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A B S T R A C T   

In order to investigate the effect of photointercalation on photoelectrochemical properties, two types of WO3- 
based photoanodes, bulk and exfoliated have been prepared and investigated. An aqueous exfoliation method is 
introduced for the simple fabrication of amorphous and hydrated WO3 nanomaterial using commercial bulk WO3 
precursor. The comparison of obtained material with bulk WO3 was performed using Raman, UV–vis, and XPS as 
well as scanning and transmission electron microscopies. The photoelectrochemical and photocatalytic perfor-
mances of bulk and exfoliated WO3 were compared. Generally, the proposed exfoliation procedure led to the 
preparation of photo(electro)catalyst characterized by better performance measured as a photocurrent of water 
oxidation and rate of methylene blue photodecomposition. The main aim of this research was to investigate the 
influence of alkali metal cations (Li+,Na+,K+,Cs+) presence in electrolyte on the photocatalytic and photo 
(electro)catalytic activity of the samples in a form of suspended powder and thin layer on transparent-conductive 
substrate (FTO), respectively.   

1. Introduction 

The concept of photointercalation, first proposed and explored by 
Tributsch in 1980, relates to a photoactive semiconductor having a layer 
structure, which can store light excited charges accompanied by ion 
intercalation under the illumination [1]. This phenomenon can be used 
in photo-intercalation solar cells that would store the stored energy and 
release it during the night. Mostly, the studies concerned semi-
conductors showing p-type conductivity and were based on photo-
cathodic intercalation of cations [2]. Interestingly, the effect of 
photoinduced cation intercalation may occur also under anodic condi-
tions as it was shown for n-type MoO3 grown on molybdenum substrates 
[3]. There is also a possibility of the layered metal oxide utilization as an 
energy storage material in photobatteries as it was shown for the case of 
CdS-decorated WO3 film photocharged in lithium-ion containing elec-
trolyte [4]. Thus, it may suggest that the effect of photointercalation of 
cations from the electrolyte should be taken into account for other 
n-type photoanodes exhibiting layered structure. One of them is 

tungsten oxide, which is commonly tested as a photoanode for water 
photooxidation [5–8]. Tungsten trioxide is known also as a photo-
chromic and electrochromic compound. Its wide energy gap allows to 
absorb light from the UV range. The photochromic effect in tungsten 
oxide is closely coupled to photo excited electron (e-) hole (h+) pairs 
which can decompose water molecules being incorporated in WO3 to a 
substantial amount. The light-induced oxidation of H2O molecule can be 
written as: H2O + 2h+→O + 2H+ which describes the creation of protons 
(H+) and metastable oxygen radicals O [9]. The protons and optically 
generated electrons allows the formation of coloured tungsten bronze 
which relay on an intercalation of proton into oxide structure and 
valence changes of metal ion: WO3 + xH+ + xe− (CB) → HxWx

+5W1-x
6+O3. 

Photointercalation of other univalent and some divalent cations is ex-
pected to occur under illumination, depending on their presence in the 
semiconductors’ vicinity. The intercalation can be driven also electro-
chemically as is presented in fundamental works on the role of elec-
trochemically driven intercalation process’s on lithium ions batteries 
functioning, by Goodenough and Whittingham, Nobel prize winners 
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[10–12]. 
Electrochemically driven intercalation, causing colour changes of the 

WO3 host, is discussed in ref. [13]. This review paper by Granquist 
presents the state-of-the-art in the field of electrochromic tungsten ox-
ides films – review concerns period 1993− 1998. Electrochemical 
intercalation/deintercalation process is controlled by slow diffusion of 
intercalated counter–ion in the solid-state and potential range of the film 
electrode [13]. 

The most popular scheme illustrating electrochromism is based on 
the cathodic process: WO3 + xM++xe− (CB) = MxWx

+5W1-x 
6+O3. (M – 

metal cations), where electrons are taking part in valence changes of 
transition metal ions forming layered (or spinel) oxides. Granquist 
pointed out that presented equation neglects many facts, for example, 
hydration of the film and surface states of the examined semiconductor. 
Thus, the scheme should be treated as a robust simplification of the 
electrochromic reaction. As was proven for amorphous WO3, ion trap-
ping can limit reversibility of the intercalation process, which is found to 
be irreversible when x in LixWO3 is above~ 0.65 value [14]. 

