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Abstract

The presence of icosahedral ordering in liquid copper at temperatures close to the melting point is now
well-established both experimentally and through computer simulation. However, a more elaborate analysis
of local icosahedral and icosahedron-like structures, together with a system for classifying such structures
based on some measure of “icosahedrity”, has so far been conspicuously absent in the literature. Similarly,
the dynamics of these structures has not yet received the attention it merits.

We present a new method for structural analysis, which combines Voronoi analysis with bond-orientational
order parameters, and apply it to liquid Cu configurations obtained from tight-binding molecular dynam-
ics at a range of temperatures near the melting point. We introduce a clear system for classifying local
structures according to their degree of similarity to the perfect icosahedron, and show how their energies of
formation correlate with our structural descriptor. We examine the frequencies of occurrence for the classes
of Voronoi polyhedra we distinguish, calculate their lifetimes, and establish the temperature dependence
of these properties. We explore the dynamics of icosahedron-like structures by examining how individual
classes transform between one another. Finally, we perform structural correlation analysis, demonstrating,
among other things, that icosahedra and icosahedron-like structures preferentially connect and show a ten-
dency towards clustering. We believe our approach can be readily applied in studies of icosahedral ordering
in liquid metals or metallic glasses.

Keywords: liquid copper, icosahedral ordering, Voronoi analysis, bond-orientational order parameters,
tight-binding molecular dynamics

1. Introduction

The structure of a liquid is often said to be “random”, but this is not the case. While it is true that
long-range order is absent, atomic positions in a liquid remain significantly correlated in the short-range.
These correlations engender preference for certain structural motifs, which then occur more often, and can
thus be characterized.

The concept of icosahedral ordering, introduced by Frank in 1952 [1], plays a central role in descriptions
of the structure of liquid metallic systems. In his theoretical analyses of small (13-atom) clusters, Frank
recognized that icosahedral clusters have energies that are about 8% lower than for clusters corresponding
to close-packed fcc and hcp structures. He theorized that the presence of icosahedra stabilizes the liquid
structure, which could explain significant undercooling (up to 15-25% of the melting temperature for certain
elements and compounds) that had by then been observed experimentally [2, 3].

It took almost three decades, and major advances in computational methods and capabilities, for Frank’s
hypothesis to be confirmed. In the 1980s the presence of icosahedral ordering has been demonstrated in
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molecular dynamics (MD) simulations for a number of simple model systems, such as monoatomic [4–7] and
binary [7] Lennard-Jones liquids.

Subsequently, owing to progress in diffraction methods, Frank’s hypothesis was also confirmed on ex-
perimental grounds. In 2002, through neutron scattering and electromagnetic levitation, Schenk et al. [8]
detected icosahedral ordering in significantly undercooled liquid metals such as Ni, Fe and Zr. A year later
Di Cicco and coworkers, using X-ray absorption spectroscopy together with reverse Monte Carlo, convinc-
ingly demonstrated that icosahedral ordering is also present in undercooled liquid Cu, and in liquid Cu
above the melting point [9].

Liquid copper has been a subject of computational studies since the late 1980s. Initial research focused on
assessing the quality of description yielded by available interaction models: effective pair potential [10, 11],
embedded atom method (EAM) [12–17], density functional theory (DFT) [18]. Encouragingly, it turned
out to be possible to obtain a credible description of the liquid Cu system, with reasonable agreement
with experiment for crucial structural properties (structure factor [11, 12], pair correlation function [11, 13,
15, 16, 18]), thermodynamical properties (specific heat [11, 14, 16], melting temperature [10, 13, 15, 16],
coefficient of thermal expansion [13, 14, 16], Gibbs free energy [10, 15]), and transport properties (self-
diffusion coefficient [11, 13, 17, 18], viscosity coefficient [11, 17]).

Following the experimental discovery of Di Cicco et al. [9] subsequent computational studies of liquid
copper mostly focused on icosahedral ordering. Later work by Di Cicco and his coworkers [19–21], together
with a paper by Ganesh and Widom [22], further strengthened the initial experimental findings of Ref. [9],
demonstrating (this time on computational grounds), that icosahedral ordering is indeed present in liquid
and undercooled-liquid copper.

The quantitative characterization of icosahedral ordering undertaken in Refs. [19–22] yielded results in
good agreement with the experimental estimate of Ref. [9] that predicted icosahedron-like structures to
comprise up to 10% of all structural units in liquid Cu. The analysis of energetics carried out in Ref. [20]
demonstrated that the presence of icosahedra – both perfect and defected – indeed stabilizes the structure
of liquid copper, hindering crystallization, which directly confirmed Frank’s hypothesis.

While the above-mentioned papers provided strong evidence for the presence of icosahedral ordering in
liquid Cu, a more elaborate analysis of its structural details is still missing in the literature. In particular,
no papers set out to identify or classify the types of icosahedral and icosahedron-like structures, or to
quantify their degree of what we shall term “icosahedrity”, i.e., how similar a given local structure is to a
perfect icosahedron. Introducing such classification would enable a better understanding of the roles played
by individual local structures in the global picture of icosahedral ordering, helping to elucidate how the
specifics of these local structures translate into the properties of the system under study.

In this work we tackle the above problem, setting out to perform an elaborate characterization of icosa-
hedral ordering in liquid copper, continuing and extending the research lines established in Refs. [9, 19–22].

This paper is organized as follows. In Sec. 2 we describe the protocol we followed in our tight-binding
molecular dynamics (TB-MD) simulations of liquid copper. Sec. 3 presents the new approach for structural
analysis that we developed for the purposes of this work. This approach successfully combines two commonly
used methods – Voronoi analysis [23] and the bond-orientational order parameters method [4, 5]. Section 4 is
devoted to results. We begin with a glance at mean structural measures, ensuring that the overall structural
picture of liquid Cu obtained from our simulations is consistent with the experimental picture of Ref. [9] and
first-principles calculations of Ref. [22]. We then present the results of our elaborate analysis of icosahedral
ordering, first clearly identifying structures that comprise it in liquid Cu, then, by examining their lifetimes
and the transformations they undergo, we establish the roles they play in the dynamical structural picture
of this system. We finish with a characterization of medium-range order, ascertaining that icosahedron-like
structures in liquid Cu display a tendency to cluster that is often observed in other systems. Sec. 5 contains
discussion. We confront our picture of ordering in liquid Cu with the recent results for liquid Fe due to
Pan et al. [24], followed by a short critique of common neighbor analysis, a method sometimes used to study
icosahedral ordering. Sec. 6 presents brief conclusions.
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2. Computational details

All simulations in this work were carried out using tight-binding molecular dynamics (TB-MD). Tight-
binding (TB) approaches provide a qualitative description of electronic effects that can be viewed as a
stationary approximation to self-consistent density functional theory (DFT) [25]. The Born-Oppenheimer
approximation is invoked to move the classically treated atomic ions in response to Hellmann-Feynman
forces obtained following a diagonalization of the electronic Hamiltonian. Pulay contributions [26] to forces
are absent (vanish identically) [27] in this approach.

The Naval Research Laboratory total energy tight-binding formulation [28–34] (NRL TB) was used.
NRL TB is a non-orthogonal, non-charge-self-consistent, two-center variant of tight binding. Its distin-
guishing feature is that the diagonal on-site terms in the tight-binding Hamiltonian are not constants, but
instead depend on the atom’s generalized local density [35]. This improves transferability and eliminates
what is known as a residual energy term [25, 36] from the total energy expression. For Cu in particular the
numerical accuracy of forces and energies obtained from NRL TB was shown to compare favorably against
plane-wave DFT [37, 38], including for phases not included in the fit, which is a testament to the method’s
transferability. While a generalized diagonalization of the Hamiltonian is necessary to compute TB energies
and forces, making the method cubic-scaling, its computational simplicity translates into a performance gain
of 2-3 orders of magnitude compared to DFT calculations [35], enabling dynamical calculations on hundreds
of atoms over a picosecond time scale.

We sampled a range of temperatures between 1300 K and 1900 K in increments of 100 K (the experimental
melting point of bulk Cu being 1358 K). Each system comprised 500 atoms, arranged in an fcc lattice with
densities corresponding to experimental values for liquid Cu taken from Ref. [39]. Interactions were cut off
smoothly at rcut = 12.5 a0 (a0 being the Bohr radius). Details of the NRL TB cutoff function can be found
in Ref. [40]. To improve sampling, seven independent runs with different initial velocities were performed for
each of the temperatures, and all results reported in this work are averages over these runs. Simulations were
carried out in the NV T ensemble with the temperature controlled using a Nosé-Hoover [41–43] thermostat.
Internal pressures were monitored and found not to exceed 10GPa, and average temperatures were within
4K from desired values for each run. A time step of ∆t = 0.5 fs was used. Equations of motion were
integrated using a Gear predictor-corrector [44] method. Each simulation began with an equilibration stage,
where velocity scaling was employed for the first 1000 steps, followed by 4000 steps of thermostatting.
Production calculations ran for 10000 steps (5 ps). While our timescales were necessarily limited, the use of
seven independent runs greatly improves sampling and enables rudimentary error estimates.

3. Structural analysis

A number of methods are commonly employed in structural analysis of disordered systems. One com-
monly used approach is Voronoi analysis [23] (examples of use in Refs. [24, 45–53]). Other typical choices
include bond-orientational order parameters [4, 5] (BOPs) (examples in Refs. [9, 19, 20, 22, 48, 54]), the
Honeycutt-Andersen index [55] (HA) (examples of use can be found in Refs. [22, 45, 48, 56–59]), and its
extension, common-neighbor analysis [60, 61] (CNA) (examples of use in Refs. [20, 21]).

3.1. Voronoi analysis

The Voronoi method [23] gives means for analyzing short-range order (SRO). It begins by constructing
a Voronoi diagram, whereby coordination polyhedra defined by bisector planes are determined for all parti-
cles. Local ordering is inferred from geometrical properties of the obtained polyhedra. To this effect each
polyhedron (corresponding to particle i) is assigned a signature, which is a vector (f3(i), f4(i), f5(i), f6(i)),
where fe(i) denotes the number of faces with e edges. The type of packing is deduced by comparing ob-
tained signatures against reference signatures, such as (0, 12, 0, 0) for fcc packing or (0, 0, 12, 0) for a perfect
icosahedron.

When applied to liquid systems, Voronoi analysis runs into difficulties. The disorder is mirrored in the
Voronoi diagram, leading to polyhedra with considerably different signatures. Further complications arise
due to the thermal motions of the atoms, which bring about polyhedra with a multitude of small faces and
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short edges. Both of these issues hinder analysis, with typical (raw, unprocessed) Voronoi diagrams often
spanning thousands of different signatures.

Methods for working around the aforementioned difficulties, at least to a degree, have been proposed.
Small faces are commonly filtered out from the polyhedra [62, 63], with the criterion for elimination being
the ratio of the area of the face to its average value (in the same polyhedron or in the entire diagram).
Although such filtering helps with interpretation, it needs to be undertaken carefully, as overzealous filtering
distorts the picture.

Intepretational difficulties plaguing liquid systems can, in principle, be countered differently, through a
determination of so-called inherent structures [64, 65]. In this approach energy minimization is performed
individually for each snapshot obtained from a simulation, and structural analysis is performed for local
potential energy minima thusly identified. In this way the distortions due to thermal motions can be filtered
out from the diagram, elucidating basic structural motifs present in the liquid.

