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Abstract: The aim of the study was to check the possibility of reusing aggregate from recycled
concrete waste and rubber granules from car tires as partial substitution of natural aggregate. The
main objective was to investigate the effects of recycled waste aggregate modified with polymer fibers
on the compressive and flexural strength, modulus of elasticity and permeability of pervious concrete.
Fibers with a multifilament structure and length of 54 mm were deliberately used to strengthen the
joints among grains (max size 31.5 mm). Eight batches of designed mixes were used in the production
of pervious concrete at fixed water/binder ratio of 0.34 with cement content of 350 kg/m3. Results
showed that the use of recycled concrete aggregate (8/31.5 mm) with replacement ratio of 50% (by
weight of aggregate) improved the mechanical properties of pervious concrete in all analyzed cases.
Whereas the replacement of 10% rubber waste aggregate (2/5 mm) by volume of aggregate reduced
the compressive strength by a maximum of 11.4%. Addition of 2 kg/m3 of polymer fibers proved
the strengthening effect of concrete structure, enhancing the compressive and tensile strengths by a
maximum of 23.4% and 25.0%, respectively. The obtained test results demonstrate the possibility of
using the recycled waste aggregates in decarbonization process of pervious concrete production, but
further laboratory and field performance tests are needed.

Keywords: pervious concrete; waste construction materials; recycled aggregate; polymer fibers;
decarbonization in concrete production

1. Introduction

Pervious concrete (PC) is a form of concrete with a special structure and is made from
strictly controlled amounts of water and cementitious materials (binders) used to create
a paste that forms a coating around coarse aggregate. Unlike conventional concrete, the
mixture has little or no fine aggregate, creating substantial void ratio. Using sufficient paste
to coat and bind the aggregate particles together creates a system of highly permeable,
open, and interconnected voids, allowing water and gases to permeate through its structure
rapidly. Both the low binder content and high porosity reduce strength compared to conven-
tional concrete, but sufficient strength is readily achieved for many applications. Therefore,
PC is an effective stormwater management tool to reduce the volume of stormwater runoff
and the concentration of pollutants [1]. Pervious concrete is also widely recognized as
a sustainable building material used in pavement engineering for parking lots and road
surfaces, and it has variety of the advantages, i.e., reducing noise, impact of the urban
heat island effect, water accumulation, improving stormwater quality, and recharging
groundwater supplies [2,3]. From past studies it was observed that pervious concrete mix
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proportions selected by an experimental basis vary from to region to region. However, the
numbers of proposed studies on mix design of pervious concrete are very less [4–7].

The storage of massive quantities of waste rubber tires or construction materials
coming from demolition activities, especially in urban areas, is one of the global largest
sustainability challenges and environmental concerns [8–12]. Another issue is the depletion
of natural resources for aggregates used in concrete manufacturing, thus even partial
substitution of natural components in concrete is worth the effort. The reuse of waste
materials in construction has benefits, not only by the reduction of waste generated that
are generally disposed in landfills, but also in preserving natural resources, reducing the
impacts associated with their extraction. Substituting the natural aggregate with recycled
one can result in general in a considerable increment in permeability coefficient with
adversely influencing mechanical properties [13,14]. However, regardless of the type of
recycled concrete aggregate (i.e., waste crushed concrete) an almost linear relationship
between the compressive strength and void ratio, and between permeability and void
ratio is observed in pervious concretes [15] Results of the experiment showed that the use
of recycled coarse aggregate significantly decreases the workability (slump) of concrete
because of the recycled material’s high-water absorption and rough surface, but this can be
neutralized by pre-wetting aggregate or modifying concrete with latex polymer [16].

Addition of recycled waste tire rubbers as fine aggregate in PC had a negative impact
on mechanical properties [17], which is consistent with scientific studies [18,19] showing
significant strengths decrease with a rubber-to-aggregate replacement. Incorporating rubber
particles is detrimental to compressive and tensile strengths but may remain unaltered or
even improved if cement composite is simultaneously treated with fibers [2,20–25].

