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Abstract

Quantum communication with systems of dimension larger than two provides advantages in
information processing tasks. Examples include higher rates of key distribution and random number
generation. The main disadvantage of using such multi-dimensional quantum systems is the increased
complexity of the experimental setup. Here, we analyze a not-so-obvious problem: the relation
between randomness certification and computational requirements of the post-processing of
experimental data. In particular, we consider semi-device independent randomness certification from
an experiment using a four dimensional quantum system to violate the classical bound of a random
access code. Using state-of-the-art techniques, a smaller quantum violation requires more computa-
tional power to demonstrate randomness, which at some point becomes impossible with today’s
computers although the randomness is (probably) still there. We show that by dedicating more input
settings of the experiment to randomness certification, then by more computational postprocessing of
the experimental data which corresponds to a quantum violation, one may increase the amount of
certified randomness. Furthermore, we introduce a method that significantly lowers the computa-
tional complexity of randomness certification. Our results show how more randomness can be
generated without altering the hardware and indicate a path for future semi-device independent
protocols to follow.

Introduction

Randomness is an important concept that manifests itself in many fields of science including statistics, biology,
finance, informatics, social sciences and physics. Random numbers have vast applications in e.g. statistical
sampling, Monte-Carlo simulations, cryptography and completely randomized designs. However, as John von
Neumann aptly put it: ‘Any one who considers arithmetical methods of producing random digits is, of course, in
astate of sin’. Since knowledge of the program governing a software renders the output predictable, any such
software is limited to produce pseudorandom numbers. The use of pseudorandom numbers in tasks which
require genuinely random numbers can lead to qualitative compromises in the task performance e.g. security
breaches in cryptographic systems [ 1, 2].

However, in quantum theory genuine randomness is a fundamental feature of the physical reality of
quantum systems. Therefore, hardware based on quantum systems were proposed for the generation of random
numbers e.g. path-splitting of photons [3], the phase noise of a laser [4, 5], radio active decay [6], Raman
scattering [7], and the arrival time of photons [8]. Yet, how can we trust that the generated random numbers are
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not subject to some underlying predictability originating from the construction of the hardware, i.e. how can we
be sure that the hardware is not just classically simulating the quantum system? To resolve this issue, the notion
of device independence [9] was developed in which no assumptions are made on the inner workings of the
hardware. By exploiting quantum correlations violating Bell’s inequality [ 10, 11] it was demonstrated that true
random number generation is possible, even if we do not trust the supplier of our hardware [12]. Unfortunately,
device-independent protocols have strong requirements on their devices which leads to very low number
generation rates, even with state-of-the-art technology. Semi-device independent (SDI) protocols were
proposed [13] as good compromises between security and efficiency. In an SDI protocol, the devices remain
untrusted but an upper bound on quantum channel capacity is assumed. This approach can be used for true
random number generation [14, 15] and was also experimentally realized [16, 17].

In an SDI protocol, we have no knowledge of the parameters (states and measurement operators). Therefore,
to compute alower bound on the amount of randomness generated, we need to optimize over all parameter
settings that could reproduce the observed data, and then choose the least random result. Unfortunately, the
target function is a quadratic function of the parameters and there are no known algorithms which are
guaranteed to find a global minimum of such functions. This makes the optimization highly non-trivial. The
most common approach is to use a semi-definite relaxation of the problem, i.e. optimize over a larger set such
that it can be parameterized by variables in which the target function is linear. The first methods based on this
idea were proposed in [18, 19]. Later they were replaced by a more efficient method from [20]. In this paper we
investigate the computational requirements of these methods on post-processing of experimental data for
randomness certification. We show that an interesting trade-off exists; the more computational power the user
has to analyze the experimental data, the lower the requirements are on the experimental setup serving as
hardware for randomness generation. Our results are both qualitative; a user with more computational power
can certify the existence of randomness in a setup in which a user with less power cannot, and quantitative; given
the same setup, a user with more computational power can certify more randomness. We also show how to
reduce the computational complexity of randomness certification.

Our paper has the following structure. First, we describe SDI random number generation protocols. Then
we discuss the methods used for randomness certification. Next we consider a particular quantum protocol,
present its experimental realization, and apply our methods to analyze the experimental data. We conclude by a
discussion of our results.

Semi-device independent random number generation protocols

The structure of semi- or fully-device independent random number generation protocols is the same. The
experiment is divided into rounds. Some rounds are chosen for security parameter estimation while the rest are
used for generation of randomness. Each round consists of preparation and measurement of a quantum state.