Unfortunately, energy minimization of liquid structures often runs into practical difficulties related to
the fact that their potential energy surface is fraught with multiple minima. This problem is even seen
in liquid systems described by simple pair potentials [64]. Moreover, as demonstrated in Ref. [64] the
resultant structural picture is sensitive to the method used for minimizing the energy. For more complex and
computationally demanding descriptions of interactions, such as tight binding, obtaining inherent structures
becomes infeasible.

It is worth pointing out that a new approach has recently been proposed for addressing the difficulties
resulting from large thermal motions. The polyhedral template matching (PTM) [66] method simultaneously
uses a Voronoi tesselation and a (dual) Delaunay triangulation to effectively classify local structures, even
at temperatures slightly below the melting temperature. However, there are no mentions to date of this
approach being used for elaborate analysis of the structure of liquid systems. We believe this stems from
the fact that the use of PTM necessitates specifying the sought reference structures, which may prove
problematic for liquids, owing to the multiplicity, diversity and irregularity of local structures present in
them.

Being able to capture the information on the topology of coordination in a compact signature
(f3(i), f4(i), f5(i), f6(i)) is an advantage of Voronoi analysis. This very compactness, however, can also
be seen as a disadvantage – the signature is missing substantial information on the symmetries of the poly-
hedron it describes. For instance, it is possible that the shapes of two polyhedra with the same signature
differ markedly. With this in mind, it is prudent to augment Voronoi analysis with a technique that is
sensitive to symmetries.

3.2. Bond-orientational order parameters

Bond-orientational order parameters (BOPs) were proposed by Steinhardt et al. in 1981-1983, initially for
studying orientational order in liquids and glasses [4, 5]. Over the years the BOP method gained popularity
and today it is a staple tool in structural analysis of condensed matter. It is used for characterizing solids [67–
69], liquids [9, 19, 20, 22, 48, 54, 69], and for studying crystallization [70–72] and melting [73–75].

Within the BOP framework short-range order is studied by calculating two real-valued parameters Ql(i)
and Ŵl(i) for every particle i. First, the set of nearest neighbors B(i) (with a cardinality NB(i)), i.e., the
set of all atoms j 6= i, where rij ≤ rc, is determined for each particle. In so doing, bonds rij = rj − ri,
where j ∈ B(i), and ri is the position of atom i, are determined. The bonds are then projected onto the unit
sphere, yielding spherical coordinates θ(rij), φ(rij). Subsequently, for each bond rij a vector of complex
spherical harmonics Y m

l (θ(rij), φ(rij)) is calculated for a chosen l, with m = −l, . . . , l, and 2l+1 parameters
Ql,m(i) are obtained. These are defined as an average over bonds, i.e.,

Ql,m(i) =
1

NB(i)

∑

j∈B(i)

Y m
l (θ(rij), φ(rij)). (1)
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Finally, parameters Ql(i) and Ŵl(i) are obtained as

Ql(i) =

(

4π

2l + 1

l
∑

m=−l

|Ql,m(i)|2
)1/2

, (2)

and

Ŵl(i) = Wl(i)×

(

l
∑

m=−l

|Ql,m(i)|
2

)3/2

, (3)

where

Wl(i) =
∑

m1,m2,m3

m1+m2+m3=0

(

l l l
m1 m2 m3

)

(4)

×Ql,m1
(i) Ql,m2

(i) Ql,m3
(i),

and
(

l1 l2 l3
m1 m2 m3

)

(5)

is the Wigner 3j symbol. Equipped with the values of Ql(i) and Ŵl(i) ordering can be studied by comparing
them against reference values. Values calculated for common ideal structures are shown in Table 1.

Structure Parameter

Q4 Q6 Ŵ4 Ŵ6

sc 0.76376 0.35355 0.15932 0.01316
bcc 0.03637 0.51069 0.15932 0.01316
fcc 0.19094 0.57452 −0.15932 −0.01316
hcp 0.09722 0.48476 0.13410 −0.01244
icos 0 0.66332 0 −0.16975

Table 1: Values of BOP parameters for typical ideal structures.

Bond-orientational order parameters are sensitive to symmetries. Using Ql and Ŵl it is possible to
distinguish structures differing by the number of l-fold axes of symmetry. In practical applications parameters
with l = 4 and 6 are used most commonly, as they allow differentiating between most common packing types:
sc, bcc, fcc and hcp. The BOP approach proves particularly useful for studying icosahedral ordering, as
Ŵ6 is sensitive to structural features of icosahedra, a consequence of the fact that for a perfect icosahedron,
characterized by five-fold symmetry, Ŵ6 assumes a negative value of −0.16975, significantly different from
values typical for cubic structures, which are close to zero (for sc and bcc Ŵ6 = 0.01316, for fcc Ŵ6 =
−0.01315). This advantage of Ŵ6 has been repeatedly exploited in studies of icosahedral ordering [9, 19,
20, 22, 48, 54].

The BOP technique also runs into difficulties for liquid systems. Here they stem from the fact that BOPs
are based on the concept of nearest neighbors. It has recently been shown [76] that the obtained picture of
the short-range order in a liquid is sensitive to the operative definition of nearest neighbor, and the use of
the original formulation due to Steinhardt et al. [4, 5] (using a distance-based cutoff rc) can overshadow the
structural changes induced by the physics of a liquid system.

In Ref. [76] Mickel et al. not only highlighted the limitations of BOP, but also proposed a novel formu-
lation, free from the arbitrariness of choosing a cutoff distance. This formulation invokes Voronoi analysis,
defining common neighbors as two atoms sharing a face in a Voronoi diagram, leading to the following
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definition of an analog to Ql(i):

Q′
l(i) =

(

4π

2l+ 1

l
∑

m=−l

∣

∣Q′
l,m(i)

∣

∣

2

)1/2

, (6)

where

Q′
l,m(i) =

∑

f∈V(i)

a(i, f)

A(i)
Y m
l (θf (i), φf (i)). (7)

In the above V(i) denotes the Voronoi polyhedron of particle i. The index f runs over all faces of the
polyhedron V(i). The surface area of face f is denoted with a(i, f), and A(i) is the total surface area of the
polyhedron V(i), i.e., A(i) =

∑

f∈V(i) a(i, f). Angles θf (i) and φf (i) are the spherical angles of the outer
normal vector of facet f . The direction of this vector coincides with the bond vector rij that is used in
conventional bond-orientational order analysis.

We will use the prime symbol appearing first in Eqs. (6)-(7) to distinguish BOPs obtained using Mickel’s
defintion from those obtained from Steinhardt’s formulation (Eqs. (1)-(5)). While the expression for Q′

l(i)
(Eq. (6)) is the same as that for Ql(i) (Eq. (2)), we note that Q′

l,m(i) (Eq. (7)) is defined considerably
differently from Ql,m(i) (Eq. (1)). Not only does Mickel’s formulation differ by the approach to defining the
set of nearest neighbors (using Voronoi polyhedra and geometrical neighbors), but the contributions from
each face f (nearest neighbor j) are weighted by the ratio of the surface area of the face a(i, f) to the total
surface area of the polyhedron A(i). This attenuates the contributions to Q′

l,m(i) due to spurious neighbors
caused by thermal fluctuations, while not appreciably affecting Q′

l(i), making the approach considerably
advantageous for studying liquid structure. An additional benefit of using a Voronoi-based definition of
neighborhood is that the obtained parameters become continuous functions of atomic positions.

In Ref. [76] Mickel et al. did not define Ŵ ′
l which would correspond to Steinhardt’s Ŵl (Eq. (3)).

Following their line of reasoning, in this work we propose to define it as

Ŵ ′
l (i) = W ′

l (i)×

(

l
∑

m=−l

∣

∣Q′
l,m(i)

∣

∣

2

)3/2

, (8)

where

W ′
l (i) =

∑

m1,m2,m3

m1+m2+m3=0

(

l l l
m1 m2 m3

)

(9)

×Q′
l,m1

(i) Q′
l,m2

(i) Q′
l,m3

(i),

and with the quantities Q′
l,m(i) given by Eq. (7). Similarly to Ŵl, the parameters Ŵ ′

l remain rotationally
invariant.

In the case of perfect sc, fcc, hcp and icos structures the values of parameters obtained using Mickel’s
formulation are identical to those obtained using the original formulation due to Steinhardt. This is a
consequence of the fact that for each of these structures all faces of the Voronoi polyhedron have the same
surface area. This is in contrast to the bcc structure, for which the values obtained using Mickel’s formulation
differ from those given in Table 1, and assume instead the following values: Q′

4 = 0.22402, Q′
6 = 0.56694,

Ŵ ′
4 = −0.15932, Ŵ ′

6 = 0.01316.
In both formulations the parameter Ŵ ′

6 assumes a highly negative value for the icosahedral structure, en-
abling the detection of icosahedral and icosahedron-like structures, which makes it highly useful for studying
icosahedral ordering in liquids.

3.3. Novel approach

In this work we present a novel approach to the structural analysis of disordered systems, geared towards
liquid metal systems and identification of icosahedral ordering. The proposed approach is a hybrid of the
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Voronoi and BOP approaches, with local ordering in the vicinity of particle i is described using a pair of
descriptors: the Voronoi signature (f3(i), f4(i), f5(i), f6(i)) and the Ŵ ′

6(i) parameter. The use of a Voronoi
signature is aimed at extracting information on topological features of the nearest neighborhood. The use
Ŵ ′

6 augments analysis by assessing those features that are not captured in a Voronoi signature – it enables
distinguishing polyhedra that have the same signature but differ with regard to shape. In particular Ŵ ′

6 can
be used to quantify the degree of icosahedrity of a particle’s nearest neighborhood.

Since the proposed approach is aimed at liquid systems, following the determination of V(i) for each
particle we proceed by eliminating small faces from the Voronoi polyhedra. We use a simple criterion, where
a face f is eliminated if its surface area a(i, f) is below a given thershold, i.e.:

α(i, f) =
a(i, f)

(

1/NV(i)

)

A(i)
< αsf , (10)

where NV(i) is the number of faces in polyhedron V(i). The above procedure eliminates faces whose area is
below a fraction αsf of the mean face area in the original polyhedron V(i). Details on the choice of αsf will
be given later.

The result of face elimination is a polyhedron V ′(i), with NV′(i) faces and a signature
(f ′

3(i), f
′
4(i), f

′
5(i), f

′
6(i)). We will use a convention where the prime symbol is used to distinguished “cleaned”

polyhedra from the original polyhedra. Face elimination is only performed once for every particle i, i.e.,
V ′(i) does not undergo further clean up. We also note that the polyhedra are cleaned up independently
– the fact that two particles i and j shared a face in the original diagram does not in general mean that
they will share a face in the cleaned up diagram, for instance it may happen that the face due to j will be
removed from V(i), while the face due to i will be retained in V(j). The goal here is filter the features that
are not relevant to the topological analysis of a given polyhedron. The elimination can be seen as a map
V(i) → V ′(i), employed only to facilitate the analysis of the signature (f3(i), f4(i), f5(i), f6(i)) by mapping
it to (f ′

3(i), f
′
4(i), f

′
5(i), f

′
6(i)), whose signature is expected to be easier to interpret.

We stress that the above formulation is unique – the result of face elimination is independent on the
order in which polyhedra, or faces within a given polyhedron, are processed. The criterion (10) is local –
only the ratio between the area of a face to the mean area of the polyhedron is considered.