Typical pervious concrete, as a mixture of uniform-sized coarse aggregates and cement,
is combined at a relatively low water/binder ratio (w/b = 0.27 ÷ 0.34) [26]. The cement
content should be just enough to coat the aggregate particles with a thin layer (below
200 micrometer). Excessive binder content may seal the voids between aggregate particles
and significantly reduce permeability of the concrete [27]. The important mechanical
properties of typical and modified pervious concrete mixes based on a recent review of
the literature are shown in Table 1. In general, the unit weight of pervious concrete is
approximately 1600–2000 kg/m3, which is already close to the upper limit of lightweight
concrete. The air void content of the hardened PC can range from 15 to 35% allowing a
drainage rate of 81 to 730 L/min·m2 (permeability, k = 0.14 to 1.22 cm/s), with typical
compressive strengths of 2.8 to 28 MPa [28]. As the permeability plays a crucial role
in performance of pervious concrete, a high porosity is targeted. Due to the porous
structure, the integrity and strength of PC depend mainly on the bonding between the
coarse aggregate and the thin cover layer of the binder matrix, the-so-called interfacial
transition zone (ITZ) [29]. Therefore, in general, the more porous and thinner the ITZ is, the
lower the compressive strength. However, this may be opposed by replacing coarse with
the smaller size aggregate. Adding a small amount of fine sand (approx. 7% by weight of
aggregate) to the mix can significantly improve the concrete strength, but correspondingly
will decrease the flow rate of water throughout the PC body [27]. Therefore, the best
alternative solution to obtain higher compressive strength without adversely affecting
the void ratio and permeability is to improve and densify the ITZ with mineral additives
(i.e., nano-silica [30,31], silica fume [32], metakaolin [33]). Also, addition of latex polymer
significantly improves workability and strength of pervious concrete while keeping its high
porosity and permeability [16]. It is worth noticing that designing the mix proportions of
PC with controlled permeability, workability and strength parameters is highly restricted
to differences in components, variety of admixtures and additives, and influenced by the
forming process.
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Table 1. Properties of pervious concrete.

Void
Ratio
[%]

Unit
Weight
[kg/m3]

Permeability
[cm/s]

28-Day
Compressive

Strength [Mpa]

Flexural
Strength

[Mpa]

Tensile
Strength

[Mpa]
w/b a/b Aggregates

(Size)
Additive

(% by Binder Weight) Ref.

16.4–20.7 - 0.21–0.26 - - - 0.40 4.0–12.0 Coarse - [34]

23.0–26.0 1890–1930 0.86–1.02 14.5–17.5 - 1.6–2.0 0.25–0.35 - Coarse (<8 mm) - [35]

26.5–35.1 - 1.5–1.7 - - - 0.35 4.5 Gravel (4.75–12.5 mm) - [36]

21.0–28.0 - 0.86–2.00 5.1–15.9 1.9–3.2 1.15–1.70 0.35 3.0–7.0 Coarse (4.75–12.5 mm) - [37]

- - -

13.5 2.8 -

0.41 3.33 Limestone
(4.75–12.5 mm)

-

[38]19.9 4.4 - SBR

11.5–22.6 4.6–5.8 - SBR + AP

- -

0.35–0.85

18.5–21.5 2.5–3.5 -

0.25–0.35

- Recycled concrete
(5–10 mm)

PPTF 55 mm (0.6–1.5)

[2]0.55–0.60 0.30 CCF 12 mm (1.0–1.9)

0.45–0.60 0.30 PPF 12 mm (0.1–0.3)

31.0–34.2 1921–1950 0.18–0.29 9.1–21.5 3.1–4.0 0.54–1.56 0.31 4.8 Coarse GGBS (0–80) [39]

- 1800–2500 0.9–1.4 10.0–5.7 - - 0.35 4.0 Crushed gravel (10 mm) Fly ash (0–50) [40]

22.0–28.0
- -

11.9–15.5
- - 0.66 10.88 Coarse/Slag (<25 mm)

SBR latex (0.94)
[41]

26.0–28.5 10.0–8.0 NJF (12.5)

-

2090 0.81 15.1

- - 0.30 4.4 Coarse

MK (10)

[42]2030 1.77 12.2 Fly ash (10)

1930 1.05 16.6 UFGGBS (10)

12.9 2165
- - - - 0.22–0.27 4.1–4.7

River gravel
(4.75–9.5 mm)

SBR (10)
[26]

33.0 1790 Silica fume (5)

-
1769–1929 0.27–1.18 21.4

-
2.40–2.45

0.27 4.7
River gravel

(4.75–9.5 mm)
FM300 12.7/19.1 mm (0.10–0.26)

[43]
1759–1916 0.02–1.03 17.8 1.30–2.05 FC500 50 mm (0.10–0.26)