What the parties do in a fully-device independent protocol is very similar to a Bell experiment. In every
round they generate an input (in other words: choose a measurement) and observe an outcome. Because the
parties want to get more randomness than they put in, the inputs cannot be random in every round. Therefore,
for a vast majority of them the choice of measurement is the same, only for a small subset of rounds are they
chosen randomly. Inputs and outcomes from this subset are used to estimate a violation of a Bell inequality. The
outcomes from the rest of the rounds are collected and randomness is extracted from them. Exactly how much
randomness there is, on average, in these rounds is estimated only from the amount of Bell inequality violation,
without making any assumptions about how the hardware actually works. Hence the name ‘device-
independent’. The idea behind the class of protocols presented above is that if a sufficient number of the rounds
are used for parameter estimation, then, because this set was chosen randomly, the average value of the
parameter estimated for these rounds is close to the average for the remaining rounds (see [ 12] for more details).

In a semi-device independent protocol, in every round one party prepares a state and sends it to another
which measures it. The inputs now are the choice of the preparation by the sender and measurement by the
receiver. The rest of the protocol works analogously to the fully-device-independent case. Some rounds are used
to estimate a parameter while other are used to generate randomness. The parameter now, instead of Bell
inequality, is the success probability in some communication game [21]. Again, the amount of randomness
obtained will be estimated from the value of this parameter, however, this time in the estimation we make one
assumption about the hardware used: the system that leaves sender’s device has an upper limit on its Hilbert
space dimension. Because nothing else is assumed about the hardware, this scenario is called ‘semi-device-
independent’. For more details on it, see [ 14].

In the standard protocols described above, randomness is generated only for one particular input of the
parties. This can be generalized to a case in which, more of them are used. More precisely, let X denote a set of all
possible inputs the devices can have in around and &” its arbitrary subset consisting of K elements. In the rounds

2


http://mostwiedzy.pl

A\ MOST

10P Publishing

New J. Phys. 18 (2016) 065004 P Mironowicz et al

used for parameter estimation arandom element of X’ is chosen as an input. In the other rounds the inputs are
taken from X”. Note that here we do not want them to be chosen randomly for every round as this would
consume more randomness than the procedure generates. Instead, we divide the total number of rounds into
many groups of random size. In every group, the first round is used for parameter estimation and all remaining
rounds in the group are used for randomness generation. An input is randomly taken from X" independently for
every group, and then used in all randomness generation rounds within the respective group. Protocols with

K > 1existand they use the above method of choosing inputs to reduce randomness spent, see e.g. [29, 30].
However, to our knowledge, in all of them K is fixed and they do not study the amount of randomness and the
complexity of its certification as a function of it.

Before we move further, let us fix some notation. Our focus is the SDI approach in which one part of the
device (Alice) receives the input Z from which she prepares a quantum state p, about which we only know the
Hilbert space dimension d (this is the SDI assumption). p,, is then sent to the other part of the device (Bob) who
receives his input Y from which he determines a measurement to perform on p,. The pair X = (Z, Y)
constitutes what we previously have called the input of the device in a given round. The result of Bob’s
measurement is denoted by B and the whole procedure yields a corresponding conditional probability
distribution P (B = b|X = x). We use the following quantity as security parameter which allows us to estimate
therandomness: T = >, ¢, P (B = b|X = x). Now we describe the methods which we can use to certify
randomness.

Randomness certification

The randomness of the variable B is quantified by conditional min-entropy, defined as

H,(B|X = x) = —log max P(B = b|X = x). (@))
b

Our task is to find alower bound on this quantity as a function of the parameter T. To this end we use methods
from [20] based on semi-definite programming [22] which are currently the state-of-the-art for this kind of
problems. However, these methods are only able to optimize target functions which are linear in probabilities,
which is not the case for —log max {-}. Since —log(-) is a strictly decreasing function, finding its minimum is
equivalent to finding the maximum of the argument. The max part can be managed by performing a separate
maximization for all b and then choosing the largest value. This would be sufficient if the same setting was
chosen for each round that is used for randomness generation. However, in the more general case we are
interested in, we have to use the average min-entropy’

HZ (B|X) = _L > log max P(B = b|X = x). (2)
xeX' b
Again, we can deal with log(-) easily: using its concavity we have
HY (B|X) > —log %er y max;, P(B = b|X = x) and thus we can focus on maximizing the argument. We
should perform a separate maximization for every value of b, but this time we have to choose a separate value of b
for every element of the sum. This implies D optimizations, where D is the number of possible values of B. We see
that the amount of computation grows exponentially with K so we need a good reason for choosing K > 1. Now,
we will present a simple and intuitive reason for taking K > 1, especially for protocols in which systems ofhigh
dimension are communicated. Later we show that our intuition is correct by considering a particular example.
Let’s assume K = 1 and consider a device which in Bob’s part uses the optimal measurements for reaching the
maximal value of T. The states for Alice are optimal for all zapart from a particular one denoted z,. Alice’s state p, is
an eigenvector of one of Bob’s measurements, call it y,. The values of these inputs are chosen in such a way that
xo = (20, )y is the only member of X’ " i.e. only rounds with the input x, are used for randomness generation.
Obviously, in this case there is no randomness as we can with certainty predict the measurement outcome. This
comes at a price of lowering the value of the elements associated to x, in the sum in 7. However, all the other
elements still have the optimal quantum value and the overall change to T'is not significant. The impact of this is
particularly strong for high dimensions since the possible values of Z required for impossibility of achieving the
maximal quantum value of T'with a classical protocol is greater than d [23]. The more values of Z different from z,,
theless T'is decreased by the procedure described. It is easy to see why taking larger K should help. In order to obtain
no randomness for many different values of X, more elements of the sum in T"have to be below the optimal value.
For example, if the devices use the strategy described in the paragraph above, for the experiment that we