The signature (f ′
3(i), f

′
4(i), f

′
5(i), f

′
6(i)) is subsequently augmented with a descriptor of symmetries in the

nearest neighborhood of the particle, i.e., the parameters Ŵ ′
6(i) determined based on V(i) and a(i, f). We

note that Eq. (7) uses contributions from V(i), and not the cleaned-up polyhedron V ′(i). This is because
face elimination is only performed to clean up the structure in the space of Voronoi signatures. The use of
V ′(i) would be counter-productive, as the parameters Ŵ ′

6(i) are not sensitive to the presence of small faces,
and, furthermore, the use of V ′(i) would yield BOP parameters that would not be continuous in the atomic
positions.

A naive implementation of such a double-pronged approach would be computationally expensive. The
work of Stukowski [77], where commonly used approaches to structural analysis are compared with regard to
their computational effort, assigns a cost of 100 to BOP, and 50 to Voronoi analysis, while simple approaches
like the centrosymmetry parameter and CNA are assigned a cost of 1 and 3, respectively. In practice the cost
can be severely mitigated through the use of of a highly-efficient library Voro++ [78] for Voronoi tesselation
and recently proposed [79] fast simultaneous interpolation (FSI) to the determination of BOP. The latter
technique can dramatically (up to 50-fold) reduce the effort associated with the determination of BOP [79].
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4. Results

4.1. Averaged structural features

We begin the analysis with a comparison of averaged structural features. Fig. 1a shows the pair corre-
lation functions g2(r) obtained from simulation, which we compare against results obtained through X-ray
absorption spectroscopy postprocessed by reverse Monte Carlo technique (RMC-XAS) by Di Cicco et al. [9]
and against DFT-MD results due to Ganesh et al. [22]. We find all three approaches to be in very good
agreement for the first peak and to agree satisfactorily in the longer range.

Angular distribution functions g3(θ) (Fig. 1b) also compare favorably between results obtained in this
work and the results of Di Cicco et al. and Ganesh et al.. For each of the three temperatures the shapes of
g3(θ) curves are similar, with the positions and heights of the two main maxima and the minimum arount
90◦ in good agreement.
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Figure 1: Pair correlation functions g2(r) (panel a), angular distribution functions g3(θ) (panel b), and distributions of the
parameter Ŵ6 (panel c) for temperatures of 1300, 1400 and 1600 K. Curves labeled TB-MD correspond to this work, DFT-MD
are the results of Ganesh et al. [22], RMC-XAS are due to Di Cicco et al. [9]. While Refs [22] and [9] studied liquid Cu at
slightly different temperatures, those did not differ by more than 23 K from those used in this work. Curves labeled EAM-MD
(panels b and c) are the results of Ref. [20] obtained from MD simulations using an embedded atom model (EAM) potential,
but they can be interpreted as experimental, as Ref. [20] demonstrates their excellent agreement with RMC-XAS reults of
Ref. [9]. TB-MD results in panels (b) and (c) are shown twice, once with a cut-off radius used by Celino et al. (3.0 Å, black),
and once with a cut-off radius used by Ganesh et al. (3.5 Å, blue), and so the curves are meant to be compared in pairs (green
vs. black and red vs. blue). The distributions of Ŵ6 in panel (c) used Steinhardt’s definition, which is why a cut-off radius
had to be chosen.
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The symmetries present in the structure (Fig. 1c) revealed by the distributions of Ŵ6 are also in good
agreement between our results and those of Di Cicco et al.. Crucially, the good agreement for low values of Ŵ6

indicates that the obtained structure is characterized by similar degree of icosahedral ordering. Quantitative
comparison with the results of Ganesh et al. is made difficult by the stepwise character of results published
in Ref. [22], but qualitative agreement is good.

The above demonstrates that NRL TB-MD yields structures whose short-range features (interatomic
distances and angles, symmetries) agree very well with experimental results of Di Cicco et al. [9] and the
results of Ganesh et al. [22] obtained at a more expensive level of theory (DFT-MD). The vastly lower
computational effort of TB-MD enabled us to significantly increase the length- and time-scales of the simu-
lation (by a factor of 5, and by more than 30-fold, respecitvely). This increase in the accessible time-scale
in particular permits a better understanding of not only the structure, but its dynamics, as we will now
demonstrate.

4.2. Parameters of the analysis

We began by calculating the descriptors (f ′
3(i), f

′
4(i), f

′
5(i), f

′
6(i)) and Ŵ ′

6(i) for each particle in each time
step, for each of the temperatures. Small faces were eliminated from the Voronoi polyhedra using a uniform
value of αsf = 0.075, chosen based on numerical experiments, where the influence of the value of αsf on the
obtained structure in the space of Voronoi signatures was ascertained.

Fig. 2 presents the distribution of α(i, f) for three temperatures and will serve to justify our choice.
All three distributions are similar, with a bimodal character. The two peaks reflect the higher incidence of
apparent (undesired) small faces and significantly larger faces of interest. The overlap of the two classes
is, unfortunately, significant, and the fact that the intervening minimum does not reach zero implies that
they cannot be separated perfectly. Moreover, a seemingly intuitive choice of the minimum around 0.5 as a
cut-off would result in the elimination of a significant fraction of “valid” faces due to the long tail extending
to the left of the second peak. We thus choose a conservative value of αsf that is close to the first maximum
in order to remove the worst offenders without obscuring the interesting features of the diagram. In the
Appendix we present additional arguments supporting our choice of αsf = 0.075, showing that it leads to
the elimination of only undesired, excessively small faces.

Even such conservative elimination (αsf = 0.075) greatly facilitates further analysis. For instance, for T =
1300 K the raw Voronoi diagram comprises almost 3000 distinct polyhedra signatures (f3, f4, f5, f6, f7, . . .),
with only about 25% belonging to the easily-interpreted class (0, f4, f5, f6, 0, . . .) (i.e., containing only tetra-,
penta- and hexagonal faces). Following elimination this is reduced to only 1200 distinct signatures, with
the ratio of easily-interpreted signatures as high as 60%. This fraction is composed of almost 60 distinct
polyhedra types, but only 17 of these occur with a frequency exceeding 1%. It is these polyhedra – with
easy to interpret signatures and significant occurence – that will be the focus of this work.
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Figure 2: Distribution of face surface areas. The dashed vertical line indicates the chosen elimination cut-off αsf = 0.075.
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In particular, we will concern ourselves with polyhedra with the following signatures: (0, 0, 12, 0) (corre-
sponding to icosahedra); (1, 0, 9, 3), (0, 1, 10, 2) and (0, 2, 8, 2) (commonly accepted to be icosahedron-like);
(0, 1, 10, 3), (0, 2, 8, 1), (0, 2, 8, 3) and (0, 2, 8, 4). Apart from the above 8 signatures, we will also focus on
(0, 3, 6, 2), (0, 3, 6, 3), (0, 3, 6, 4) and (0, 3, 6, 5); (0, 4, 4, 3), (0, 4, 4, 4), (0, 4, 4, 5) and (0, 4, 4, 6). As will be
demonstrated later, these too constitute major structural motifs of liquid Cu. All remaining polyhedra
will be lumped together as “other polyhedra”. While the above simplification (from over 1200 to only 16
signatures) may seem drastic, we point out that at 1300 K the above 16 signatures still account for over
50% of all observed polyhedra.

4.3. Degree of icosahedrity

We will now focus on the degree of icosahedrity of structural motifs found in liquid Cu, using the
parameter Ŵ ′

6 as a main tool sensitive to icosahedral order.
Fig. 3 shows the distribution of Ŵ ′

6 for T = 1300 K for a number of polyhedra types, focusing on
polyhedra with 12 faces and 13-faced polyhedra with a signature (0, 1, 10, 2). Also shown is a distribution
for “other polyhedra”, and a total distribution serving as a baseline.
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Figure 3: Distributions of Ŵ ′
6

at T = 1300 K for selected types of polyhedra, “other polyhedra” and the total distribution.
The dashed vertical line corresponds to Ŵ ′

6
= −0.169754 (perfect icosahedron).

Polyhedra with a signature of (0, 0, 12, 0) display highly negative values of Ŵ ′
6, with a mean value of

−0.109, which is an indicator of a high degree of icosahedrity. Even with the long tail of the distribution
(extending as far as beyond zero), its large positive skewness is a testament to the presence of marked five-
fold orientational order in (0, 0, 12, 0) polyhedra. The situation is similar for (0, 1, 10, 2) polyhedra, which
we recognize as highly icosahedron-like due to the low mean value of Ŵ ′

6 (−0.080) and marked positive
skewness.

In the case of (0, 2, 8, 2) polyhedra the positive skewness is less manifest; nevertheless negative values of
Ŵ ′

6 still dominate (mean value of −0.066), suggesting that these polyhedra are largely icosahedron-like, more
so than (0, 3, 6, 3) and (0, 4, 4, 4) polyhedra for which mean Ŵ ′

6 is −0.035, and other polyhedra, with a mean
of −0.038. The mean over all polyhedra was −0.044, indicating that the degree of icosahedrity of (0, 3, 6, 3)
and (0, 4, 4, 4) polyhedra, and of other polyhedra is below the mean value. This is confirmed through visual
inspection of the distributions – the total distribution is located to the left of the distributions corresponding
to (0, 3, 6, 3), (0, 4, 4, 4) and other polyhedra.

To extend the above analysis we will examine the statistical moments of Ŵ ′
6: its mean, µ(Ŵ ′

6); standard
deviation, σ(Ŵ ′

6); and Pearson’s coefficient of skewness, γ(Ŵ ′
6). The values computed for all 16 types

of polyhedra under consideration, together with values for other polyhedra and all polyhedra are shown
in Fig. 4. Each polyhedron type is represented by a point on the µ(Ŵ ′

6)-γ(Ŵ
′
6) plane, and the standard

deviation σ(Ŵ ′
6) is shown as an error bar on the horizontal axis. This representation facilitates the assessment

of icosahedrity – points close to the top-left corner correspond to polyhedra with the largest degrees of
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(b) 1900 K

(0, 0, 12, 0)
(1, 0, 9, 3)

(0, 1, 10, 2)
(0, 1, 10, 3)
(0, 2, 8, 1)
(0, 2, 8, 2)
(0, 2, 8, 3)
(0, 2, 8, 4)
(0, 3, 6, 2)
(0, 3, 6, 3)
(0, 3, 6, 4)
(0, 3, 6, 5)
(0, 4, 4, 3)
(0, 4, 4, 4)
(0, 4, 4, 5)
(0, 4, 4, 6)

other
all

Figure 4: Degree of icosahedrity of considered polyhedra types. To facilitate analysis, polyhedra belonging to the same group
(see text) were denoted by the same colors.

icosahedrity (highly negative µ(Ŵ ′
6), large magnitude of γ(Ŵ ′

6) indicating large positive skewness), and
conversely points located close to the bottom-right corner are characterized by a low degree of icosahedrity.

Fig. 4 makes it clear that highly icosahedral structures are (0, 0, 12, 0), followed by (1, 0, 9, 3) and
(0, 1, 10, 2). A second, markedly distinct group of polyhedra that significantly resemble icosahedra are
(0, 1, 10, 3), (0, 2, 8, 1), (0, 2, 8, 2), (0, 2, 8, 3) and (0, 2, 8, 4). Polyhedra with lower degrees of icosahedrity
are (0, 3, 6, 2), (0, 3, 6, 3), (0, 3, 6, 4), (0, 3, 6, 5), and (0, 4, 4, 3), (0, 4, 4, 4), (0, 4, 4, 5), (0, 4, 4, 6), and other
polyhedra.