- 1778–1985 1.0–1.2 2.6–8.1 - - 0.30 - Crushed granite
(<20 mm) EBA (5–25) [44]

-
1829–1841

0.6–3.0 - -
0.64–0.69

0.30–0.35 5.0 Coarse
CR 0.6/2.5 mm (5–10)

[17]
1915–1926 0.34–0.60 FCR 0.08–1 mm (5–10)

-

1900–2030 0.20–0.33 9.1–14.5 1.14–1.60

- 0.27 2.9–3.3 River coarse (>10 mm)

CTC (10–20)

[45]2030–2130 0.15–0.26 13.1–19.0 1.11–1.57 CR 4 mm (10–20)

2180–2240 0.26–0.27 14.4–21.6 1.49–1.56 FCR 1 mm (10–20)

Notes: w/b = water/binder ratio; a/b = coarse aggregate/binder ratio; SBR—Styrene–Butadiene Rubber latex; AP—Acrylate Polymer; PPTF—Polypropylene Thick Fiber;
CCF—Copper Coated Steel Fiber; PPF—Polypropylene Fiber; GGBS—Ground Granulated Blast-Furnace Slag; NJF—Natural Jute Fiber; MK—Metakaolin; UFGGBS—Ultra-Fine GGBS;
FM300—Fibermesh 300; FC500—Fibercast 500; EBA—Engineered Biomass Aggregate; CR—Crump Rubber; FCR—Fine Crump Rubber; CTC—Coarse Tire Chips.
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The aim of the present study was to check the possibility of using aggregate from
recycled concrete waste and rubber granules from car tires. The main objective was to
develop and confirm with laboratory testing a ready-mix of pervious concrete, ensuring ra-
tional management of natural resources alongside with meeting the durability and strength
dedicated requirements for further applications. To strengthen the concrete structure, spe-
cial polymer fibers with a multifilament structure were used. In the research, fibers with
a length of 54 mm were deliberately selected so that they could join a minimum of two
aggregate grains (max size 31.5 mm). It was expected that such a solution would allow to
modify and strengthen the structure without reducing the permeability of concrete. This is
a new solution that requires further research.

Prior to the test program and experiment, initial mixes and previous research were
analyzed to evaluate the feasible mixing ratios. Finally, the water-to-binder ratio was set
at 0.34. The manuscript provides results of the first study to investigate the effects of
reusing waste materials like recycled concrete and rubber waste aggregate on PC material
properties. Possibilities of managing this type of waste are being sought so that it does not
linger in landfills, but above all, the aim is to protect deposits of natural aggregates.

2. Materials and Methods
2.1. Materials

Materials used in the experiment (see Figure 1) included fine aggregates (0/2 mm),
natural coarse aggregates (8/16 mm), recycled concrete aggregates (8/31.5 mm) and rub-
ber waste aggregates (2/5 mm). Grain size composition (sieve analysis) is presented in
Figure 2 and Table 2. Portland cement CEMI 42.5R was used with chemical and physical
characteristics presented in Table 3.
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Table 2. Sieve size distribution of aggregates.

Type
Sieve Size, % Passing

0 0.125 0.25 0.5 1 2 4 8 16 31.5 64

FA (0/2 mm) 0.0 2.9 14.6 45.8 75.5 99.0 99.8 100 100 100 100

NCA (8/16 mm) 0.0 0.1 0.1 0.1 0.1 0.1 0.2 1.6 86.8 100 100

RCA (8/31.5 mm) 0.3 1.1 2.3 4.1 5.2 37.5 55.2 73.8 82.3 98.3 100

RWA (2/5 mm) 0 0.1 0.1 0.1 0.9 66.9 100 100 100 100 100

Table 3. Chemical composition and physical properties of CEM I 42.5 R.