Moreover, photointercalation, as also electrochemically driven 
intercalation, is affected by the orientation of the crystal as it was shown 
for MoO3 [3] and for WO3 [15]. The same group gave evidence for the 
immense influence of crystal disorder on the process. As reported in Ref 
[3]. crystallographic structure and band structure of MoO3, as should be 
also for WO3, enables to generate excited charges for reductive reaction 
upon photo-excitation and store part of the excited charges in a host 
crystal via bronze formation. The stored charge is shown to be released 
for utilization in the dark in a kind of photoelectrochemical cell (PEC) 
[4]. The photocatalytic activity of MoO3 is strongly affected by photo-
intercalation The effect of K+ photointercalation into MoO3 thin films 
and its effect on optical properties, morphology as well as photoactivity 
have been reported [16,17]. The process of Mo-bronzes formation was 
carried out under simulated solar light illumination during the anodic 
polarization (+0.5 V vs. Ag/AgCl) of the electrode, at the potential that 
deintercalation is expected [17]. The effect of photointercalation of 
cations from the electrolyte should be taken into account for other 
photoanodes exhibiting layered structure as well. The intercalation into 
the van der Waals gaps is one of the methods of layered materials 
modification. Usually, the WO3 layers were modified before the actual 
photoelectrochemical experiment, e.g. cathodic polarization of 
WO3-based electrode performed in acid electrolyte led to the formation 
of protonated WO3 films. The modification hindered the photoactivity 
measured as the photocurrent of water oxidation, however, under the 
conditions of water splitting measurement, deintercalation occurred and 
the electrode returned to its initial state [18]. There was also a successful 
attempt of Li+, Na+, and K+ electrochemical intercalation, which in all 
cases results in an enhanced photocurrent density in comparison with 
the unmodified WO3 photoanode. However, the stability of intercalated 
photoelectrodes was not investigated [19]. The theoretical studies on 
the alkali metal cations (Li+, Na+, K+, Cs+ Rb+) intercalation into WO3 
structure and data on changes in electronic properties were reported. 
Valentin and co-workers calculated insertion of alkali metal cations as 
interstitial dopants in WO3 structure, showing immense distortion in the 
structure and significant reduction of the bandgap energy [20]. More-
over, recently computational studies on H+, Li+, Na+ cations intercala-
tion into WO3 were presented [21]. Authors discussed changes in 
electronic structure, the optical properties and diffusion behaviors of 
colored state of WO3 materials using first principle calculations. 

Solarska and co-workers reported influence on cation doping (using 
lithium, silicon, ruthenium, molybdenum and tin) into WO3 on 
morphology and photoelectrochemical activity of WO3-doped photo-
anode [22]. Moreover, it has been demonstrated that the intercalation of 
N2 – a neutral molecule to the WO3 structure positively affects the 
photoactivity of thermally stable photoanodes [23,24]. Reduced energy 
bandgap, increased charge carrier density and improved photocurrent of 
water photooxidation have been achieved for barium ions intercalated 
into WO3 photoanodes, prepared via hydrothermal method [25]. 

Systematic studies on the photoactivity of hydrothermally prepared 
WO3 nanostructures like nanoplates, nanorods, nanoneedles and nano-
wires proved that morphology has a great impact on photoactivity. The 
bandgap energies of synthesised WO3 nanostructures were ranged from 
2.70 +− 0.03 eV to 3.25 ± 0.03 eV [26]. It has been shown that the 
photocatalytic activity of nanocrystalline WO3 is a compromise of the 
bandgap, crystal phase, morphology, and the oxidation state of tungsten 
[26]. 

It can be concluded on the basis of previous reports that intercalation 
phenomenon can strongly affect pretreated photoanode materials 
working under anodic conditions e.g. during photoelectrochemical 
water splitting. On the other hand, it was shown that intercalation can 
be caused by illumination, even at the potential range that dein-
tercalation is anticipated [17]. Thus, in this work we are focused on the 
influence of photointercalation of chosen alkali metal cations during 
photoelectrochemical water oxidation into WO3 photoanodes. In order 
to investigate this effect, the photoelectrochemical and photocatalytical 
results were performed for two types of electrode films, bulk monoclinic 
WO3 as well as amorphous WO3 obtained via long term aqueous sus-
pension heating process, supposed to lead to exfoliation of bulk WO3. 

2. Experimental 

2.1. Chemicals 

All the reactants and solvents were of analytical grade and used 
without further purification. The WO3 powder, polyethylene oxide 
(M = 300 000), tert-butyl alcohol, benzoquinone, silver nitrate, 
ammonium oxalate, Li2SO4, Na2SO4, K2SO4 and Cs2SO4 as well as 
fluorine-doped tin oxide (FTO, 7 Ω/sq) were purchased from Sigma. 

2.2. Characterization techniques 

2.2.1. Morphology and crystal structure 
The crystal structure of the obtained materials was examined by 

powder X-ray diffraction (XRD). Patterns were obtained using an X`Pert 
Pro diffractometer with X`Celerator detector and Cu Kα radiation, λ 
=0.15406 nm. Raman spectroscopy measurements were performed 
using 514 nm laser using 1% of its total power (InVia, Renishaw). Ten 
spectra in the 100-1200 cm− 1 range were collected and averaged for 
each sample using 100x objective. The surface morphology was studied 
using SEM using Quanta 3D FEG (Fei Company) and TEM using Tecnai 
20 F X-Twin (Fei Company). The chemical composition of the surface of 
bulk and exfoliated samples was performed using an Argus Omicron 
NanoTechnology X-ray photoelectron spectrometer. The UV–vis spectra 
of bulk and AH-WO3-x were recorded using a Perkin Elmer Lambda 18 
UV–vis spectrometer. The optical band gap of the obtained material was 
determined as the intercept of the tangent of the plot of transformation 
of the Kubelka–Munk function (KM0.5Ef

0.5) vs. photon energy, where KM 
= (1R)2/2R, R – reflectance. 