describe in this paper, the critical value of T'below which no randomness can be generated is Ty = 10 1; K % +

7 We use this formula because, if it is later multiplied by the number of rounds, it represents log of the probability to guess the whole set of
outcomes B with the knowledge of the settings for each round available. This is the quantity in which we are usually interested when
generating randomness.
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Figure 1. Alower bound on min-entropy is given for different values of K. Note that for maximal quantum value of T'the same
amount of min-entropy is obtained. This amount is 0.4 which is much larger than 0.23 observed for a protocol based d = 2 quantum
random access code in [15]. This is one of the advantages of using quantum systems with a larger Hilbert space for communication
[25].
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Figure 2. Experimental setup for the estimation of the security parameter T. Alice’s quantum states are prepared through a
combination of three suitably oriented half-wave plates, HWP (6,), HWP (¢,) and HWP (5), a polarization beam splitter (PBS) and
two phase shifters PS(¢). Two mirrors M are used to realize Bob’s choice of measurement basis. Detectors D_; are associated to the ith
outcome of measurement Z and similarly for Dy;.

%%. This value is obtained by noticing, that there are 16 possible inputs for Alice and if she sends the optimal

state the success probability is %, while if she sends the eigenvector of one of Bob’s measurements it is only g For
K=1T = 0.742 and we see that the lower bound for larger K’s in figure 1 allows to certify the randomness for
this value of T. The same behavior is seen for K =2 and corresponding T, ~ 0.734. This clearly shows the
advantage of using larger K’s. Let us now present this in more detail.

The security parameter

The first SDI random number generation protocol [14] was based on a communication game in which Alice’s
inputis two bits z = (a, a;) and Bob’s input is a single bit y. Alice may communicate a two-level quantum

system to Bob who aims to access the bit a, i.e. the security parameter is T = %E P(B = a,|Z = (ap, 1),

apdny
Y = y). This task is known as a quantum random access code [24].

The quantum random access code can be generalized to a multi-dimensional scenario: Alice’s input
numbers agand a,; can attain values from 0 to d — 1, and she communicates a d-level quantum system to Bob

whoaims tofind B = a,, [25]. In this work, we consider the particular instance of the multi-dimensional
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quantum random access code with d = 4, the efficiency (T) of which will serve as our security parameter;

T=—L Y PB=a)z=(ana), Y=y 3

apany

Main results

We have applied the methods of [20] to evaluate the amount of randomness generated by the family of protocols
based on the d = 4 quantum random access code for different values of K. We have used a standard desktop
computer on which a single optimization takes about 5 minutes. For arbitrary K, using standard methods, we
would need 4X optimizations for certification which quickly becomes impractical. For instance, K = 4 would
amount to roughly 21 hours of computing for a single point on the highest line in figure 1, if it was not the case
that we came up with a method to reduce the computational complexity of the optimization. To achieve a
reduction of computational complexity, we have exploited the properties of min-entropy and random access
codes. The former depends only on the largest value of probability distribution while the latter effectively only
distinguishes between B = a, and B = a,. Therefore, we have introduced a new binary variable

B =if(B= a,) which takes the value 0 only when B = a,, and 1 otherwise. Because B’ is obtained from Bby
classical post-processing, the randomness of B’ is at most equal to that of B. Whether we do observe losses in
entropy while moving from Bto B’ depends on the value of T. In the regime of large T"s, which is the one we are
interested in, this will not happen. This is because the most probable value of B is going to be the one for which
the guess is successful (i.e. B = a,and B’ = 0) and min-entropy depends only on the highest probability in the
distribution. If, for at least one of Alice’s inputs, the most probable outcome of Bob would be different then the
success probability would be lower than T;, = %% + %i ~ 0.72. For larger values of T'we are sure that our
method does not lead to the decrease of entropy. Our numerics suggest that the same happens for lower values.