The above observations hold for the entire range of temperatures studied here, which can be inferred by
comparing panels corresponding to the lowest and higher temperatures. While the increase in temperature
results in a reduction in icosahedrity, the qualitative differences between groups of polyhedra remains even
at 1900 K.

To facilitate further discussion, we will now classify the polyhedra into six groups: I,J ,K,L,M and O,
corresponding to groupings in the µ(Ŵ ′

6)-γ(Ŵ
′
6) plane. The group I will be composed solely of (0, 0, 12, 0)

polyhedra, whose icosahedrity is highest. The group J will encompass highly-icosahedron-like polyhe-
dra (1, 0, 9, 3) and (0, 1, 10, 2). Moderately icosahedron-like polyhedra (0, 1, 10, 3), (0, 2, 8, 1), (0, 2, 8, 2),
(0, 2, 8, 3) and (0, 2, 8, 4) will be classified as K. Polyhedra that are not measurably icosahedron-like, i.e., are
characterized by a degree of icosahedrity that is below mean or comparable to mean will be classified as
L ( (0, 3, 6, 2), (0, 3, 6, 2), (0, 3, 6, 4) and (0, 3, 6, 5)) or M ((0, 4, 4, 3), (0, 4, 4, 4), (0, 4, 4, 5) and (0, 4, 4, 6)).
The final group O will encompass other polyhedra. The degree of icosahedrity is not the sole criterion for
the above classification – we note in passing that each group comprises polyhedra with similar signatures,
typically differing only with regard to the number of hexagonal faces.

The above analysis based on the Ŵ ′
6 parameter markedly facilitates structural interpretation, but is

limited by its static nature that cannot reveal the dynamics of structural transformations taking place in
liquid Cu in time or with changes in temperature. We will elucidate these in the text that follows.

4.4. Frequencies of occurrence

We begin by examining how the structure is affected by temperature. Fig. 5 presents the histograms for
the frequencies n with which the 16 considered types of polyhedra occur, for three temperatures: 1300 K,
1600 K and 1900 K. Except for signatures (0, 3, 6, 2) and (0, 4, 4, 3), for all polyhedra types the frequency with
which they occur increases with a decrease in temperature. This effect is most pronounced for (0, 0, 12, 0)
polyhedra, which occur more frequently by a factor of n(1300 K)/n(1900 K) = 2.5 at the lowest temperature.

A similar, but slightly less pronounced effect is observed for the most icosahedron-like signatures – the
same ratio is ≈ 2 for (1, 0, 9, 3) and ≈ 1.8 for (0, 1, 10, 2). Similarly, a large value is obtained for (0, 1, 10, 3)
polyhedra (n(1300 K)/n(1900 K) = 1.9). For the remaining polyhedra in K (with the sole exception of
(0, 2, 8, 1)) we obtained values of n(1300 K)/n(1900 K) in the range 1.5− 1.7.
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Figure 5: Frequencies of occurrence of each Voronoi polyhedra.

The above indicates that at temperatures close to the melting temperature icosahedral ordering is
more strongly favored, as for the remaining polyhedra the relative increases in the frequencies of occur-
rence were much smaller, typically below 1.1 (two exceptions were (0, 3, 6, 4) and (0, 3, 6, 5), for which
n(1300 K)/n(1900 K) ≈ 1.4). At 1300 K polyhedra with large degrees of icosahedrity constitute almost 24%
of all polyhedra, with K being the most abudant (17.6% of total), followed by J (4.3% of total).

In Fig. 6 we plot five representative dependencies n(T ). We find each of these to be well-represented by
the Arrhenius equation

n(T ) = n∞ exp

(

−
Ef

kBT

)

, (11)

corresponding to straight lines in Fig. 6. The relevant parameters are given in Table 2.
Of particular interest is the parameter Ef , which can be understood as a mean energy of formation of a

given structural motif surrounded by a thermodynamically average embedding. Negative values correspond
to increased stability of a particular motif.

Fig. 7 shows the correlation between Ef and µ(Ŵ ′
6) (for 1300 K). The two parameters are seen to correlate

strongly – structures with highly negative Ŵ ′
6 have the lowest (most negative) energies of formation, down

to −0.3 eV for icosahedra (0, 0, 12, 0) and −0.25 and −0.2 eV for icosahedron-like signatures (0, 1, 10, 2)
and (1, 0, 9, 3). Further on, for moderately icosahedron-like polyhedra in K the energies of formation are
between −0.2 and −0.05 eV, and as such are lower than the reference value of Ef = 0 corresponding to the
thermodynamically mean structural motif. Interestingly, even some polyhedra from L and M can achieve
negative energies of formation, but with modest magnitudes, typically not exceeding −0.1 eV. The remaining
polyhedra (0, 4, 4, 3) and (0, 3, 6, 2) are characterized by positive energies of formation, similarly to other
polyhedra (O), which are also characterized by low stability.

The energy of formation Ef enables the assessment of stability of given structures, but it does not provide
an exhaustive description of the energetics of liquid Cu, for example it does not yield information on the
heights of energy barriers associated with the structures. This can be remediated by analyzing the dynamics
of structural transitions, which we will proceed to do now.
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Figure 6: Dependence of the frequency of occurrence n on temperature T for selected Voronoi signatures. Straight lines are
fit to the Arrhenius equation (see text).

Group Voronoi signature Frequency n (%) Temp. dependence
(f ′

3, f
′
4, f

′
5, f

′
6) 1300 K 1900 K Ef (eV) n∞ (%)

I (0, 0, 12, 0) 1.53 0.62 −0.315 0.09

J (1, 0, 9, 3) 0.37 0.20 −0.196 0.06
(0, 1, 10, 2) 4.00 1.98 −0.242 0.46

K (0, 1, 10, 3) 1.39 0.71 −0.227 0.18
(0, 2, 8, 1) 3.24 2.77 −0.054 2.04
(0, 2, 8, 2) 6.21 4.17 −0.137 1.84
(0, 2, 8, 3) 2.97 1.96 −0.137 0.88
(0, 2, 8, 4) 3.80 2.27 −0.174 0.81

L (0, 3, 6, 2) 1.76 2.07 0.055 2.94
(0, 3, 6, 3) 5.67 5.01 −0.044 3.86
(0, 3, 6, 4) 8.36 5.80 −0.125 2.76
(0, 3, 6, 5) 3.17 2.27 −0.119 1.10

M (0, 4, 4, 3) 1.74 2.35 0.101 4.37
(0, 4, 4, 4) 2.85 2.77 −0.004 2.75
(0, 4, 4, 5) 2.42 2.07 −0.056 1.47
(0, 4, 4, 6) 2.05 1.47 −0.106 0.80

O other 48.5 61.5 0.083 102

A all 100 100 0 100

Table 2: Frequencies of occurrence of considered polyhedra signatures, and the parameters for their dependence on temperature.
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Figure 7: Correlation between Ef and µ(Ŵ ′
6
). Dashed lines are meant as a guide for the eye, corresponding to the mean degree

of icosahedrity and formation energies for all polyhedra (maroon) and other polyhedra (light blue).

4.5. Lifetimes

Due to significant thermal activation, the short-range order in a liquid undergoes continual transitions.
Characterizing the dynamics of these transitions (identifying them and quantifying their rates) is made
difficult by the large variety of structural motifs in a liquid, and the significant uncertainties caused by
thermal motions.

The approach we propose below facilitates the analysis of structural transitions in liquid systems. This is
due to the marked simplification of the Voronoi signature space following face elimination, and to restricting
the analysis to transitions between most common structural motifs (16 + 1 polyhedra signatures) with
well-defined characteristics (5 + 1 polyhedra groups I − O).

We begin by introducing basic concepts. We will say that a given particle i underwent a transition at
time t + h/2 if any of the indices f ′

e(i) describing its Voronoi polyhedron changed between t and t + h,
i.e., f ′

e(i, t) 6= f ′
e(i, t+h) for any e ≥ 3. Crucially, we will also posit that particle i underwent a transition at

t+ h/2 if its set of nearest neighbors changed between t and t+ h. By nearest neighbors of i we denote the
set of particles that, following face elimination, contribute a face to V ′(i). Under this definition it is possible
for a signature of i to undergo a transtion into itself. We will say that a lifetime of a polyhedron was tlife,
starting at t if it underwent transitions at t− h/2 (birth) and t+ tlife + h/2 (death), and it did not undergo
a transition between these instants. In the definitions above h is the MD timestep used in the simulations.
The temporal discretization introduces an uncertainty of h/2 into the determination of a polyhedron’s time
of birth and death, and, consequently, an uncertainty of h into its determined lifetime. Since the timestep
used was small (h = ∆t = 0.5 fs), this uncertainty does not hamper further analysis.

By examining the trajectories of particles in the space of Voronoi signatures (f ′
3(i), f

′
4(i), f

′
5(i), f

′
6(i))

we can easily determine the instants when transitions occured, and subsequently the lifetimes of all poly-
hedra types. By averaging these over particles and time we can establish the distributions of lifetimes
Plife(t; (f

′
3, f

′
4, f

′
5, f

′
6)). This survival function describes the probability that a polyhedron with a Voronoi

signature (f ′
3, f

′
4, f

′
5, f

′
6) will live for at least t.

Fig. 8 shows the survival functions Plife(t; (f
′
3, f

′
4, f

′
5, f

′
6)) of representative signatures (0, 0, 12, 0),

(0, 1, 10, 2), (0, 2, 8, 2), (0, 3, 6, 3), (0, 4, 4, 4) and other polyhedra at T = 1300 K. For reference, the sur-
vival function of all polyhedra is also shown. Over 850, 000 of full lifetimes were observed, with lifetimes of
(0, 0, 12, 0) polyhedra (relatively uncommon) sampled with 5500 observations, indicating a good degree of
sampling.
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Figure 8: Survival functions for T = 1300 K. Solid lines represent fits (12) and (13) (see text).

In all but two cases, the examined distribution Plife(t) were well described by the functional form

Plife(t) = exp

(

−
t

τ

)

, (12)

with one free parameter τ , representing a mean lifetime 〈tlife〉. The two cases that could not be well fitted
with this form were other polyhedra and all polyhedra, whose behavior did not follow a purely exponential
character. We attribute this to the large structural variety of these two groups. For other polyhedra and all
polyhedra a good fit was obtained with the functional form

Plife(t) = a exp

(

−
t

τ1

)

+ (1− a) exp

(

−
t

τ2

)

, (13)

with three free parameters: a, τ1 and τ2, and a mean lifetime 〈tlife〉 = aτ1 + (1− a)τ2. The obtained fits are
shown as solid lines in Fig. 8.

Fig. 9 shows how the mean lifetime 〈tlife〉 depends on temperature for a number of selected signatures.
In all cases the mean lifetime decreases with an increase in temperature. Further analysis revealed that the
dependence 〈tlife〉 (T ) is well-described by the Arrhenius relation

〈tlife〉 (T ) = t∞ exp

(

−
Ea

kBT

)

. (14)

The activation energy Ea can be interpreted as the mean thermal energy required for a given structural
motif to transform into a different motif (or itself), having overcome local potential barriers.

The obtained Arrhenius fits are shown in solid lines in Fig. 9 and are seen to be very good fits to the
data. Table 3 summarizes the values of t∞ and Ea, and the mean lifetimes 〈tlife〉 for the lowest and highest
temperatures studied for all signatures under study.