2.2.2. Photoelectrochemical and photocatalytic measurements 
The photoelectrochemical measurements were performed in an 

electrochemical cell equipped with a quartz window. The geometrical 
surface area of the electrodes was equal to ~ 0.7 cm2. A high-pressure 
150 W xenon lamp (LOT – QuantumDesign GmbH) with the AM1.5 G 
filter was used as a source of electromagnetic radiation. The light in-
tensity was adjusted to 100 mW cm− 2 and was controlled by an Ophir 
power meter. The measurements were performed in different aqueous 
electrolytes (0.1 M Li2SO4, Na2SO4, K2SO4 and Cs2SO4). Platinum mesh 
and Ag/AgCl (3 M KCl) act as counterelectrode and reference electrode, 
respectively. The electrochemical studies were conducted using the 
AutoLab PGStat204 potentiostat-galvanostat system (Methrom, Auto-
Lab). The Mott-Schottky analysis was performed on the basis of 
impedance spectra recorded using Ivium Vertex potentiostat/galvano-
stat. The space charge capacitances were estimated on the basis on the 
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single frequency impedance (1000 Hz). The photocatalytic activity of 
the samples (50 mg of powder) was investigated throughout the 
degradation progress of methylene blue (MB). The volume of MB 
aqueous solution used in the experiment was 50 mL with an initial 
concentration of 10− 5 M. The changes of MB concentration during 
measurement were determined according the absorbance measurement 
at λ = 665 nm wavelength using the UV–vis spectrophotometer model 
UV5100 (Metash). In order to test the mechanism of photocatalytical 
degradation of methylene blue on bulk and exfoliated WO3, process was 
performed in the presence of different alkali metal cations (Li+, Na+, K+, 
Cs+) as well as in the presence of appropriate scavengers. Tert-butyl 
alcohol (t-BuOH), AgNO3, ammonium oxalate (AO), and benzoqui-
none (BQ), acted as scavengers of hydroxyl radicals, electrons. holes and 
superoxides, respectively. 

3. Results and discussion 

3.1. Synthesis and electrode preparation 

The procedure that leads to the formation of an amorphous and 
hydrated WO3 was described in our previous reports [27,28]. Generally, 
the aqueous suspension of bulk WO3 was subjected to an exfoliation 
procedure for 10 days at 80 ◦C. In order to perform the synthesis, 3 g of 
WO3 was suspended in 50 mL of triple-distilled water. WO3 after exfo-
liated procedure is named as AH-WO3. The UV–vis spectrum of exfoli-
ated WO3 aqueous suspension is characterized by strong absorbance 
appearing from 350 nm and extending to lower wavelengths (Fig. S1). 
The lack of the absorption edge characteristic for the energy band gap of 
crystalline, bulk WO3 (absorption edge at about 500 nm) suggests that 
the exfoliation procedure leads to the preparation of amorphous WO3. In 
order to obtain AH-WO3-x in a form of a powder, water from exfoliated 
mixture was slowly evaporated from the Petri dish at 40 ◦C for 24 h. 
Next, the obtained powder was subjected to DSC (differential scanning 
calorimetry) measurements, see Fig. S2. Such material was tested as 
photocatalyst for methylene blue degradation. Similarly, to prepare the 
film of AH-WO3-x on the transparent-conductive substrate, the 50 μl (on 

the area of 1cm2) of exfoliated WO3 suspension was drop-casted on the 
degreased FTO substrate and heated at 40 ◦C. 

In order to test bulk WO3 as a photocatalyst, commercially available 
WO3 powder was grinded in a mortar and pestle. The bulk WO3 thin 
films were prepared on FTO substrates using dip-coasting method with 
PEO as a binder. The material-to-binder mass ratio was equal to ~2. 
Then, water was added to the mixture (1 mL for 0.2 g of the material) 
and homogenized using a glass rod. The FTO substrate was immersed in 
the suspension for 3 s and slowly pulled out. The non-conductive side 
was cleaned with dust-free tissue (Kimtech). Then, the resulting film was 
dried at room temperature for 2 h and annealed in an air atmosphere at 
400 ◦C to remove the binder. The procedure of solid material thin layers 
deposition on the substrate was described in more details in the previous 
paper [29]. In both cases, the uncovered part of FTO was attached with 
the copper electrical tape (3 M) and isolated using parafilm. 

3.2. Morphology 

In order to investigate the changes of WO3 morphology caused by 
exfoliation procedure, SEM and TEM were used. The morphology 
change from micrograins (bulk WO3) to nanoplates (AH-WO3) is 
clea0rly demonstrated in SEM micrographs presented in Fig. 1a-e. Bulk 
WO3 occurs in a form of irregular crystallites (Fig. 1a). Higher magni-
fication images reveal its layered structure, as expected (Fig. 1b).The 
exfoliation procedure significantly affects the material morphology. The 
AH- WO3 appears in a form of rounded-shape clusters (Fig. 1d). They are 
built by agglomerated nanoplates that were probably formed during 
slow water evaporation. As presented in Fig. 1e, many nanoplates with 
morphology similar to scraps of paper can be observed, which is in 
obvious contrast to that of bulk WO3 (irregular crystallites, Fig. 1a). The 
thickness of the nanoplates can be estimated to be from 50 to 150 nm. 
The detailed morphology investigation of the WO3 materials were per-
formed using transmission electron microscopy, see Fig. 1c and f. Mi-
crographs presented in Fig. 1c (and Fig. 2c inset) exhibit the typical TEM 
images of nanoparticles (bulk WO3). The comparison of SEM and TEM 
images show large size distribution of bulk WO3. In the case of exfoliated 

Fig. 1. SEM images of (a, b) bulk WO3 and (d, e) amorphous and hydrated WO3. TEM images of c) bulk WO3 and e) exfoliated material.  
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material, TEM images demonstrated the presence of many ultra-thin 
layers with several-hundred nanometers of length. Such semi- 
transparent layers are shown in Fig. 1f (and Fig. 1f inset). 

