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Chapter 1

Information processing and Fechner’s problem as a choice
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Fechner’s law and its modern generalizations can be regarded as mani-
festations of alternative forms of arithmetic, coexisting at stimulus and
sensation levels. The world of sensations may be thus described by a
generalization of the standard mathematical calculus.

1. Introduction

Human beings operate like information processing devices. Since the in-

fluential book by Fechner on ‘elements of psychophysics’1 it is known that

relations between external stimuli and internal sensations occurring in our

brains can be modeled mathematically. The models can be tested experi-

mentally in analogy to, or even by means of physical measurements. Hence

the term ‘psychophysics’, coined by Fechner.

Fechner himself was a physicist but psychophysics in general does not

attract attention of modern pure physicists. A notable exception seems

the work of Norwich2 on information-theoretic foundations of the laws of

perception. The fact that formally psychophysics may share some elements

with pure physics was intuitively felt by psychologists already in 1930s,3

who understood that psychological experiments are essentially as opera-

tional as quantum measurements,4 while ‘inner psychophysics’ of Fechner

is as beyond scientific reach as putative hidden variables in quantum me-

chanics, or interiors of black holes in general relativity. In this sense the

degree of objectivity and repeatibility of results of psychophysical measure-
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ments are similar to what one encounters in fundamental physics.

For a pure theoretical physicist the field of psychophysics may be, how-

ever, interesting also for other reasons. The goal of the present paper is

to look at psychophysics as a non-trivial, theoretical and experimental ex-

ample of a natural science where a non-Diophantine arithmetic5,6 plays a

prominent role.

Non-Diophantine arithmetic is determined by a function f and its in-

verse f−1 (or, more generally, by two independent functions f and g). The

role of f is similar to that played in psychophysics by the ‘Fechner func-

tion’.7 As shown recently,8 one can reformulate the laws of physics in terms

of a non-Diophantine arithmetic and its corresponding non-Diophantine cal-

culus. The formalism found applications in fractal theory,9 but what is still

missing is the law that determines the form of f .

In this respect non-Diophantine physics is in a similar situation as psy-

chophysics. We need f , but we also need a fundamental law that determines

it. This is why all approaches to psychophysics which try to understand

the fundamental and general laws that govern f are so intriguing.

On the other hand, one may hope that an abstract theoretical-physics

insight into the meaning of f may lead to some new ideas for experimen-

tal psychology. Anyway, this is how psychophysics started on 22 October

1850...

2. Non-Diophantine arithmetic and calculus

Assume the set X is equipped with generalized arithmetic operations (ad-

dition ⊕, subtraction ⊖, multiplication ⊙, division ⊘), defined by8

x⊕ y = f−1
(
f(x) + f(y)

)
, (1)

x⊖ y = f−1
(
f(x)− f(y)

)
, (2)

x⊙ y = f−1
(
f(x)f(y)

)
, (3)

x⊘ y = f−1
(
f(x)/f(y)

)
, (4)

where x, y ∈ X , and f : R ⊃ X → Y ⊂ R is a bijection. The set Y

is equipped with the ‘standard’ arithmetic of real numbers: ±, ·, and /.

Neutral elements of addition and multiplication in X are defined by

0′ = f−1(0), (5)

1′ = f−1(1), (6)

since then 0′ ⊕ x = x, 1′ ⊙ x = x, x ⊘ x = 1′ (for x 6= 0′) and x ⊖ x = 0′

(for any x ∈ X).
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One verifies the standard properties: (1) associativity (x ⊕ y) ⊕ z =

x ⊕ (y ⊕ z), (x ⊙ y) ⊙ z = x ⊙ (y ⊙ z), (2) commutativity x ⊕ y = y ⊕ x,

x⊙ y = y ⊙ x, (3) distributivity (x⊕ y)⊙ z = (x⊙ z)⊕ (y ⊙ z). This is an

example of a non-Diophantine arithmetic in the sense of Burgin.5,6

The well known Weber–Fechner problem10 now can be reformulated as

follows: Find a generalized arithmetic such that (x+kx)⊖x is independent

of x. In other words, we have to find f solving

(x + kx)⊖ x = f−1
(
f(x+ kx)− f(x)