The main advantage of using B’ instead of B is that the former takes only two values and the number of
optimizations needed to lower-bound the entropy is therefore 2X. Observe that this number of optimizations
would remain unchanged even if we were to consider a quantum random access code of much higher dimension
thand=4.

In figure 1 we have plotted the optimization results for different values of K as a function of the security
parameter T. We observe that for larger K, not only more randomness is certified but also the critical value of T,
below which randomness is no longer certified, is lower.

To see how our analysis is relevant to the real experimental scenario we have performed an experimental
realization of the quantum random access code with d = 4 which we describe below.

The experiment

We have implemented the security parameter estimation for a class of randomness generation protocols based
on the d = 4 quantum random access code studied in [25]. The physical systems are defined by path and
polarization of single photons. The information is encoded in four basis states:

|1y = |H, A), |2) = |V, A), |3) = |H, B)and |0) = |V, B), where (H) and (V) are horizontal and vertical
polarization photonic modes respectively, and (A and B) are two spatial modes of single photons. Any ququart
state can be written as a|H, A) + b|V, A) + ¢|H, B) + d|V, B). We have used a heralded, single photon
source. The photons were generated through a spontaneous parametric down-conversion (SPDC) process
where the idler photon is used as trigger. The emitted signal photon modes are coupled into a single mode fiber
(SMF) and passed through both a narrowband interference filter (F) and a polarizer oriented to horizontal
polarization direction. Alice can produce any of the 16 states required by the protocol |1}, ,,) with

ag, a1 € {0, 1, 2, 3} by suitably oriented half-wave plates HWP (6,), HWP (6,) and HWP (65), polarization beam
splitter (PBS), and the correct setting of phase shifters PS(¢).

Bob chooses between two measurement settings. The choice to measure in a particular basis is implemented
by moving the mirrors (M) in and out with help of pico motor translation stages. For the computational basis
(Z£), the two removable mirrors are not present and the signal from detectors D; correspond to measurement
outcome i. For the measurements in the Fourier basis (X) the mirrors are in place and the two spatial modes
interfere at BS. In this case the measurement outcome i corresponds to the signal from detector Dy;.

Our single-photon detectors, both for trigger and measurements, were silicon avalanche photodiodes with
effective detection efficiency 7, = 0.55. All coincidence counts between the signal and idler photons were
registered using a multi-channel coincidence logic with a time window of 1.7 ns. The measurement time used for
each experimental setting was 10 s and the number of detected photons was approximately 2500 per second.
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Table 1. Amount of randomness generated for differ-
ent K from the experimentally obtained value of the
security parameter using optimized method. In the
last column the time it took us to perform the numer-
ics is given, which reflects the increased complexity of
larger K. It is the one-time cost that the user has to pay
for before running the protocol. Later he just needs to
check if the value of T'does not change. If it does the
optimization has to be repeated for the new value. We
estimate that to certify the randomness when all the
settings are used for its generation, i.e. X = X" it
would take 400 000 years on our machine.

K P, (B'=0) HY Time taken
1 1 0 c.a. 10 min
2 1 0 c.a.20 min
3 0.99512 0.007058 c.a.40 min
4 0.98180 0.026499 ca.l.5h

5 0.96882 0.045699 ca.25h

6 0.95565 0.065446 ca.5h

7 0.94628 0.079661 ca.llh

The results we observed are in very good agreement with the predictions of quantum mechanics. We have
observed T'= 0.7347, while the maximum that can be obtained with quantum resources is T'= 0.75.

The results

We have used T'= 0.7347 for the estimation of randomness. The results for protocols with different K are given
intable 1. P,, (B’ = 0) is the average probability that B’ = 0 ifthe input is from X”,i.e. P, (B’ = 0) =

%er x P(B = ayl(ap, a, y) = x). HY isequal to —log B,, (B’ = 0). First we notice that for the standard
protocol, with K = 1 no randomness is generated despite the high fidelity of the experiment. However, the
amount of randomness increases quickly with K. This comes at the price of an increased number of
optimizations. Nevertheless, it is a reasonable one—time cost when we use the device for the first time because it is

likely that later the same (or very similar) value of T'is going to be observed.

Discussion

We have presented a generalization of semi-device independent random number generation protocols to the
case in which the randomness is extracted from more than one choice of inputs. We have shown that this
approach can be used to certify more randomness without altering the experimental setup. This comes at a price
of much higher requirements on classical computational power. Furthermore, we have shown how to
significantly reduce the computational complexity of certification. We provided an intuitive explanation of
origin of the advantages of our approach as well as demonstrated it in practice by performing an experiment and
computing the randomness it generated. Nevertheless, we emphasize that there is no proof that another
randomness certification algorithm that performs even better than ours does not exist. However, our results
constitute a significant advance and indicate the direction which the research on quantum random number
generation is likely to follow.
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