The EDX analysis for bulk and exfoliated material (Fig. S3) confirms 
the presence of tungsten and oxygen (the signal of Cu origins from 
copper mesh that was used as a support for TEM measurement). The 
elemental composition shows that the W:O ratio in exfoliated WO3 
(Fig. S3a) differs from the ratio of these elements in bulk material 
(Fig. S3b) due to the modification procedure. The higher W:O atomic 
ratio after exfoliation procedure suggests material reduction and for-
mation of nonstoichiometric suboxide WO3-x. The presence of hydrogen 
in the samples was estimated by means of elemental analysis. The ma-
terial after exfoliation procedure contained 2.478 at% hydrogen, and 
bulk WO3- 0.235 at%. 

3.3. Spectroscopic methods 

In Fig. 2a and b the absorbance spectra and Tauc plots are given, 
respectively. As it is typical for tungsten oxide, the highest absorbance 
was registered in the UV range. In the case of the exfoliated material 
(solution slowly dried in a Petri dish), the absorbance edge is shifted 
towards lower wavelengths. Simultaneously the UV–vis spectrum of this 
sample is characterized by higher absorption at Vis range of electro-
magnetic irradiation, which is positive for the photocatalytic materials 
in processes involving sunlight (the photocatalytical and photo-
electrochemical applications). Similar behavior at visible range was 
already reported for other metal oxides e.g. hydrogenated TiO2 and 
thermally treated Mo/MoO3 samples. It can be attributed to the for-
mation of the suboxides, which are characterized by the presence of 
reduced metal centres like Ti3+ and Mo5+ respectively [30,31]. 

The absorption band of WO3-x in the visible and near-infrared region 
of the spectrum is commonly described as a surface plasmon resonance 
(SPR) effect. A clear band with a maximum in a visible region was re-
ported for reduced WO3 in a crystalline form [32–35]. On the other 
hand, broad absorption at wavelengths higher than the energy bandgap, 
as in the presented case, was shown for amorphous WO3 samples [36, 
37]. Thus, the SPR absorption in the case of exfoliated WO3 cannot be 
excluded. However, since the plasmonic absorption strongly depends on 
the shape and the size of the nanomaterials [38,39], the lack of sharp 
peak can be also related to the wide size distribution of the obtained 
flakes. Nevertheless, the origin of the absorption in a visible range of 
exfoliated WO3 is not clear and it requires further investigations. 

Basing on the Tauc plots (Fig. 2b), the optical bandgap (Eg) values 
were determined and equaled 2.54 and 2.84 eV for bulk and amorphous 
and hydrated WO3, respectively. It was assumed that both samples 
exhibit indirect band gap as it was shown for bulk WO3 [40]. The dif-
ferences of Eg may be related to the crystallinity and lack of it of char-
acterized materials as it was shown previously for sputtered WO3 layers 
[41]. Thus, the exfoliated material has a higher optical band gap in 
comparison to the bulk material, however, one may expect that 

enhanced visible light absorption of exfoliated WO3 will positively affect 
the photocatalytic properties. 

The X-ray photoelectron spectroscopy allows investigating binding 
energies and changes in the oxidation states in the material due to the 
modification process with reference to the bulk WO3. The XPS spectra of 
the W 4f region are presented in Fig. 3. In the case of the bulk WO3, the 
doublet at 37.97 and 35.83 eV was recorded and ascribed to the binding 
energies of the W 4f5/2 and W 4f7/2 orbital electrons of W6+, respectively 
(Fig. 3a). After the formation of amorphous and hydrated nanoplates, 
two new peaks in the W 4f region appeared at the lower binding energies 
of 37.11 and 34.96 eV, belonging to the W5+ oxidation state [42]. The 
appearance of the W5+ valence state probably associated with the 
presence of oxygen vacancies in the exfoliated material and therefore, 
the chemical structure can be referred to as WO3-x suboxide. It is very 
likely that during the formation of the oxygen-deficient structure, the 
W6+center neighboring the oxygen vacancy in the WO3 lattice is 
reduced to W5+. A similar phenomenon of metallic center reduction was 
observed for exfoliated molybdenum trioxide [43]. 

The O1 s peak was deconvoluted in two components in the case bulk 
WO3 (O1 sA and O1 sb) and three components in the case exfoliated 
WO3 (O1 sA, O1 sB and O1 sC), see Fig. 3b. The peak O1 sA with a 
binding energy of 530.4 eV is the same for both spectra and is assigned 
to the oxygen atoms (O2− ) that form the strong W––O bonds [44]. The 
peak at 531.6 eV (O1 sB) corresponds to OH-groups [45], however it 
may illustrate the C contamination and can be more precisely attributed 
to C––O bonds [46]. The signal is shifted into the higher binding energy 
for AH-WO3-x nanoplates suggesting different chemical surrounding. 
The intensity is higher in comparison to spectrum of bulk WO3 due to the 
higher concentration of surface groups. The peak at the highest binding 
energy (O1 sC, 533.4 eV) observed only in the case of exfoliated mate-
rial is attributed to water molecule bound at the surface of the samples, 
proving the existence at the surface of WO3(H2O)n phases [47]. The XPS 
results proving H2O presence are consisted with Raman spectroscopy. 

3.4. Material structure 

The crystal structure of the samples was examined locally on TEM 
images. Fast Fourier transform (FFT) was made from the marked areas in 
Fig. 4a, b. In the presented FFT images, a clear crystal structure for the 
starting material was observed (Fig. 4b), periodic point reflections) or an 
amorphous structure (Fig. 4d, no point reflections) for exfoliated WO3 
was observed. 

