorithm (LogReg). Other methods might

provide better results. Our research provides a strong

foundation for the development of more accurate and

robust liquid biopsy-based cancer detection tools. By

open-sourcing our code, we aim to facilitate further

advancements in this field, ultimately contributing to

earlier and more reliable cancer diagnosis, which is

crucial for improving patient outcomes.
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