Initial
Setting

Time [min]

Final
Setting

Time [min]

Compressive Strength [MPa] Blaine
Fineness
[cm2/g]

Loss on
Ignition

[%]

Water
Demand

[%]2 Days 28 Days

155 195 30.2 57.3 3504 3.4 27.5

Chemical composition [%]

SiO2 Al2O3 Fe2O3 CaO MgO SO3 Na2O K2O TiO2 Cl

21.7 6.2 3.1 63.4 1.0 3.9 0.16 0.64 0.25 0.06

Mineral composition [%]

Na2Oeq C3S C2S C3A C4AF

0.7 63.1 7.6 6.1 8.9

To improve the overall performance of designed pervious concrete, a MC Bauchemie
PowerFlow 2650 (MC-Bauchemie Müller GmbH & Co. KG, Bottrop, Germany) superplasti-
cizer of 0.4% (by binder weight) was applied within the recommended dosage range. Due
to the action of superplasticizer that causes high dispersion of cement grains, the worka-
bility of the mix was significantly improved, enabling efficient process from production
to application. As an innovative solution keeping high-corrosion resistance, Polyex Mesh
2000 (EXPORPLÁS – Indústria de Exportação de Plásticos, S.A., Cortegaca OVR, Portugal),
polymer fibers of 54 mm length (see Figure 1) were added to the designed mixtures to find
an alternative for steel reinforcement. The fibers were characterized by the following pa-
rameters: tensile strength 650–750 MPa, Young’s modulus 5.90 GPa. The aim of the research
was to determine the potential effects of recycled concrete aggregate with a replacement
ratio of 50% (by weight of aggregate), rubber waste aggregate with a replacement ratio
of 10% (by volume of aggregate) and fibers set at 2 kg/m3, influencing the mechanical
properties of pervious concrete. The mix proportions for the laboratory-produced PC
mixtures are presented in Table 4.

Table 4. Material proportions for the laboratory produced pervious concrete mixtures (in kg/m3).

Natural
Aggregate Recycled Aggregate

Mix ID J1 J2 J3 J4 J5 J6 J7 J8
Binder (cement) 350 350 350 350 350 350 350 350

Water 120 120 120 120 120 120 120 120

w/b 0.34 0.34 0.34 0.34 0.34 0.34 0.34 0.34

a/b 4.3 4.3 4.3 4.3 3.9 3.9 3.9 3.9

FA (0/2 mm) 90 90 90 90 90 90 90 90

NCA (2/8 mm) - - - - - - - -

NCA (8/16 mm) 1520 1520 760 760 1370 1370 610 610

RCA (8/31.5 mm) - - 760 760 - - 760 760

RWA (2/5 mm) - - - - 50 50 50 50

PF (54 mm) - 2 - 2 - 2 - 2

Superplasticizer 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4
Notes: w/b = water/binder ratio; a/b = coarse aggregate/binder ratio.
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2.2. Preparation of Test Specimens

According to the mix proportions of PC listed in Table 4, the components were added
to a mechanical mixer. Water, admixture, and cement were then evenly mixed to obtain a
homogeneous grout, followed by fine aggregate, coarse aggregate (without pre-wetting),
and polymer fibers. After thorough mixing, the PC specimens required for each test
were cast with compaction by 20 blows with a tamper. No vibrating nor rodding were
used. Along with each mix from J1 to J8, a certain number of specimens were prepared to
determine compressive, tensile, and flexural strengths and modulus of elasticity of concrete
(see Table 5 and Figure 3). The specimens were covered with construction film overnight
for 24 h, demolded and subsequently placed in a standard curing room with a controlled
temperature of 20 ± 2 ◦C and a RH ≥ 95%.

Table 5. Sample types and designed tests.

Sample Type Quantity Test

Cube (150 × 150 × 150 mm) 9 Compressive strength
Tensile splitting strength

Cylinder (ø150 mm, h = 300 mm) 6 Tensile splitting strength
Modulus of elasticity

Beam (700 × 150 × 150 mm) 3 Flexural strength
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Figure 3. Cubic and cylindrical samples prior to tests—for J1–J8 mixes see Table 4.

2.3. Test Methods and Data Analysis

According to code EN 12390-3 [46], a compressive axial load was applied to the cubic
samples after 7, 28 and 56 days of curing at a continuous rate until failure occurred. The
compressive strength was determined by dividing the maximum load by the cross-sectional
area of the specimen (fcm). Tensile splitting strength was checked on cubic and cylindrical
samples following EN 12390-6 [47] (Figure 4). A diametric compressive load was applied
along the length of the sample at a continuous rate until failure occurred. This loading
induced tensile stresses on the plane containing the applied load, causing tensile failure
of the specimen. The splitting tensile strength was determined by dividing the maximum
applied load by the appropriate geometrical factors. In terms of a flexural strength test,
a one-force load system (3-point bending) was conducted following EN 12390-5 [48] on
beam samples with a slot 1/10 h = 1.5 cm high and 3 mm wide. The tests were performed
28 days after curing the beams for PC mixes J1 and J2, J4, J6, J8 standing for plain pervious
concrete and modified with polymer fibers, respectively. Each sample was precisely set
in the machine with respect to the upper and lower rollers (Figure 5). During the test,
a perpendicular point load was applied to the samples at a continuous rate until failure
occurred (0.5 mm wide crack). The specimen failed within the middle third of the span
length in the tension area or underside of the specimen, and the modulus of rupture was
calculated using the following formula:

fb =
3 × F × l

2 × d3 , (1)

where: fb—flexural strength (modulus of rupture) [MPa], F—load applied [kN], l—length
of the sample (l = 3d) [m], d—width, height of the sample [m].
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INSTRON (Norwood, MA, USA).

Since pervious concrete has a relatively high porosity, it is not suitable to use the
submerged weight measurement to obtain its bulk volume. Therefore, a geometrical
measurement as an air void test was chosen. The cylindrical samples were cut into
2 cm thick slices to estimate the void ratio (porosity). Each slice surface was scanned and
transferred to AutoCAD software (Autodesk Autocad 2022 version S.51.0.0) (see Figure 6).
Then, using the image analysis procedure, the area of voids was marked and calculated to
achieve total porosity of each sample.
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The permeability coefficient test was measured using the falling head method [28].
Permeability coefficient was calculated using Darcy’s law as provided below:

k =
a × L
A × t

× ln
(

h1

h2

)
, (2)

where: k—coefficient of permeability [cm/s], a—cross sectional area of a graduated cylinder
[cm2], A—cylindrical sample cross section [cm2], L—length of a sample [cm], h1—initial
water level, h2—final water level [cm], t—time required for water to fall from level h1 to h2
[s]. The test was performed for at least 3 times per sample to obtain an average value of
permeability.

According to EN 12390-13 [49], the modulus of elasticity test was carried out in
modimeter on cylindrical samples with flat top and bottom surfaces, guaranteeing uniaxial
compression. Prior to the test, a series of compressive stress cycles up to approx. 40 percent
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of the measured compressive strength was applied. The modulus of elasticity of the speci-
men was corresponded to the average slope of the stress–strain responses captured during
cyclic loading. Following ASTM recommendations for the determination of the mean
secant modulus of concrete elasticity, the lower stress (σl) was taken corresponding to the
lower longitudinal deformation (εl = 50 × 10−6) whereas deformation (εu) corresponded
to the upper level of stresses (σu) that was equal to 40% of limit compressive strength
(0.4 × fcm). The modulus of elasticity was figured out using the following formula:

Ecm =
σu − σl
εu − εl

=
σu − σl

εu − 0.000050
, (3)

where: Ecm—modulus of elasticity [GPa], σu—upper level of stresses (0.4 × fcm) [MPa],
σl—lower level of stresses [MPa], εu—longitudinal deformation corresponding to σu,
εl—lower longitudinal deformation (εl = 50 × 10−6).

3. Results and Discussion

Herein, the study presented investigated the effects of natural vs. recycled aggregate
modified with polymer fibers on characteristics of PC. Eight batches of mixes (J1–J8) were
used in the production of pervious concrete (see Table 6).

Table 6. Test results for the laboratory produced pervious concrete mixtures.

Natural
Aggregate Recycled Aggregate

Mix ID J1 J2 J3 J4 J5 J6 J7 J8

Compressive
strength

fcm [MPa]

7 days 9.8 10.3 9.7 11.1 8.4 9.4 8.9 11.3

28 days 17.6 20.1 18.4 21.1 15.6 18.4 17.5 21.6

56 days 18.3 21.6 20.3 23.2 17.7 21.4 20.1 22.9

Tensile strength
[MPa]