Raman spectroscopy was used for characterization of the bulk and 
exfoliated WO3 samples. As can be seen in Fig. 5, the two normalized 
spectra are very different from each other. In the case of bulk WO3, all 
the peaks are sharp and well defined due to the crystalline nature 
(monoclinic phase) of the metal oxide. It can be seen from Fig. 5 (black 
line), that the most intense peaks are observed at 807 and 716 cm− 1, and 
they can be related to the symmetric and asymmetric vibrations of 
W6+–O bonds (O–W–O stretching modes), while the band at 273 cm− 1 

Fig. 2. a) The UV–vis absorption spectra and b) the Tauc plot for bulk and hydrated WO3 films.  
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can be ascribed to the δ (W–O–W) bending mode of the bridging ox-
ygen of monoclinic phase [48]. In the case of the spectrum of AH-WO3, 
the registered band confirms the presence of hydrated WO3⋅H2O [49]. 
The intensity of the bands are much weaker and broader in comparison 

of the spectrum of crystalline WO3 due to the disorder nature of hy-
drated material. The main band is located at 961 cm− 1 and can be 
attributed to the W–OH vibrations on the surface of nanoplates. Similar 
band was observed in the Raman spectra of WO3 hydrates [50]. Water 

Fig. 3. Deconvoluted XPS spectra of the bulk and hydrated material: a) W 4f and b) O 1s regions.  

Fig. 4. TEM images and FFT of bulk WO3 (a, b) and AH-WO3 (c, d).  
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molecule binds with oxygen of WO6 octahedra giving a contraction of 
the opposite W–O bond [51,52]. Cazzanelli et al. observed a similar 
Raman band after long milling of micro-crystallized tungsten oxide 
powder leading to the significant particle size decrease. This band was 
attributed to the occurrence of W5+O2 surface bonds [53]. Thus, high 
surface to volume ratio of WO3 nanoplates and lack of crystallinity make 
Raman spectrum affected mainly by short-range ordering of W–OH 
vibrations on the nanostructures edges as opposed to bulk WO3. The 
wide, low-intensity band at 660 cm− 1 may indicate the WO3 nanoplates 
thickness and hydration level, as it was previously reported by 
Kalantar-Zadeh et al. [49], since it can be attributed to the stretching 
modes of O–W–O for the bridging oxygen atoms across WO3 planes. 
The low intensity of this band confirms the successful exfoliation of WO3 
structure. 

The phase composition and crystal structure of bulk and modified 
samples were also examined by powder XRD technique (see Fig. S4). In 
the case of bulk WO3, the peaks at 2θ values at 23.07, 23.7, 24.4, 26.6, 
28.8, 33.3, 34.2, 35.6, 41.8, 47.3, 50, 54.2 and 56̊ corresponded to the 
(002), (020), (200), (120), (112), (022), (202), (103), (222), (040), 
(440), (240) and (241) crystal planes of monoclinic phase of WO3 were 
found. The XRD pattern of bulk WO3 consists all reflexes that are 
characteristic for monoclinic phase of tungsten trioxide [54,55]. The 
XRD pattern of WO3-x consists mainly amorphous halo, thus the exfoli-
ated material loses its crystallinity. However, low-intensity peaks can be 
found (marked with diamonds and hearts in the figure). These peaks can 
be assigned to both orthorhombic-tungsten trioxide hydrate 
(o-WO3⋅H2O) and hexagonal tungsten oxide hydrate (h-WO3⋅0.33H2O) 
[56]. 

3.5. Electrochemical, photoelectrochemical and photocatalytic properties 

Cyclic voltammetry was used for the electrochemical characteriza-
tion of the WO3 films on the FTO substrates. The electrochemical tests 
were performed in a three-electrode cell with 0.1 M K2SO4 aqueous 
solution as the electrolyte. As shown in Fig. 6a and b, the cyclic vol-
tammetry (CV) of exfoliated and bulk WO3 are compared at a scan rate 
of 50 mVs− 1. The CV curve of bulk WO3 exhibits oxidation/reduction 
peaks that was observed previously and described as conversion of 
valence states of W-centers with simultaneous adsorption/desorption of 
cations available in the electrolyte [57]. The presence of anodic peak is 
an evidence that during oxidation of W5+ centers, the deintercalation of 
cation occurs simultaneously [58,59]. Interestingly, in the case of 
exfoliated material the oxidation peak was not observed. Instead of that, 
current plateau characteristic for pseudocapacitance was recorded. 

The photoactivity of obtained electrodes were compared during 
potentiodynamic polarization in 0.1 M K2SO4 under intermittent irra-
diation using solar simulator. The LSV curves are presented in Fig. 7a. 
WO3 exhibits n-type semiconducting properties, thus can be used as a 
photoanode for water photooxidation [40]. In the case of bulk WO3, 
photocurrent is definitely lower compared to the photocurrent gener-
ated by hydrated WO3 in measured potential range At a potential of 
about 0.5 V, the saturated photocurrent for exfoliated material was 
almost three times higher in comparison to that generated at the bulk 
WO3. Thus, in the studied case, we observed a significant increase of 
photocatalytic efficiency of hydrated WO3 nanoplates film than 
measured for the bulk WO3. A slightly lower increase was reported when 
comparing pristine WO3 with dehydrated crystalline plates WO3 planes 
[60]. Our results indicate that the crystalline phase is not crucial for the 
photocatalytic activity of WO3 nanomaterial and content of water is 
found as not a hindering factor as well. Thus, according to our best 
knowledge, it is the first to report on hydrated, amorphous phase 
exhibiting high anodic photocurrent, enabling further application in 
water splitting systems. 