)
= δx, (7)

with x-independent δx. Acting with f on both sides of (7) we get

f(x+ kx)− f(x) = f(δx) (8)

which is the standard psychophysical Abel problem7 for f , with constant

Weber fraction ∆x/x = k. The solution is f(x) = a lnx + b, f−1(x) =

e(x−b)/a, and thus 0′ = f−1(0) = e−b/a, 1′ = f−1(1) = e(1−b)/a. Clearly,

0′ 6= 0 and 1′ 6= 1. This type of difference occurs in physics in the approach

of Benioff11,12 where f(x) = px, p 6= 0, and 0′ = 0 but 1′ = 1/p.

Let us try to understand the logical structure of (7). We have two

real numbers, x and x′ = x + kx, and we have two ways of subtracting

them. x′ ⊖ x clearly corresponds to the sensation continuum, while x′ − x

is the ‘usual’ way of subtracting employed at the stimulus side. From the

arithmetic perspective one expects that not only subtraction, but also ad-

dition, multiplication and division are perceived in some ‘Fechnerian way’.

In principle, any form of change can be perceived in a non-Diophantine

way.

The idea, when explored in its full generality, leads from non-

Diophantine arithmetic to non-Diophantine calculus.8 In particular, a

derivative of a function A : X → X , is naturally defined by

d′A(x)

d′x
= lim

h→0′

(
A(x ⊕ h)⊖A(x)

)
⊘ h. (9)

The derivative should not be confused with the ‘usual’ one, defined for

functions B : Y → Y ,

dB(y)

dy
= lim

h→0

(
B(y + h)−B(y)

)
/h. (10)

An integral is defined in a way that guarantees the two fundamental laws

of calculus,

d′

d′x

∫ x

a

A(x′)⊙ d′x′ = A(x), (11)

∫ b

a

d′A(x′)

d′x′
⊙ d′x′ = A(b)⊖A(a). (12)D
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With any A : X → X one can associate the conjugate map B = f ◦A◦f−1,

B : Y → Y . Then (9)–(12) imply

d′A(x)

d′x
= f−1 dB

(
f(x)

)

df(x)

)

, (13)

∫ b

a

A(x) ⊙ d′x = f−1

(
∫ f(b)

f(a)

B(y)dy

)

, (14)

as one can directly verify from definitions.

In order to appreciate the difference between d′/d′x and d/dx take

f(x) = x3 and let sinf x = f−1
(
sin f(x)

)
= 3
√

sin(x3). Then

d sinf x

dx
=

x2 cos(x3)

sin
2
3 (x3)

, (15)

whereas

d′ sinf x

d′x
= 3
√

cos(x3) = cosf x. (16)

The non-Diophantine derivative is easier to compute: One only replaces

sin by cos in (16), and neither f nor f−1 get differentiated. This is why we

do not need any continuity or differentiability assumption about f . In fact,

f can be as weird as the Cantor function.8,9 The property may be useful

since in the psychophysical theory of numbers13–17 the corresponding psy-

chophysical functions have discontinuous first derivatives, and in principle

can be discontinuous themselves.

Moreover, even the simple case of a power function f(x) = xq, q 6= 1,

leads to non-differentiability at 0 of either f or f−1. Yet, the result (16)

shows that this is not a difficulty since neither f nor f−1 are differentiated

in the course of computing d′/d′x. The power function is an important

alternative to Fechner’s logarithm,19,20 similarly to the unification of log-

arithm and power, derived by Norwich.2 In the present proof-of-principle

analysis we restrict the examples to Fechnerian f .