cubic 2.9 3.4 3.0 3.5 2.8 3.5 3.4 3.7

cylindrical 3.2 3.7 3.5 3.9 3.3 3.9 3.6 4.1

Flexural strength [MPa] 3.5 4.1 2.4 2.8 2.5 2.9 4.0 4.9

Unit weight [kg/m3] 2034 2063 2024 1970 1779 1769 1975 1822

Modulus of elasticity Ecm [GPa] 10.6 12.7 10.9 12.4 11.2 12.2 8.6 11.0

Void ratio (porosity) [%] 11.9 11.6 21.1 18.5 17.5 20.6 17.4 14.8

Permeability, k [cm/s] 0.72 0.71 1.24 0.94 0.93 1.16 0.90 0.83

In general, the unit weight of PC mixes was between 1769 and 2063 kg/m3, the
void content was between 11.6% and 21.1%, and the permeability was in the range of
0.71–1.24 cm/s (see Figure 7). Since the specimens were made of different aggregate
types and quantities, there is a prominent variation in the porosity of the samples and
observed consistently high values of permeability, which is dependent on several factors,
i.e., tortuosity, porosity, pore size distribution, pore roughness, constrictions of pore space
connectivity of internal pore channels, compaction method and times. For any specified
application (J1–J8), the obtained value of permeability was high. Therefore, the authors
plan, as a next step of the present research, to not only verify the test on the most promising
mixtures, but also on specimens prepared with vibrations or the rodding method.

Flexural strength (the-so-called modulus of rupture) is a measure of tensile strength in
bending, calculated on Formula (1). Flexural strength is typically used in Portland Cement
Concrete mix design for pavements because it best simulates slab flexural stresses, as they
are subjected to loading. Because the flexural test involves bending a beam specimen, there
is some compression involved, and thus flexural strength shall generally be slightly higher
than tensile strength measured using a split tension test. This phenomenon was observed
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within the natural aggregate component in the PC mixes J1–J2, but no longer noticed in the
recycled aggregate composition of mixes J4 and J6 (see Table 6).
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The results of the 7, 28 and 56 days compressive strength tests, summarized in Table 6,
show that, in all cases, there is a clear increase in strength over time and similar pace
when compared to conventional concretes. The general trend is an increase in strength as a
function of time, with the highest strength gain in the first seven days. The study yielded a
range of values from 17.6 to 21.6 MPa (after 28 days) for PC, which is in line with reported
values in the literature. In earlier research with natural aggregate [26], it was found that the
compressive strength of PC decreased linearly as the void ratio increased. similar trend was
observed in the present research, even though the study was more focused on investigating
the impact of recycled aggregate on mechanical properties. Thus, it was found that recycled
concrete aggregate (mix J3–J4) slightly influenced the compressive strength and modulus
of elasticity, when comparing to natural aggregate concrete (mix J1–J2), which is consistent
with previous research [50]—Figure 8. In all tests recycled, concrete aggregate addition
increased compressive strength from 4.5 to 17.4% and tensile strength from 2.9 to 21.4%,
and from 5.1 to 9.1% for the cubic and cylindrical samples, respectively. This is because
recycled aggregate derived from demolished concrete structures, activated by binder, retain
proper binding abilities and are able to achieve higher performances [51].

The effect of fibers on pervious concrete behavior was investigated by the incorporation
of deliberately used 54 mm in length polymer fibers with a multifilament structure. Mixes
J2, J4, J6 and J8 were treated with fibers at constant rate of 2 kg/m3. In all mixtures, the
addition of fiber produced an increase of 28 days compressive strength from 14.2 to 23.4%
(Figure 9). The increment in tensile strength was also noticed, ranging from 8.8 to 25.0%, and
from 11.4 to 18.2% for the cubic and cylindrical samples, respectively. The flexural strength
test showed an increase in the strength of pervious concrete from 16.0 to 22.5%, with the
highest boost recorded in the case of simultaneous use of rubber waste and polymer fibers.
The study on the modulus of elasticity showed that the addition of polymer fibers caused
an increase of 19.8% and 13.3%, compared to the natural and recycled concrete aggregate
composition of PC mixes, respectively (J1 vs. J2 and J3 vs. J4 in Table 6). However, for the
above mixes, with the additional use of rubber granules, the module decreased by 4.1% and
11.2%, respectively (J2 vs. J6 and J4 vs. J8 in Table 6). The obtained test results follow the
trends set in the past scientific research [22,23,52], apart from the modulus of elasticity. This
may be due to the nature, type and size of recycled concrete and rubber waste aggregates
used.
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The control mixes (J1–J4) had compressive strength in the range of 17.6 to 21.1 MPa,
whereas the rubberized mixes (J5-J8) were from 15.6 to 21.6 MPa. In the mixes containing
natural coarse aggregate, the compressive strength was decreasing with dosing the rubber
waste by a maximum of 11.4% (J1 vs. J5 and J2 vs. J6 in Figure 10). Mixes containing
recycled concrete aggregate and rubber waste followed the same trend, however, the
decrease of compressive strength was highly counteracted by polymer fibers (J3 vs. J7 and
J4 vs. J8 in Figure 10). Present results compared with non-rubberized pervious concrete