The results of photocatalytic degradation of MB by the WO3 and AH- 
WO3-x suspended in aqueous solution of dye are presented in Fig. 7b. For 
comparison, a blank experiment under simulated sunlight irradiation 
without photocatalyst was also performed. After a 2 h illumination in 
the presence of bulk WO3, the degradation of methylene blue reached 55 
%, whereas the degradation efficiency of 83 % was achieved for exfo-
liated material. The improvement of the material’s photoactivity in 
general results from the fact, that nanostructures obtained in the 
modification process: i) can improve charge carriers transport paths, ii) 
reduce the recombination rate of charge carriers and iii) increase the 
contact area of the photocatalyst with pollution due to the 2D nano-
structure, which will increase the efficiency of organic contamination 
degradation in the water phase and increase in generated photocurrents 

Fig. 5. Raman spectroscopy of bulk and exfoliated material.  

Fig. 6. Cyclic voltammograms for the a) bulk and b) exfoliated WO3.  
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[61–63]. Notable, the amorphous and hydrated material also shows 
better adsorption properties, which is visible as a decrease in MB con-
centration after 20 min of stirring in the dark. It is related to the very 
high surface-to-volume ratio as well as surface enriched in surface 
groups. The wider optical energy bandgap may suggest worse photo-
activity, however, it is not the case of bulk and exfoliated WO3. As it was 
shown above (see Fig. 2), despite the Eg widening, the exfoliated ma-
terial exhibits absorption ability in a whole visible range, which can 
positively affect photodegradation efficiency of organic pollutant. Thus, 
generally the proposed exfoliation procedure brings about novel mate-
rial with enhanced photoactivity of tungsten trioxide. 

3.6. The influence of photointercalaction on the photocatalytic and 
photoelectrochemical properties of bulk and exfoliated WO3 

Tungsten oxide is one of the most commonly investigated photo-
chromic materials [64,65]. Since the photochromic effect of WO3 is 
strictly related to the photo-induced cation intercalation, it should also 

affect the efficiency of photocatalytic degradation of organic pollutants 
in the presence of dissolved inorganic salts. Moreover, taking advantage 
of the phenomenon of photointercalation during the decomposition of 
organic pollutants opens up completely new possibilities. For example, 
MoO3 can act as a photocatalyst under anaerobic conditions, as with 
significantly enhanced efficiency as long as alkali metal ions are avail-
able in the solution. Thus process can be controlled using additional 
parameter usage of appropriate aqueous environment [66]. Here, the 
photoactivity of the bulk and exfoliated WO3 towards decolorization of 
methylene blue were tested in the presence of 0.1 M Li2SO4, Na2SO4, 
K2SO4 or Cs2SO4. The progress in the photodegradation of MB under 
illumination is presented in Fig. 8 a, b. For comparison, photolysis tests 
were performed in the presence of alkali metal cations, but without a 
photocatalyst (Fig. S5a). In the case of bulk WO3, the influence of the 
presence of alkali metal cations in the MB solution can be observed. 
After 2 h illumination, the photodegradation efficiency of MB in the 
presence of Li2SO4, Na2SO4, K2SO4 and Cs2SO4 reached 84 %, 63 %, 62 
%, 54 %, respectively. The efficiency of MB degradation in solution 

Fig. 7. a) The linear sweep voltammetry (LSV) (20 mV s− 1) recorded in 0.1 M K2SO4 under intermittent illumination for obtained electrodes. b) Photocatalytic 
performance of the catalysts under simulated sunlight irradiation (without addition of inorganic salt). 

Fig. 8. Effect of different metal cations Li+, Na+, K+, Cs+ (a, b) and scavengers BQ, TBA, AO, AgNO3 (c, d) on degradation efficiency of MB.  
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without the addition of inorganic salt is presented for comparison and 
reached 55 %. There is no doubt that the ion radius of the alkali metal 
ion present in the solution affects the efficiency of the MB photo-
degradation. The illumination of bulk WO3 suspension leads to the 
photoexcitation of electrons to the conduction band. They may be uti-
lized for reduction reactions or may be stored in its layered crystalline 
structure via alkali cation intercalation. 

In the case of a large Cs+ ion, the photodegradation efficiency is 
comparable to the experiment without the addition of salt. In the case of 
smaller cations, the improvement is noticeable. The intercalation pro-
cess requires electrons, thus the presence Li+, Na+ and K+ allows WO3 to 
act as electron scavengers, consuming in reversible way photoelectrons 
changing the valence state of tungsten metal centers. The scavenging 
process of the photoexcited electrons leads to inhibition of the e− /h+

recombination. As a result, photoexcited holes may be utilized for 
photooxidation of MB more efficiently. 

As can be seen, a similar effect has not been observed for the AH- 
WO3, Fig. 8b. There are no substantial differences observed in photo-
catalytic degradation of MB due to electrolyte LiSO4, Na2SO4, Cs2SO4 
presence. The observations suggest that in the case of the lack of regular 
layer structure, alkali metal ions are not able to be inserted between the 
van der Waals gaps (because they do not exist). These results confirm the 
formation of 2-D exfoliated material. 