The results shown above indicate that icosahedra (I, (0, 0, 12, 0)) are characterized by the longest life-
times, living on average for 30 fs (at 1900 K) to 45 fs (at 1300 K). These lifetimes are, respectively, 2.5-
(1900 K) and 2.9-fold (1300 K) longer than the lifetimes of other polyhedra (O), whose lifetimes are the
shortest of all groups. Similarly, a comparison with the mean picture (i.e., against all polyhedra) indicates
that icosahedra are the most stable motifs in liquid Cu (lifetimes longer by a factor of 2.1 (1900 K) to
2.2 (1300 K)). The second-longest lifetimes 〈tlife〉 are those of (0, 2, 8, 1), which on average last for 37 fs at
1300 K, with the lifetimes of (0, 1, 10, 2) being similar.
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Figure 9: Dependence of mean lifetime on temperature. Solid lines denote fits to (14) (see text).

Group Voronoi signature Lifetime 〈tlife〉 (fs) Temp. dependence
(f ′

3, f
′
4, f

′
5, f

′
6) 1300 K 1900 K Ea (eV) t∞ (fs)

I (0, 0, 12, 0) 45.6 29.7 0.169 10.60

J (1, 0, 9, 3) 19.5 15.0 0.089 8.86
(0, 1, 10, 2) 36.9 25.0 0.142 10.53

K (0, 1, 10, 3) 27.9 19.8 0.125 9.18
(0, 2, 8, 1) 37.4 27.5 0.111 14.11
(0, 2, 8, 2) 33.2 23.9 0.120 11.52
(0, 2, 8, 3) 27.1 19.5 0.112 9.96
(0, 2, 8, 4) 26.7 19.1 0.120 9.14

L (0, 3, 6, 2) 29.2 22.7 0.120 11.52
(0, 3, 6, 3) 30.7 22.9 0.106 11.95
(0, 3, 6, 4) 28.7 20.4 0.123 9.59
(0, 3, 6, 5) 23.5 17.1 0.116 8.28

M (0, 4, 4, 3) 27.4 21.5 0.086 12.61
(0, 4, 4, 4) 25.6 18.8 0.101 10.23
(0, 4, 4, 5) 23.1 16.8 0.113 8.33
(0, 4, 4, 6) 21.9 15.8 0.114 7.89

O other 15.6 11.8 0.100 6.35

A all 20.4 14.1 0.131 6.33

Table 3: Mean lifetimes for all polyhedra types.

Among all considered polyhedra (groups I-M), only (1, 0, 9, 3) polyhedra have lifetimes that are shorter
than the reference value obtained by averaging over all polyhedra. This strongly suggests that these poly-
hedra correspond to a structural motif that arises as a consequence of a mild thermal fluctuation, and the
energy barriers that separate it from nearby structural motifs are low. This argument is made stronger by
the low activation energy Ea, which for (1, 0, 9, 3) polyhedra was only 0.089 eV, the lowest of all studied
types of polyhedra. This leads us to presume that (0, 1, 9, 3) polyhedra can transform into icosahedra by
expending minimal amounts of energy, with additional corroboration coming from the close vicinity between
the two signatures – (0, 0, 12, 0) differs only by an introduction of a single triangular face at the vertex where
three faces of the icosahedron meet. The above is in line with the earlier analysis of Ŵ ′

6, which demonstrated
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that (1, 0, 9, 3) polyhedra are closest to icosahedra with regard to orientational order, and can be reasonably
seen as a practically-icosahedral structural motif.

Our results are in line with those of Hao et al. [49] for metallic liquid Zr35Cu65, who, for T = 1300 K,
obtained a mean polyhedron lifetime of 27 fs (compared to 20.4 fs we obtained for liquid Cu). Furthermore,
Ref. [49] also shows that (0, 0, 12, 0) polyhedra are characterized by longest lifetimes, about 3 times longer
than the average over all polyhedra (compared to 2.2 we obtained for liquid Cu), again for T = 1300 K.
Finally, Ref. [49] reports that (0, 1, 10, 2) and (0, 2, 8, 2) polyhedra display longer lifetimes, which we also
observe in the case of liquid Cu.

4.6. Structural transitions

The lifetime analysis carried out above demonstrates that icosahedron-like structures persist for longer
in the liquid, and do not transform readily. We will now augment this analysis by examining which of the
possible structural transitions are actually realized and at what rates.

Quantitative analysis of structural transitions is an arduous task mostly due to the large number of
possible transitions – examining 16+ 1 types of polyhedra necessitates examining as many as 17× 17 = 289
possible transitions. In the interest of clarity we will instead focus on transitions between the groups I −M
and O distinguished earlier, which reduces the number of possible transitions to 6× 6 = 36.

We will now introduce necessary concepts. By X →Y we will denote a transition whereby a polyhedron
from X transforms into a polyhedron from Y, where X and Y can take any of the values I,J ,K,L,M and
O. This is equivalent to a death of a polyhedron from X and a birth of a polyhedron from Y. Under this
notation, a transition of (0, 0, 12, 0) into (0, 1, 10, 2) will be denoted as I → J , a transition of (0, 0, 12, 0)
into (0, 2, 8, 2) will be denoted as I → K, and an intra-group transition of (0, 2, 8, 1) into (0, 2, 8, 2) will be
denoted as K → K. In accordance with the operational definition of a transition, it is possible to observe an
intra-group transformation that proceeds without a change in the Voronoi signature, resulting instead from
a change in the set of neighbors.

To facilitate presentation, by X →A we will denote a transition where a polyhedron from X transforms
into a polyhedron from any group A. Thus, A → A will denote any transition. The number of observed
transitions X →Y will be denoted by NX→Y , with NX→A corresponding to the total number of transitions
of polyhedra from X , and NA→A corresponding to the total number of observed transitions. We will use
the notation X ⇋ Y to denote both transitions between X and Y, i.e., X →Y and Y→X .

Given the quantities NX→Y , NX→A and NA→A, one way to quantify the relative incidence of transitions
X →Y is through

FX→Y =
NX→Y

NA→A

, (15)

which we will term the transition frequency of X →Y. This quantitiy yields the fraction of all transitions
constituted by X → Y, and informs on the relevance of the transition X → Y in the grand picture. A
comparison between FX→Y and FY→X will yield valuable information, with large differences indicating
significant asymmetries in the transition dynamics, highlighting paths along which transitions proceed, as
shown in the analysis that follows.

Another measure that can yield insight into the incidence of transitions is

TX→Y =
NX→Y

NX→A

×
1

n(Y)
. (16)

Here, the ratio NX→Y/NX→A informs on the fraction of transitions from X realized by transitions into
Y. The factor n(Y)−1, which denotes the frequency of occurrence of polyhedra from Y, allows relating
NX→Y/NX→A to the expected frequency of X → Y transformations given by n(Y), i.e., to the frequency
that would be observed if all transformations were equally probable, with polyhedra from X transforming
equally often into polyhedra from all groups1.

1Strictly speaking, n(Y)−1 in eq. (16) should be replaced by (1 − 1/N)/n(Y) (if X 6= Y) or (1 − 1/N)/(n(Y) − 1/N) (if
X = Y). However, with a large number of particles N , the factor 1/N can be neglected, yielding n(Y)−1.

18

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


❍
❍
❍
❍
❍

X
Y

I J K L M O

I 0 10.16 3.13 < 10−2 < 10−2 < 10−2

J 7.50 1.80 1.93 1.11 < 10−2 0.52
K 1.99 1.74 1.18 1.22 0.87 0.77
L < 10−2 0.91 1.12 1.11 1.68 0.82
M < 10−2 < 10−2 0.71 1.43 1.67 0.94
O < 10−2 0.23 0.39 0.45 0.60 1.61

Table 4: Values of TX→Y for T = 1300 K.

The measure TX→Y , which we will term the transition tendency, can offer additional insight. For instance
TX→Y ≫ 1 would mean that transitions X → Y are realized much more often compared to a static,
mean structural picture, corresponding to polyhedra from X readily transforming into polyhedra from Y.
Observing a large value for TX→Y can indicate significant structural similarity between polyhedra from X
and those from Y. Conversely, TX→Y ≪ 1 indicates that transitions X → Y do not happen readily, and
polyhedra in X and Y are not structurally similar.

The fact that TX→Y and TY→X are, in general, not equal is apparent from the definition. A comparison
between TX→Y and TY→X can indicate asymmetries in the dynamical picture of transitions.

In Table 4 and 5, we report the values of TX→Y and FX→Y for T = 1300 K. We begin by examining
the transition tendencies TX→Y . In the interest of clarity, in Table 4 we highlighted particulary common
transitions (TX→Y > 2) in bold, and greyed out rare transitions (TX→Y < 0.5). Transitions I → J and
J → I, occur the most readily, i.e., they are more common by a factor of TI→J = 10.2 and TJ→I = 7.5 than
would be indicated by the mean structural picture. This hints that polyhedra (0, 0, 12, 0) are structurally
similar to (1, 0, 9, 3) and (0, 1, 10, 2). Relatively large values of TX→Y were also observed for transitions
I → K (3.1), J → K (1.9) and transitions K → I and K → J (values of 1.7 − 1.9). This indicates that
polyhedra from K are also structurally similar to icosahedra.

The above results suggest that polyhedra in group K constitute intermediate structural motifs between
structures with clear fivefold orientational order (grups I and J ), and other structural motifs (groups L,
M and O). The intermediate nature of structures in K is further corroborated by the moderately large
values of TK→A, viz. TK→L = 1.2, TK→M = 0.87, TK→O = 0.77. The situation is somewhat similar for
polyhedra in group L, which readily transform into polyhedra from J , K, M and O. However, in this
case practically no transitions to and from I are observed – values of TI→L and TL→I are in the order of
10−3. This indicates that polyhedra in L are not icosahedron-like. Similarly infrequent (values of the order
of 10−3) are transitions I → M, M → I and J → M, M → J , suggesting that polyhedra in group M
are structurally very far from icosahedra. Similarly low transition tendencies were recorded for O → I and
I → O. Polyhedra in group O typically transform into polyhedra in the same group, with TO→O = 1.6.
Similarly, polyhedra in group M choose to transform into polyhedra in the same group (TM→M = 1.7);
however, here inter-group transitions are also apparent, with TM→L = 1.4 and TL→M = 1.7.

The above dynamical analysis further corroborates our earlier observations based on Ŵ ′
6 (static analysis)

that polyhedra in groups J and K are characterized by a large degree of similarity to polyedra in I. Further,
it indicates that polyhedra in groups K and L constitute intermediate structures between groups with clear
fivefold orientational order (groups I and J ) and groups that have no clear fivefold orientational order (M
and O).
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❍
❍
❍
❍
❍

X
Y

I J K L M O

I 0 0.29 0.36 < 10−3 < 10−3 < 10−2

J 0.29 0.20 0.87 0.54 < 10−2 0.65
K 0.36 0.89 2.43 2.71 0.93 4.40

L < 10−2 0.54 2.69 2.87 2.08 5.46

M < 10−3 < 10−2 0.95 2.07 1.16 3.48

O < 10−2 0.63 4.40 5.46 3.50 49.77

Table 5: Values of FX→Y for T = 1300 K. All values are given in %.