3. Non-Diophantine Fechnerian arithmetic operations

Let us now find the explicit forms of non-Diophantine arithmetic operations

corresponding to the Fechnerian case.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


3.1. Addition

x⊕ y = f−1
(
f(x) + f(y)

)
(17)

= e(f(x)+f(y)−b)/a (18)

= e(a ln x+b+a ln y+b−b)/a (19)

= eln x+b/a+ln y (20)

= xyeb/a = xy/0′. (21)

In particular,

x⊕ 0′ = x0′eb/a = xe−b/aeb/a = x. (22)

3.2. Subtraction

Subtraction is the only non-Diophantine arithmetic operation that implic-

itly occurs in the psychophysics literature.

x⊖ y = f−1
(
f(x)− f(y)

)
(23)

= e(f(x)−f(y)−b)/a (24)

= e(a ln x+b−a ln y−b−b)/a (25)

= eln x−ln y−b/a (26)

= e−b/ax/y = 0′x/y. (27)

In particular,

x⊖ x = e−b/ax/x = e−b/a = 0′, (28)

(x+ kx)⊖ x = e−b/a(x+ kx)/x = e−b/a(1 + k). (29)

Assuming that for a single just noticable difference one should find (x +

kx)⊖ x = 1′ one arrives at

e−b/a(1 + k) = 1′ = e(1−b)/a, (30)

and thus 1 + k = e1/a, a = 1/ ln(1 + k). This leads to the known form of

solution of Abel’s equation for the Fechner problem,7

f(x) =
lnx

ln(1 + k)
+ b, (31)

where b is an arbitrary constant.

A negative of x is

⊖ x = 0′ ⊖ x (32)

= e−b/a0′/x = e−2b/a/x. (33)
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Let us cross-check,

⊖ x⊕ x = (⊖x)xeb/a (34)

= (e−2b/a/x)xeb/a (35)

= e−b/a = 0′. (36)

Note that although x > 0 in f(x) = a lnx + b, one nevertheless has a well

defined negative number ⊖x = e−2b/a/x, which is... positive. The apparent

paradox disappears if one realizes that we speak of two different types of

negativity, defined with respect to two different choices of arithmetic.

3.3. Multiplication

x⊙ y = f−1
(
f(x)f(y)

)
(37)

= e(f(x)f(y)−b)/a (38)

= e((a ln x+b)(a ln y+b)−b)/a (39)

= e(a
2 ln x ln y+ab ln x+ab ln y+b2−b)/a (40)

= ea lnx ln y+b ln x+b ln y+b2/a−b/a (41)

= xa ln yxbybeb(b−1)/a. (42)

In particular

x⊙ 1′ = xa ln e(1−b)/a

xbeb(1−b)/aeb(b−1)/a (43)

= xa(1−b)/axb = x, (44)

x⊙ 0′ = xa ln e−b/a

xbeb(−b)/aeb(b−1)/a (45)

= x−bxbe−b/a = e−b/a = 0′. (46)

3.4. Division

x⊘ y = f−1
(
f(x)/f(y)

)
(47)

= e(f(x)/f(y)−b)/a (48)

= e((a ln x+b)/(a ln y+b)−b)/a (49)

= e(ln x+b/a)/(a ln y+b)−b/a (50)

= eln x/(a ln y+b)e(b/a)/(a ln y+b)e−b/a (51)

In particular,

x⊘ x = e(1−b)/a = 1′. (52)D
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3.5. Multiplication as a repeated addition

Everybody knows that 1 + 1 = 2, or 2 + 2 = 4. In non-Diophantine

arithmetic these rules hold as well, but in a subtle form. First of all, let us

define n′ = f−1(n), n ∈ N. Now,

n′ ⊕m′ = f−1
(
f(n′) + f(m′)

)
(53)

= f−1
(
n+m

)
= (n+m)′ (54)

n′ ⊙m′ = f−1
(
f(n′)f(m′)

)
(55)

= f−1
(
nm
)
= (nm)′. (56)

Similarly,

n′ ⊙m′ = f−1
(
nm
)

(57)

= f−1
(
m+ · · ·+m
︸ ︷︷ ︸

ntimes

)
(58)

= f−1
(
f(m′) + · · ·+ f(m′)
︸ ︷︷ ︸

ntimes

)
(59)

= m′ ⊕ · · · ⊕m′

︸ ︷︷ ︸

ntimes

. (60)

So, 1′ ⊕ 1′ = 2′, 2′ ⊕ 2′ = 4′ = 2′ ⊙ 2′. This is how it looks at the inter-

nal sensation space. At the stimulus level the calculation looks somewhat

different,

1′ ⊕ 1′ = e(1−b)/a ⊕ e(1−b)/a = e(1−b)/ae(1−b)/aeb/a = e(2−b)/a = 2′,(61)