The results of photocatalytic degradation of MB for bulk and exfo-
liated WO3 in the presence of different scavengers are presented in Fig. 8 
c and d. For a comparison, the photodegradation without scavengers has 
also been considered as a control process. In the case of the bulk WO3, 
the results show that the addition of AO and TBA, which are used to be 
treated as the photoexcited holes (h+) and hydroxyl radical (۰OH) 
scavengers, significantly inhibits the photodegradation efficiency of MB. 
Thus, the degradation of MB is strictly related with direct photooxida-
tion of dye adsorbed on the photocatalyst via holes from valence band. 
On the other hand, after the addition of BQ which is commonly used as a 
superoxide radicals scavenger, the MB photodecomposition efficiency is 
in similar level as in the case of the experiment without the addition of 
scavenger. It can be concluded that superoxide radicals do not partici-
pate in the photodegradation of organic dye. Thus, the main individuals 
responsible for dye photodegradation are holes and hydroxyl radicals. It 
was also confirmed by experiment performed in a presence of AgNO3, 
which acts as electron scavenger. The MB degradation efficiency was 
significantly improved, because photoexcited electrons were consumed 
for Ag+ reduction (or intercalation), what inhibits e− /h+ recombination 
[67]. However, the case with silver nitrate is not so straightforward 
because one may consider the modification of the catalyst with photo-
active silver during the process. The same experimental procedure was 
performed for exfoliated WO3. As it is shown in Fig. 8d, each scavenger 
negatively affected the MB photodegradation efficiency. Thus, it may be 
concluded that the way of methylene blue photodecomposition using 
AH-WO3 is more complex and holes, hydroxyl radicals, superoxide 
radicals as well as photoelectrons participate in the process. For com-
parison, photolysis tests were performed in the presence of different 
scavengers, but without a photocatalyst (Fig. S5b). 

The experimental results are summarized in diagram in Fig. 9. 
Photoelectrochemical properties of the prepared electrodes were 

examined using the chronoamperometry (CA) and linear voltammetry 
(LV) technique recorded under intermittent illumination in different 
electrolytes (lithium, sodium, potassium and cesium sulfates) (Figs. 10 
and 11). First, LV curves were measured. Then, electrodes were illumi-
nated and polarized at 0.5 V (vs Ag/AgCl/3 M KCl) for 1 h (working 
conditions of the photoanode). In the next step, the LV and CA tests were 
repeated in order to compare the results with initial photocurrent. In the 
case of the bulk WO3 electrodes, the type of electrolyte did not affect 
significantly the results and all the electrodes during the initial tests 
generated comparable but moderate photocurrent. In the case of 
potentiodynamic measurements (LV), the WO3 photoanode generated 
photocurrent at potentials higher (more anodic) than the flatband 

potential, which is characteristic of n-type semiconductors. After one 
hour of operation in conditions of simultaneous illumination and po-
larization, repeated LV and CA tests shown that photoelectrochemical 
performance of electrodes decreased. However in the case of electrolyte 
containing Li+ and K+, the decrease in photocurrent was most pro-
nounced. The negative effect of the presence of Li+ dopant has been 
previously reported [22]. The LV curves were measured from -0.5 V (it 
was not a rest potential). As it is shown in Fig. 10, after pretreatment, the 
clear anodic humps on LV curves were registered for Li+ Na+ and K+

electrolytes. We claim that anodic current is related to the dein-
tercalation of alkali metal cations from the WO3 layered structure. It was 
not expected, since the electrodes during the previous experiment were 
polarized anodically. However, it seems that during 1 h of measurement 
two different phenomenon occurs, photoinduced cation intercalation 
and deintercalation caused by anodic polarization. The anodic current 
recorded after an hour’s measurement and the color change of the WO3 
film suggest that the equilibrium under given conditions is shifted to-
wards the formation of intercalated material. Cesium ions intercalation 
requires the most significant distortion of WO3 lattice [68]. Thus, in the 
case of the biggest Cs+ ions, the effect was not so pronounced, which 
may indicate steric hindrance and mismatch of the ion radius to the size 
of van der Waals gaps in bulk WO3. However, it is not the first time when 
WO3 films were investigated as photoanodes in various aqueous elec-
trolytes, including lithium, sodium and potassium sulphates [69]. Pre-
viously, the authors observed gradual decrease of photocurrent and 
significant differences in Faradaic efficiency of OER. It was claimed, that 
the hindering of photocurrent and O2 evolution was observed due to the 
adsorbing of alkali metal cations on the active sites for oxygen evolving. 

In general, the main conclusion of this experiment is that in the case 
of photoanodes based on metal oxides showing a layered structure, the 
type of cation in the electrolyte plays an important role and directly 
affects the recorded photocurrent of water oxidation. In the case of 
electrodes made of AH-WO3, the effect of the cation type on the change 
of photoelectrochemical performance of photoanode was not expected 
due to the lack of regular, layered structure, unless we do not take into 
account photointercalation, but only blocking of active centers as re-
ported here [69]. Noteworthy, the difference of recorded photocurrent 
before and after 1 h of operation in the case of Li+, K+ and Cs+ were 
definitely smaller than the case of bulk material as it is shown in Fig. 11 
(data are also presented separately in each row for used electrolyte 
Li2SO4, K2SO4, Na2SO4, Cs2SO4). These results support the concept of 
photointercalation. The proposed method of WO3 modification im-
proves its stability. Moreover, the characteristic anodic hump on LV 
curves was not recorded after 1 h of simultaneous polarization 
(E = 0.5 V) and illumination of AH-WO3, in contrast to bulk WO3. It 
suggests that in the case of unmodified, bulk WO3, we are dealing with 
photointercalation and that phenomenon cannot occur in the case of 

Fig. 9. Diagram presenting a summary of photocatalytic performance, 
measured degradation degree of MB. 
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exfoliated electrode material. However, as it is shown on the long-term 
CA test, the photocurrent increase in time for Na+ containing electro-
lyte. Significant improvement of photoelectrochemical performance was 
achieved after 1 h of operation. The positive effect of the Na+ presence 
on the photoactivity of monoclinic WO3 was shown previously [70]. As 
it can be concluded, Na+ ions positively affects also the photo-
electrochemical performance of amorphous tungsten oxide, however the 
mechanism of the improvement is not clear. 