One deficiency of the metric TX→Y is that it does not describe how important in the total picture of
structural transitions any particular transition X →Y is. This can be remediated by examining the values
of FX→Y , which we report in Table 5. Again, we greyed out transitions that occur infrequently, i.e., I ⇋ L,
I ⇋ M, I ⇋ O and J ⇋ M, and I → I. Transitions that occur frequently (FX→Y > 1%) were highlighted
in bold. It is those transitions that dictate the total picture of transitions. They encompass all possible
transitions between groups K, L, M and O, with borderline values obtained for K ⇋ M ( FK→M = 0.93%,
FM→K = 0.95%). These 14 types of transitions account for almost 95% of all observed transitions, with
transitions involving O being the most common (O → O accounts for ≈ 50%, and transitions to and
from O account for almost 27% of all observed transitions). These values highlight the importance of the
group of other polyhedra (O), whose large diversity (over 1000 distinct polyhedra types) indicates that a
more detailed analysis of structural transitions in liquid Cu is next to impossible. Despite the significant
simplification offered by classifying polyhedra into groups, detailed characterization can only be performed
for about 22% of all transitions, which are those that take place between well-defined groups I-M.

A pairwise comparison of FX→Y yields additional insight into icosahedral ordering in liquid Cu, revealing
that icosahedra (polyhedra in I) arise mainly through transitions from groups J and K, and do not form
through direct transitions from groups L, M or O. In the process of icosahedron forming, the role of groups
J and K is similarly pronounced, as FJ→I ≈ FK→I .

4.7. Structural correlations

We will now examine structural correlations and set out to determine which types of polyhedra tend to
occur together (connect). We will say that a polyhedron V ′(j) is connected to V ′(i), if and only if particle
j is among the neighbors of particle i, i.e., it introduces a face into polyhedron V ′(i). If the polyhedra V ′(i)
and V ′(j) belong, respectively, to groups X and Y, we will denote such connection with X ⇐ Y, and the
symbol CX⇐Y will denote the number of observed connections X ⇐ Y. Analogously, the symbol CX⇐A will
denote the total number of connections X ⇐ A made by polyhedra from group X .

In order to quantify structural correlations, we introduce a new measure, which we will term structural

affinity. It is defined as follows:

AX⇐Y =
CX⇐Y

CX⇐A

×
1

n(Y)
. (17)

The ratio CX⇐Y/CX⇐A informs on the fraction of connections from group X realized by connections with
polyhedra from group Y. The factor n(Y)−1 relates the measured frequency of connections X ⇐ Y to the
expected frequency of occurrence of these connections, given by n(Y). This is the frequency that would
be observed if all connections were equally probable and if polyhedra from group X were equally likely to
connect to polyhedra from all groups.

The measure AX⇐Y is similar to the previously introduced TX→Y , except it deals with structural corre-
lations. By analysing the values of AX⇐Y it becomes possible to ascertain which polyhedra have an affinity
for occurring together. A value of AX⇐Y > 1 is evidence for an above-average affinity of polyhedra from
X to pair with polyhedra from Y. Conversely, a value of AX⇐Y < 1 indicates structural incompatibility of
polyhedra from groups X and Y.

20

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


❍
❍
❍
❍
❍

X
Y

I J K L M O

I 2.04 1.80 1.24 0.86 0.65 0.93
J 1.66 1.44 1.15 0.94 0.79 0.94
K 1.19 1.19 1.06 0.98 0.89 0.98
L 0.81 0.97 0.97 1.01 1.00 1.02
M 0.62 0.82 0.90 1.01 1.07 1.05
O 0.81 0.90 0.90 0.94 0.96 1.08

Table 6: Values of parameters AX⇐Y for T = 1300 K.

An analysis for T = 1300 K is given in Table 6. Large values (AX⇐Y > 4/3) are shown in bold, and low
values (AX⇐Y < 3/4) are greyed out.

In general, we observe that icosahedra have a large affinity for other icosahedra. An average icosahedron
connects to another icosahedron more often (by a factor of about 2) than it would in the absence of structural
correlations. Icosahedra also display an above-average affinity for icosahedron-like structures, as evidenced
by AI⇐J = 1.8 and AJ⇐I = 1.66. A similar trend is observed for polyhedra from K, which also display an
above-average affinity for polyhedra from I and J , although the deviation from average is not as pronounced.
Another apparent tendency is for polyhedra from M to avoid contact with polyhedra from I. This is reflected
in the low values of AM⇐I = 0.65 and AI⇐M = 0.62, which are the lowest observed. Again, we ascertain
the intermediate character of polyhedra from L, which have similar affinities for all other polyhedra groups
J , K, L, M and O (as seen from values of AL⇐A and AA⇐L close to unity), except for true icosahedra I,
which they avoid.

The above analysis suggests that in the structural picture of liquid copper we should be observing a
clustering of polyhedra I, J and K. This is well-illustrated by the structural visualization shown in Fig. 10,
from which it is apparent that these polyhedra indeed tend to cluster together in many-atom formations,
with individual polyhedra from these group rarely seen individually.

In order to describe the observed clustering quantitatively, we performed clustering analysis. We will
say that a given polyhedron V ′(j) is connected to a given cluster when (i) it is connected to any polyhedron
V ′(i) belonging to that cluster or when (ii) any polyhedron V ′(i) belonging to that cluster is connected to
polyhedron V ′(j).

Fig. 11, panel a) shows the frequencies of occurrence of clusters built from polyhedra I, J and K, for
T = 1300, T = 1600 and T = 1900 K, as fractions of the total number of atoms N . For example a value of
0.5% for a cluster size of 120 informs that in a time-averaged picture 0.5% of all atoms belong to 120-atom
clusters formed by atoms described with polyhedra from groups I, J and K.

At higher temperatures (1900 K), polyhedra I, J and K most often form small clusters with sizes not
larger than 25 atoms. At lower temperatures the tendency to form larger clusters is significantly stronger,
and at 1300 K a pronounced second maximum can be observed, corresponding to large clusters, with sizes
between 50 and 150 atoms. At this temperature only 13% of all I, J and K polyhedra are clustered into
small clusters, not larger than 25 atoms.

We will now complement the above analysis by examining how polyhedra in groups L, M and O cluster.
Figure 11, panel b) demonstrates that in all temperatures these polyhedra comprise a single large cluster
spanning the entire system.
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Figure 10: Clustering of polyhedra from groups I (blue), J (orange) and K (yellow). Pairs of particles whose polyhedra belong
to these groups that are not further than 3.5 Å are drawn using bonds. Smaller spheres denote polyhedra from L (purple), M
(green) and O (light blue). The visualization has been prepared using OVITO [80].

0.0

0.5

1.0

1.5

2.0

  0  50 100 150 200

(a)

F
re

q
u
en

cy
 (

%
)

Cluster size (atoms)

1300 K
1600 K
1900 K

0.0

1.0

2.0

3.0

4.0

5.0

300 350 400 450 500

(b)

F
re

q
u
en

cy
 (

%
)

Cluster size (atoms)

1300 K
1600 K
1900 K

Figure 11: Clustering of polyhedra from groups I, J and K (panel a), and of polyhedra from groups L, M and O (panel b).

The observations made so far allow us to conceptually describe the structure of liquid copper. This
structure can be understood as a system of clusters of particles characterized by marked fivefold orientational
order (polyhedra in I, J and K), embedded in a coherent (continuous) matrix of particles that do not display
this kind of order (polyhedra in L, M and O). This icosahedral order manifests increasingly with decreasing
temperature – this is reflected by (i) an increase in the number of icosahedron-like polyhedra, and (ii) a
significant increase in the size of clusters composed of particles with icosahedral ordering. Close to the
melting point the presence of icosahedral ordering is so pronounced that it becomes continuous network
of icosahedral structures embedded in a non-icosahedral matrix, with the network practically spanning the
entire volume. This is well illustrated by Fig. 10. At 1300 K we find over 90% of all polyhedra to either
belong to groups I, J and K or to be directly connected to at least one polyhedron from these groups. This
demonstrates the importance of icosahedral ordering to elucidating the structure and dynamics of liquid
copper.

Similar conclusions were reached by Celino et al. [20], who ascertained that in undercooled liquid copper
the spatial extension of icosahedral ordering involves more than 70% of the whole undercooled system,
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describing the structure as large and complex regions with icosahedral ordering embedded in a disordered
atomic structure. Tendencies for icosahedra to cluster and form a string-like network structure were observed
also in metallic glasses. Shimono et al. showed that this phenomenon exists in liquid and glassy phases of
Zr40Cu60 metallic glasses [52], whereas Xie et al. described it for TiAl3 metallic glasses [58]. Clustering of
icosahedra has also been observed experimentally by Leocmach and Tanaka [54], who, by employing confocal
microscopy, demonstrated that in colloidal (hard sphere) supercooled liquid [81] icosahedral clusters can be
as large as hundreds to thousands of particles.

5. Discussion

5.1. Common neighbor analysis

The structural analysis undertaken so far in this work relied on a combination of two descriptors: an
orientational one (bond-order parameters) and a geometrical one (Voronoi signatures). We showed that their
simultaneous application can elucidate a number of structural features related to the presence of icosahedral
structure. Below we would like to complement this analysis by employing the CNA approach, in line with
the approach of Celino et al., directly comparing with results presented in Ref. [20].

Within the framework of CNA the immediate neighborhood of a particle i is described by characterizing
the bonds between it and all its neighbors j. For each bond three values are computed, which indicate the
number of nearest neighbors common to the central particle i and its neighbor j (ncn), the number of bonds
between common neighbors (nb), and the number of bonds in the longest chain of bonds connecting the
common neighbors (nlcb). In this formalism, the fcc structure is characterized by the presence of twelve
(4, 2, 1) bonds, bcc is characterized by eight (6, 6, 6) bonds and six (4, 4, 4) bonds, hcp has six (4, 2, 1) bonds
and six (4, 2, 2) bonds, while icosahedral ordering manifests by (5, 5, 5) bonds, of which there are 12 in a
perfect icosahedron.

The above observation is the basis of the methodology of Celino et al., who employed the (ncn, nb, nlcb)
signature to measure the degree of icosahedrity, defining icosahedron-like structures as those having a number
of (5, 5, 5) bonds of at least 6.

Using the same approach, we analysed the structure of liquid copper at T = 1300 K. When determining
the parameters (ncn, nb, nlcb) we used the geometrical definition of neighbors based on the cleaned up Voronoi
diagram. This freed us from having to select a suitable cutoff radius and simultaneously made the structural
picture clearer, reducing the number of observed (ncn, nb, nlcb) signatures.

CNA signature Frequency CNA signature Frequency
(ncn, nb, nlcb) (%) (ncn, nb, nlcb) (%)

(3, 1, 1) 1.9 (5, 3, 2) 2.4
(3, 2, 2) 2.3 (5, 4, 3) 20.3
(4, 2, 1) 2.5 (5, 5, 5) 25.1
(4, 2, 2) 4.8 (6, 5, 4) 2.1
(4, 3, 2) 18.7 (6, 6, 6) 9.5
(4, 4, 4) 7.7

Table 7: Frequencies of occurrence of most common (> 1%) types of bonds. The enumerated 11 types account for 97.3% of
all bonds observed in liquid copper at T = 1300 K.
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Table 7 enumerates the most common bond types and their frequencies. The overall picture obtained
from CNA confirms marked icosahedral ordering. (5, 5, 5) bonds (typical for icosahedra) and (5, 4, 3) bonds
(typical for distorted icosahedra, originating from the breaking of two bonds in a 5-element chain of common
neighbors and the forming of a single new bond) constitute almost half of all bonds. Another marked feature
is the presence of topologies typical for the bcc structure, i.e., (4, 4, 4) bonds and (6, 6, 6) bonds, accounting
for over 17% of all bonds. A similarly large fraction (almost 19%) is accounted by (4, 3, 2) bonds, which can
be understood to be an intermediate form between two motifs: (4, 4, 4) – characteristic for bcc, and (4, 2, 2)
– characteristic for hcp.