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2023, 16, 5222 11 of 14

(control) mixtures are in line with the research [45,53], where it was found that the use of
flexible additives significantly aggravated the concrete mechanical properties. Therefore, to
compensate for this effect, a binder content shall be increased, or a rubber impregnation
shall be applied to improve adhesion to the cement paste.
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4. Conclusions

The study aimed to evaluate the effects of recycled concrete and rubber waste aggre-
gate addition modified with polymer fibers on characteristics of pervious concrete. Results
showed that the use of recycled concrete aggregate (8/31.5 mm) with a replacement ratio
of 50% (by weight of aggregate) increased the mechanical properties of pervious concrete
in all analyzed cases, whereas the rubber waste aggregate (2/5 mm) with a replacement
of 10% (by volume of aggregate) reduced the compressive strength by a maximum of
11.4%. The most satisfactory results were registered by adding 2 kg/m3 of polymer fibers,
which increased the overall performance of PC, thus enhancing the compressive and tensile
strengths by a maximum of 23.4 and 25.0%, respectively. Multifilament structure and a
deliberately used length of 54 mm of fibers, proved the strengthening effect of concrete
structure by making more effective joints among the large-size grains (max size 31.5 mm).
For all PC mixes (J1–J8), the obtained value of permeability was high, ranging from
0.71–1.24 cm/s. The obtained test results are promising and demonstrate the possibil-
ity of using the recycled aggregates in the decarbonization process of pervious concrete
production.

5. Further Directions

In fact, pervious concrete cannot be designed with the only purpose of achieving the
greater mechanical performances. To guarantee appropriate drainage and environmental
qualities of the material, the optimal balance between strength and permeability is to be
targeted. Further laboratory and field performance tests are needed to better understand
porosity and its relationship to the mechanistic response variability due to the heteroge-
neous nature of PC containing recycled aggregate being modified with polymer fibers.
Potential research directions may follow, i.e., the clogging potential of pervious concrete,
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fiber adhesion to the cement paste and influence of dosing and length of fibers, and the
possibility of modifying rubber granules to increase adhesion to the cement paste and
influence granulate size and its content in the mixture. As mechanical properties of PC are
strongly affected by the mixture composition and placement method, further research on
different application methods (i.e., compaction, vibration) affecting void content, permeabil-
ity and strengths is recommended. Therefore, within the next steps of the present study, it
is planned to investigate and report on vibrated specimens simulating the potential method
of application, with respect to compaction time influencing the strength and porosity of
pervious concrete that contains recycled materials.
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7. Sičáková, A.; Kováč, M. Relationships between Functional Properties of Pervious Concrete. Sustainability 2020, 12, 6318. [CrossRef]
8. Alex, A.G.; Jose, P.A.; Saberian, M.; Li, J. Green Pervious Concrete Containing Diatomaceous Earth as Supplementary Cementitous

Materials for Pavement Applications. Materials 2022, 16, 48. [CrossRef]
9. Silva, F.A.N.; Delgado, J.M.P.Q.; Azevedo, A.C.; Lima, A.G.B.; Vieira, C.S. Preliminary Analysis of the Use of Construction Waste

to Replace Conventional Aggregates in Concrete. Buildings 2021, 11, 81. [CrossRef]
10. Paula Junior, A.; Jacinto, C.; Oliveira, T.; Polisseni, A.; Brum, F.; Teixeira, E.; Mateus, R. Characterisation and Life Cycle Assessment

of Pervious Concrete with Recycled Concrete Aggregates. Crystals 2021, 11, 209. [CrossRef]
11. Hua, M.; Chen, B.; Liu, Y.; Liu, H.; Zhu, P.; Chen, C.; Wang, X. Durability and Abrasion Resistance of Innovative Recycled

Pervious Concrete with Recycled Coarse Aggregate of Different Quality under Sulfate Attack. Appl. Sci. 2021, 11, 9647. [CrossRef]
12. Anwar, F.H.; El-Hassan, H.; Hamouda, M.; Hinge, G.; Mo, K.H. Meta-Analysis of the Performance of Pervious Concrete with

Cement and Aggregate Replacements. Buildings 2022, 12, 461. [CrossRef]
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