The photocurrent densities registered at +0.5 V (chro-
noamperometry after 100 s) are listed in Table 1 with the difference 
between the current registered for a sample in the dark and under its 
illumination (Δj). The table shows a list of photocurrent recorded before 
and after 60 min of photoanode operation in various electrolytes. 

Additionally, the Mott-Schottky analysis was performed for both 
types of electrodes. The influence of long-term illumination and anodic 
polarization has been investigated and the results are presented in the 
Fig. 12. In the case of exfoliated WO3, the 30 min of simultaneous po-
larization and illumination does not affect the flat band potential as well 
as slope of Mott-Schottky plot. On the other hand, the significant 

changes were observed for bulk WO3 electrode. The flat band potential 
stays more less the same and the value is similar to the one reported 
previously [71]. However the slope of the Mott-Schottky plot was twelve 
times lower for the electrode just after photoelectrochemical treatment. 
The slope of Mott-Schottky plot is inversely proportional to the donor 
concertation (Nd). In the case of the n-type semiconductors, Nd means 
electron donor concertation [72]. The significantly increased Nd value 
has been already reported for electrochemically reduced WO3, which is 
in agreement with present observation [73], doped WO3 [74,75] and 
hydrogen reduced WO3 [76]. 

Here, excess of the electrons origins from the photoelectrochemical 
reaction. Generally, under anodic polarization photoexcited electrons 
should pass through the external circuit to the counterelectrode, but in 
the case of layered metal oxide material, some charges are stored in the 
electrode material via photoinduced intercalation. 

In order to proof that presented in Figs. 10 and 11 changes of the 
photoelectrochemical performance are related to the photointercalation 
effect, EDX measurements of the electrode materials after polarization at 
0.5 V vs Ag/AgCl (3 M KCl) in 0.1 M K2SO4 were performed. The EDX 

Fig. 10. The comparison of CA, LV curves of bulk WO3 after and before illumination and the long-term chronoamperometry test (E = 0.5 V vs. Ag/AgCl (3 M KCl)) 
recorded during illumination of electrode. Measurements performed in various electrolytes a) Li2SO4, b) K2SO4, c) Na2SO4 and d) Cs2SO4. 
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spectra of bulk WO3 and AH-WO3 after polarization at dark are pre-
sented in Fig. 13 a and d. Spectra consist peaks characteristic for W and 
O. In the case of bulk material, some residues of carbon were also 
detected (binder residue). No potassium was detected, that confirms that 
intercalaction does not occur at 0.5 V vs Ag/AgCl (3 M KCl) at the dark. 
As it was expected, the illumination of the polarized electrodes does not 
affect the EDX spectra of AH-WO3, see Fig. 13 e and f. However, in the 
case of bulk material, EDX spectra (Fig. 13 b and c) consist a new peak at 
3.31 keV that originate from intercalated potassium ions. Moreover, 

longer illumination leads to the increase of K content. Thus, it is direct 
evidence that intercalation phenomenon occurs for the anodically 
polarized bulk WO3, while electrode material is illuminated. 

4. Summary 

We investigated the influence of alkali metal cation intercalation on 
photoelectrochemical and photocatalytic properties of bulk and exfoli-
ated WO3. The influence of the cation crystallographic ion radius on the 

Fig. 11. The comparison of CA, LV curves of exfoliated WO3 before and after illumination and the long-term chronoamperometry test (E = 0.5 V vs. Ag/AgCl (3 M 
KCl)) recorded during illumination of electrode. Measurements performed in various electrolytes a) Li2SO4, b) K2SO4, c) Na2SO4 and d) Cs2SO4. 

Table 1 
Photoelectrochemical activity (Δj) in various electrolytes at +0.5 V, measured before and after 1 h illumination.  

Electrode 

Li2SO4 K2SO4 Na2SO4 Cs2SO4 

Δj, μA cm− 2 

Before after before after before after before after 

Bulk WO3 57 13.5 37.5 11.6 41.6 31.4 41.1 31.7 
AH-WO3-x 148 114 97.5 83.7 83.2 155 87.9 95.8  
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tested properties was clearly observed only for bulk WO3. We claim that 
the differences of WO3 behaviour under simulated solar light illumina-
tion are related to the photointercalation phenomena. The process of 
photointercalation occurs only for non-exfoliated material in a form of 
powder as well as for electrode material even under anodic polarization. 
The main pathway of dye degradation is the direct reaction with 
photoexcited holes. The utilization of photoexcited electrons for 
photoinduced intercalation hindering adverse e− /h+ recombination and 
enhance efficiency of dye degradation. On the other hand, in the case of 
photoelectrochemical water splitting, the consumption of photoexcited 
electron negatively affect the measured photocurrent. In the case of the 
exfoliated WO3, lack of regular, layered structure makes that photo-
intercalation does not occur, thus the presence of cation in the electro-
lyte does not significantly affect the measured photoactivity. The 
presence of alkali metal cation in bulk WO3 after long-term photo-
intercalation has been confirmed using spectroscopic method. Summa-
rizing, in the case of photocatalysts and photoanodes based on layered n- 
type semiconductors, the presence and the type of alkali metal cation in 
the electrolyte should be taken into account. 
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