The above analysis clearly demonstrates that topologies typical for icosahedral ordering are ubiquitous
in liquid Cu. However, it does not make it clear to what degree (5, 5, 5) bonds congregate around single
central atoms, creating structures with a degree of icosahedrity. In order to clarify this point, we followed
Celino et al., determining for each central atom i the value of the parameter n555(i), which expresses the
number of (5, 5, 5) bonds that this atom shares with its neighbors.

In Table 8 we present the frequencies of occurrence of atoms with different values of n555. The obtained
structural picture is dominated by atoms with n555 < 6, which account for 82% of all atoms. The most
common scenario (18%) is for atoms to form two (5, 5, 5) bonds, followed by n555 = 1, 3 and 4, with
frequencies of occurence between 14% and 16%. Icosahedron-like structures with n555 ≥ 6 account for 18%
of all atoms, with the majority of this contribution being due to atoms forming between 6 ad 8 (5, 5, 5)
bonds (almost 15.5%). Atoms forming 12 (5, 5, 5) bonds are seen to be very scarce (0.6%).

A direct comparison of the structural pictures obtained from CNA and through Voronoi analysis runs
into difficulties stemming from the differences in the methodology – CNA is a topological approach, while
Voronoi analysis is a geometrical one. The fraction of icosahedral structures obtained via CNA by counting
atoms with n555 ≥ 6 is 18% (for T = 1300 K). In contrast, the corresponding value obtained from Voronoi
analysis as a sum of fractions of I and J polyhedra is 5.9%. The additional inclusion of K polyhedra
yields 23.5%, which is still not in good agreement with CNA. This results suggests that the definition of
icosahedrity based on n555 is markedly different from the one based on Voronoi signatures.

Frequency Decomposition (%)
n555 (%) I J K L M O

0 9.88 0.1 0.5 7.7 16.0 15.1 60.6
1 16.06 0.2 0.9 10.0 20.0 14.4 54.5
2 17.65 0.3 1.6 13.1 21.7 13.1 50.2
3 15.59 0.5 2.4 15.8 23.0 9.3 48.9
4 13.85 1.2 3.9 20.7 23.1 7.8 43.3
5 8.94 1.5 4.8 25.3 17.4 1.5 49.4

6 7.61 1.4 7.9 28.5 20.8 1.7 39.6
7 3.71 2.1 13.7 26.8 4.3 1.6 51.4
8 4.15 12.3 12.7 42.4 3.3 2.0 27.2
9 0.76 0 0.3 17.6 2.3 0.2 79.5
10 1.17 0 45.0 15.5 8.5 0.1 30.8
11 0.02 0 0 0 0 0 100
12 0.60 58.3 0 14.4 0.1 0.2 26.9

< 6 81.98 0.7 2.7 16.1 20.7 9.9 49.8
≥ 6 18.02 9.0 15.1 30.3 4.0 1.4 40.1

Table 8: Distribution of atoms with respect to the parameter n555 and their classification into groups I-M and O.
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In order to investigate this issue in depth we examined the correlations between the parameter n555(i)
and the Voronoi signature (f ′

3(i), f
′
4(i), f

′
5(i), f

′
6(i)). The results of this analysis are included in Table 8,

where for each value of n555 = 0, 1, 2, . . . , 12 we decomposed the frequency of occurrence into contributions
from polyhedra belonging to groups I-M and O. The obtained values only strengthen the impression of
distinctness of the two methods – atoms with the same value of n555 show broad spectra of Voronoi signatures.
This is especially seen for n555 = 8, where there are significant contributions from I and J (almost 13%
each), a large contribution from K (almost 43%), and a large contribution from other polyhedra (O) (about
27%). For all values n555 ≥ 6 (i.e., for atoms deemed icosahedron-like in Celino’s approach) we find a marked
presence of contributions from O – e.g., up to 50% for n555 = 7 and up to 80% for n555 = 9. Among these
same atoms Voronoi analysis distinguishes only 24% atoms to be icosahedron-like (belonging to I or J ),
while almost 40% atoms with n555 ≥ 6 are identified as other (belonging to O). This clearly shows that
CNA with the n555 ≥ 6 criterion yields a different structural interpretation from Voronoi analysis.

To elucidate which of the two approaches yields structures that are characterized by higher degrees of
icosahedrity, we grouped the atoms into the following four groups:

1. polyhedra from groups I-J , simultaneously with n555 ≥ 6,

2. polyhedra from group O, simultaneously with n555 < 6,

3. polyhedra from groups I-J , simultaneously with n555 < 6,

4. polyhedra from group O, simultaneously with n555 ≥ 6.

The first two groups encompass atoms where the two methods agree to whether the structure is (group 1)
or is not (group 2) icosahedral. Conversely, groups 3 and 4 encompass atoms where the two approaches
disagree on the icosahedral character.

For T = 1300 K the populations of the four groups were n1 = 4.3%, n2 = 41%, n3 = 2.8% and n4 = 7.2%.
In Fig. 12 we present the distribution of valence angles (panel a) and of the Ŵ ′

6 parameter (panel b)
decomposed into the four groups. For the angle distribution of group 1 we observe two pronounced peaks
corresponding to the typical icosahedral valence angles of 60 and 108 degrees. The values of Ŵ ′

6 for this group
are almost universally negative (with a mean of −0.0955). Group 2 displays a marked fourfold symmetry,
with typical angles of 45 and 90 degrees, and the values of Ŵ ′

6 are much closer to zero (with a mean of
−0.0360). This demonstrates that groups 1 and 2 indeed encompass structures with, respectively, the largest
and lowest degree of icosahedrity.
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Figure 12: Distributions of valence angles (panel a) and the Ŵ ′
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We will now attempt to elucidate the source of the differences between the CNA approach and Voronoi
analysis by examining the characteristics of topologies where the two approaches disagree, i.e., atoms in
groups 3 and 4. Fig. 12 reveals that structures in group 3 (deemed icosahedral by Voronoi analysis only)
contribute much more often to angles close to 108 degrees and much less to angles close to 90 degrees,
compared to structures in group 4 (deemed icosahedral by CNA only). Similarly the peak at 60 degrees is
more pronounced for group 3. This demonstrates that atoms in group 3 display a larger degree of icosahedral
ordering compared to atoms in group 4. The same can be inferred from examining the distribution of Ŵ ′

6.
Atoms in group 3 are characterized by lower (more negative) values, with a mean of −0.0779 (compared to
−0.0507 for group 4).

The above analysis leads us to believe that CNA with a fixed criterion based on n555 is not as efficient
as Voronoi analysis for identifying icosahedral ordering and that the use of a relatively simple criterion
n555 ≥ 6 can lead not only to excluding important information, but even to wrong conclusions. For instance,
n3/(n1 + n3) = 40% and n4/(n1 + n4) = 62%, which means that, for the system under study here, by using
CNA one loses information on 40% of icosahedron-like structures, while among structures classified as
icosahedral the majority (over 60%) are false positives.

The underlying cause for this limitation is, in our belief, the way the parameter n555 is constructed.
Since it is discrete in nature, it does not (in the quantitative sense) sufficiently well describe the influence
of structural distortions as long as the distortion does not change the topology of bonds. Moreover, the
parameter n555(i) does not carry any information on valence angles that the central atom forms with its
nearest neighbors. The Voronoi polyhedra approach turns out to be superior in this aspect. While the
Voronoi signature is also discrete, it is constructed by geometrical means, and as such it explicitly takes
into account distances to nearest neighbors and valence angles. This makes the analysis of the coordination
polyhedron a more sensitive method.

5.2. Transformations of polyhedra

We will now compare our results to those of Pan et al. [24], who studied the crystallization pathways in
iron and also used Voronoi analysis. They showed that the transformations of (0, f4, f5, f6, 0, . . .) polyhedra
observed during crystallization can be characterized using two transformation styles: T1 and T2. These
styles are schematically shown in Fig. 13. In T1 a neigboring atom approaching a central atom introduces
a new quadrilateral face at the point of intersection of four faces, increasing the coordination number of
the central atom by one. As a result the degeneracy (number of edges) of two faces is also increased by
one. In contrast, during the transformation T2 the coordination number remains unchanged; however, the
collective motion of nearest neighbors leads to a change in the degeneracy of four faces, which is increased
or decreased by one for two pairs of faces.

Figure 13: Two transformation styles – T1 (a–b) and T2 (a–c). Reproduced following Ref. [24].
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Pan et al. [24] dinstinguished the following nine transformation patterns for the styles T1 and T2:

T1,1 :
(4,4,c,d)
−−−−−→ (0, f4 − 1, f5 + 2, f6), (18)

T1,2 :
(4,5,c,d)
−−−−−→ (0, f4, f5, f6 + 1), (19)

T1,3 :
(5,5,c,d)
−−−−−→ (0, f4 + 1, f5 − 2, f6 + 2), (20)

T2,1 :
(5,5,5,5)
−−−−−→ (0, f4 + 2, f5 − 4, f6 + 2), (21)

T2,2 :
(4,4,6,6)
−−−−−→ (0, f4 − 2, f5 + 4, f6 − 2), (22)

T2,3 :
(5,5,5,6)
−−−−−→ (0, f4 + 1, f5 − 2, f6 + 1), (23)

T2,4 :
(4,5,6,6)
−−−−−→ (0, f4 − 1, f5 + 2, f6 − 1), (24)

T2,5 :
(4,5,5,5)
−−−−−→ (0, f4 + 1, f5 − 2, f6 + 1), (25)

T2,6 :
(4,4,5,6)
−−−−−→ (0, f4 − 1, f5 + 2, f6 − 1). (26)

Each of the above transformations Tt,u (where t indexes styles, and u distinguishes patterns within a style)
is characterized by a vector (a, b, c, d) describing the transformation (four integer numbers a–d corresponding
to the degeneracy of the faces taking part in the transformation) and the resultant (post-transformation)
Voronoi signature.

The first three transformation patterns are based on style T1, while the subsequent six patterns are based
on T2. For a transformation with t = 1 it is possible to define an inverse transformation, which proceeds
from right to left and results in the vanishing of one quadrilateral face and a decrease of the degeneracy of
two faces by one. We will use the notation −Tt,u to denote a transformation that is the inverse of Tt,u.
The patterns based on T2 can be grouped into three pairs of inverse transformations, i.e., T2,1 = −T2,2,
T2,3 = −T2,4 and T2,5 = −T2,6. It is worth pointing out that the pairs T2,3 and T2,5, and the pairs T2,4

and T2,6 have an identical effect on the Voronoi signature.
Ref. [24] demonstrates that the above nine transformation patterns are sufficient for characterizing the

most significant structural transformations observed during the crystallization/melting of iron. With the aim
of comparing the general picture of structural transformations in liquid copper with the conclusions obtained
by Pan et al. for iron, we calculated the frequencies of occurrence of the above types of transformations
and we determined their corresponding patterns. Our analysis was limited to the twelve polyhedra that
were considered in Ref. [24] and as such does not include signatures (1, 0, 9, 3), (0, 2, 8, 1), (0, 3, 6, 2) and
(0, 4, 4, 3).