2′ ⊕ 2′ = e(2−b)/a ⊕ e(2−b)/a = e(2−b)/ae(2−b)/aeb/a = e(4−b)/a = 4′.(62)

Multiplication is more involved,

2′ ⊙ 2′ = e(2−b)/a ⊙ e(2−b)/a (63)

= ea ln e(2−b)/a ln e(2−b)/a+b ln e(2−b)/a+b ln e(2−b)/a+b2/a−b/a (64)

= e(4−b)/a = 4′. (65)

4. Non-Diophantine Fechnerian exponential function

Let us now switch from non-Diophantine arithmetic to calculus.

An important example is provided by the exponential function which,

by definition, solves the following problem

d′A(x)

d′x
= A(x), (66)

A(0′) = 1′. (67)
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The unique solution is A(x) = f−1
(
ef(x)

)
= expf x,

8 and thus

A(x) = e(e
a ln x+b

−b)/a (68)

= e(e
beln xa

−b)/a (69)

= ee
bxa/ae−b/a. (70)

Let us check the initial condition:

A(0′) = A(e−b/a) = e(e
b(e−b/a)a−b)/a = e(1−b)/a = 1′. (71)

It is an instructive exercise to compute the derivative directly from defini-

tion:
d′A(x)

d′x
= lim

h→0′

(
A(x⊕ h)⊖A(x)

)
⊘ h (72)

= lim
h→0′

(
ee

b(x⊕h)a/ae−b/a ⊖ ee
bxa/ae−b/a

)
⊘ h (73)

= lim
h→e−b/a

(

ee
b(xheb/a)a/ae−b/a ⊖ ee

bxa/ae−b/a
)

⊘ h (74)

= lim
h→e−b/a

e−b/a e
eb(xheb/a)a/ae−b/a

eebxa/ae−b/a

)

⊘ h (75)

= lim
h→e−b/a

e(ln e−b/a+xahae2b/a−ebxa/a+b/a)/(a lnh+b)−b/a (76)

= lim
h→e−b/a

e(−b/a+xahae2b/a−ebxa/a+b/a)/(a lnh+b)−b/a (77)

= lim
h→e−b/a

e(x
ahae2b/a−ebxa/a)/(a lnh+b)−b/a (78)

= lim
c→b

e(x
a(e−c/a)ae2b/a−ebxa/a)/(a ln e−c/a+b)−b/a (79)

= lim
c→b

e
eb−c

−1
b−c ebxa/a−b/a (80)

= ee
bxa/a−b/a = A(x), (81)

which was to be proved.

One further finds that

expf (x⊕ y) = expf x⊙ expf y. (82)

The inverse function

lnf x = f−1
(
ln f(x)

)
(83)

= e(ln f(x)−b)/a (84)

= e−b/af(x) (85)

= e−b/a(a lnx+ b) (86)

satisfies

lnf (x⊙ y) = lnf x⊕ lnf y. (87)D
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5. Final remarks

The fact that the Abel-equation approach to psychophysics may be re-

garded as an example of non-Diophantine arithmetic is quite evident. The

formula for explicit Fechnerian subtraction,

x⊖ y = e−b/ax/y, (88)

shows that a ratio at the stimulus level is directly proportional to a dif-

ference in the sensation space. x ⊖ y is a natural measure of ‘subjective

dissimilarity’, and it satisfies the law of additivity,

(x⊖ y)⊕ (y ⊖ z) = x⊖ z, (89)

as required in more modern approaches to the Fechner problem.21,22 One

may also wonder if we have here any obvious counterpart of a just noticable

difference. 0′ is a candidate since it is non-zero at the stimulus level, but it

marks the threshold of ‘non-zero change’ in the sensation space.

Much more interesting is the issue if experimental psychologists can

make sense of the remaining arithmetic operations, and if the corresponding

calculus can find experimental applications. I hope the paper will trigger

some research in these directions. From the point of view of theoretical

physics the ultimate goal is to find a general law that determines the form

of arithmetic. Psychophysical insights might be very helpful here.
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