Tables 9 and 10 list all transformations occurring betwen the considered 12 types of polyhedra. All
results correspond to T = 1300 K. For each polyhedron type we list the corresponding transformations,
together with their frequency of occurrence, relative to the total number of transformations observed for
the particular polyhedron. For identified transformation we also included the symbol of its corresponding
pattern Tt,u. To facilitate easier comparison, we highlighted the transformations that Ref. [24] identifies as
commonly occurring.

Our analysis shows that the patterns (18)–(26) exhaustively characterize all transformations of considered
polyhedra (0, f4, f5, f6, 0, . . .). Moreover, for as many as seven out of twelve polyhedra, viz. for (0, 0, 12, 0),
(0, 1, 10, 2), (0, 1, 10, 3), (0, 2, 8, 2), (0, 2, 8, 3), (0, 3, 6, 3) and (0, 4, 4, 6), all the transformations identified by
Pan et al. as most commonly occurring for iron similarly turned out to be the most abundant in liquid
copper. For the remaining five polyhedra the agreement is still qualitatively good, with transformations
identified in Ref. [24] as most commonly occurring featured among those occurring commonly in liquid
copper.

The above demonstrates that structural transformations in liquid copper and liquid iron are conceptually
similar, with somewhat larger variety of possible transformations featuring in liquid Cu. This is evidenced
by a larger number of observed transformations (65 vs. 51 for iron), and smaller differences in the frequencies
of occurrence measured for individual polyhedra.
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Voronoi signature Transformation Relative
(f3, f4, f5, f6) pattern frequency

initial final Tt,u (%)

(0, 0, 12, 0) (0,2,8,2) T2,1 52.1

(0,1,10,2) T1,3 26.9

(0, 1, 10, 2) (0,3,6,4) T2,1 23.5

(0,2,8,4) T1,3 14.7

(0,2,8,3) T2,3,T2,5 11.1

(0,0,12,0) −T1,3 8.4

(0,1,10,3) T1,2 7.0

(0, 2, 8, 2) −T1,1 6.3

(0, 1, 10, 3) (0,2,8,4) T2,3,T2,5 21.6

(0,1,10,2) −T1,2 14.5

(0, 3, 6, 5) T2,1 13.4
(0, 2, 8, 3) −T1,1 1.2

(0, 2, 8, 2) (0,3,6,4) T1,3 13.0

(0,3,6,3) T2,3,T2,5 12.1

(0,4,4,4) T2,1 9.9

(0,2,8,3) T1,2 9.6

(0,0,12,0) T2,2 8.9

(0,1,10,2) T1,1 3.8

(0, 2, 8, 3) (0,2,8,2) −T1,2 15.5

(0,3,6,4) T2,3,T2,5 15.0

(0,1,10,2) T2,4,T2,6 11.0

(0,3,6,5) T1,3 8.9

(0,2,8,4) T1,2 8.8

(0, 4, 4, 5) T2,1 5.8
(0, 3, 6, 3) −T1,1 3.7

(0, 2, 8, 4) (0,1,10,2) −T1,3 11.2

(0, 3, 6, 5) T2,3,T2,5 9.8
(0,1,10,3) T2,4,T2,6 7.2

(0,4,4,6) T2,1 7.0

(0,3,6,4) −T1,1 6.9

(0, 2, 8, 3) −T1,2 6.9

Table 9: Observed transformations of Voronoi polyhedra (for groups I, J and K), and their frequencies of occurrence
(T = 1300 K). Two, comma-separated Tt,u symbols are given whenever a transformation can be realized via two patterns.
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Voronoi signature Transformation Relative
(f3, f4, f5, f6) pattern frequency

initial final Tt,u (%)

(0, 3, 6, 3) (0,3,6,4) T1,2 18.5

(0,2,8,2) T2,4,T2,6 12.2

(0, 4, 4, 5) T1,3 6.2
(0, 4, 4, 4) T2,3,T2,5 6.0
(0, 2, 8, 3) T1,1 2.3

(0, 3, 6, 4) (0,3,6,3) −T1,2 11.8

(0,3,6,5) T1,2 9.1

(0,1,10,2) T2,2 8.6

(0,2,8,2) −T1,3 8.2

(0, 4, 4, 5) T2,3,T2,5 6.7
(0, 2, 8, 3) T2,4,T2,6 5.8
(0,4,4,6) T1,3 5.2

(0, 4, 4, 4) −T1,1 3.9
(0, 2, 8, 4) T1,1 3.4

(0, 3, 6, 5) (0,3,6,4) −T1,2 19.4

(0, 2, 8, 4) T2,4,T2,6 10.0
(0,4,4,6) T2,3,T2,5 7.9

(0, 2, 8, 3) −T1,3 7.0
(0, 1, 10, 3) T2,2 5.2
(0, 4, 4, 5) −T1,1 2.3

(0, 4, 4, 4) (0,2,8,2) T2,2 17.0

(0,3,6,4) T1,1 10.1

(0, 3, 6, 3) T2,4,T2,6 9.6
(0,4,4,5) T1,2 8.0

(0, 4, 4, 5) (0,3,6,4) T2,4,T2,6 17.9

(0, 3, 6, 3) −T1,3 10.9
(0,4,4,6) T1,2 9.3

(0, 4, 4, 4) −T1,2 8.9
(0, 2, 8, 3) T2,2 6.1
(0, 3, 6, 5) T1,1 2.9

(0, 4, 4, 6) (0,3,6,4) −T1,3 16.2

(0,3,6,5) T2,4,T2,6 11.6

(0,4,4,5) −T1,2 10.9

(0,2,8,4) T2,2 10.7

Table 10: Observed transformations of Voronoi polyhedra – cont’d (groups L and M).
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6. Conclusions

In this work we employed a tight-binding molecular dynamics approach to simulate liquid Cu in a range
of temperatures between 1300 K and 1900 K. By examining standard descriptors of averaged structure (pair
correlation functions, angular distribution functions and distributions of Ŵ6) we demonstrated that our
simulation protocol yields credible structures of liquid Cu, which are in very good agreement with other
results – both experimental (due to Di Cicco et al. [9]), and computational (first-principles simulations by
Ganesh and Widom [22]). By using a novel approach to structural analysis, which combines Voronoi analysis
with a recently proposed formulation [76] of the bond-orientational order parameters method, we performed
an in-depth characterization of the icosahedral ordering present in this system.

We characterized local structures present in the liquid state, with differing Voronoi signatures
(f ′

3, f
′
4, f

′
5, f

′
6), with regard to five-fold ordering. To that end we defined and employed a new parame-

ter, Ŵ ′
6, which can be seen – in the context of Ref. [76] – as a natural generalization of the well-known

cubic invariant due to Steinhardt, Ŵ6, commonly used in studies of icosahedral ordering. By examining
structures with highly negative values of Ŵ ′

6, we showed that apart from structures with the Voronoi signa-
ture (0, 0, 12, 0) (perfect icosahedra), structures with signatures (1, 0, 9, 3) and (0, 1, 10, 2), corresponding to
defected icosahedra, and structures with signatures (0, 1, 10, 3) and (0, 2, 8, f6) (where f6 = 1, . . . , 4) – since
they too display highly negative values of Ŵ ′

6 – can also be seen as icosahedron-like.
We determined the temperature dependence of the frequency of occurrence of particular Voronoi poly-

hedra, showing that this dependence is well-described by the Arrhenius relation. We showed that, as the
temperature approaches the solidification temperature, icosahedron-like polyhedra experience the largest
increase in the frequency of occurrence. We calculated the mean energies of formation of different types of
polyhedra, showing that they correlate with the Ŵ ′

6 parameter, and are largest for icosahedron-like polyhe-
dra.

By analyzing how polyhedra transform, we determined distributions of their lifetimes, showing that the
probability of a polyhedron persisting for a given time is well-described by the exponential distribution. We
also showed that the mean lifetime of icosahedra to be the longest, approximately twice that of the global
average lifetime. The temperature dependence of the mean lifetime was also found to be well-described by
the Arrhenius relation. Furthermore, by examining mean descriptors of transformations (that we introduced
in this work), we characterized structural changes in liquid Cu, demonstrating, inter alia, that icosahedra
and icosahedron-like polyhedra preferentially transform into one another, and that polyhedra with a low
degree of icosahedrity almost never transform into icosahedra.

Furthermore, we performed structural correlation analysis, by examining ways in which different polyhe-
dra connect with one another, demonstrating that icosahedra and icosahedron-like polyhedra preferentially
connect and show a tendency towards clustering. We showed that this tendency becomes more marked as
the temperature is lowered, and close to the solidification temperature it becomes sufficiently pronounced
for almost 90% of atoms to be directly involved in establishing icosahedral ordering, i.e., being themselves
icosahedron-like polyhedra or having icosahedron-like polyhedra as nearest neighbors.

We confronted the approach proposed in this work with common-neighbor analysis (CNA), a well-known
method for structural analysis, which has been used several times to characterize icosahedral ordering. We
showed that CNA can yield picture of icosahedral ordering that is not entirely credible, and elucidated the
reasons for the observed deficiencies of this approach. Finally, we related the structural transformations
observed in liquid Cu to corresponding structural transformations in liquid Fe [24], showing that – despite
some quantitative differences – significant similarities exist between these systems.

Results presented in this work not only strengthen the notion of strongly pronounced icosahedral ordering
in liquid Cu, but significantly elucidate its character, supplementing current understanding with novel
aspects regarding the types of icosahedron-like structures present, their lifetimes and relative stability, and
observed structural correlations. We trust that the new measures and descriptors introduced in this work,
the constructs built upon them, and the path we took in our analysis can be successfully, and practically
forthwith, employed in studies of icosahedral ordering in other systems, for example in metallic glasses,
which have recently experienced an increase in research interest. Such use of the approach we propose
would, however, necessitate introducing certain generalizations to account for the fact that multi-component
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systems often feature atoms spanning a wide range of sizes. We believe that this issue could be circumvented
by using weighted Voronoi tessellation (also known as radical tessellation). This has been demonstrated in,
for instance, Refs. [82–84].

Appendix

With the aim of further supporting the choice of the face elimination parameter αsf (Sec. 4.2), we
verified how this value affects the mean lifetimes 〈tlife〉 presented in Sec. 4.5. It is clear that if no faces are
eliminated (αsf = 0), the calculated lifetimes (and so their mean values) would be underestimated, since
the lifetimes of polyhedra would be prematurely terminated by artifact neighbor particles appearing due to
thermal vibrations. Setting a non-zero, but small, value for αsf will eliminate excessively small “artifact”
faces, leading to an increase in the observed mean lifetimes. Of course, excessive elimination will bring
about the reverse effect – eliminating “reasonable” faces will also prematurely terminate lifetimes, leading
to a decrease in 〈tlife〉. A suitable value of αsf can thus be found by looking for the plateau, where the mean
lifetimes are largely insensitive to the value of αsf . In this plateau it will be desirable to choose a value from
the right, as this will allow for a better pruning of the Voronoi diagram and to classify the neighborhoods
of a larger fraction of atoms.

In Fig. 14 we present example mean lifetimes 〈tlife〉 as a function of αsf . It can be seen that the lifetimes’
behavior follows our reasoning presented above. As αsf is increased from 0 to 0.02 − 0.05 (depending on
polyhedron type) the lifetimes increase, practically plateauing in the interval 0.075−0.01, and systematically
decreasing for αsf > 0.1. This analysis suggests that the value chosen in this work (αsf = 0.075) is suitable,
serving to eliminate artifact faces, without excessive pruning of the faces that we want retained.
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