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Abstract: Bisphenols are important environmental pollutants that are extensively studied due to
different detrimental effects, while the molecular mechanisms behind these effects are less well un-
derstood. Like other environmental pollutants, bisphenols are being tested in various experimental
models, creating large expression datasets found in open access storage. The meta-analysis of such
datasets is, however, very complicated for various reasons. Here, we developed an integrating sta-
tistical and machine-learning model approach for the meta-analysis of bisphenol A (BPA) exposure
datasets from different mouse tissues. We constructed three joint datasets following three different
strategies for dataset integration: in particular, using all common genes from the datasets, uncorre-
lated, and not co-expressed genes, respectively. By applying machine learning methods to these
datasets, we identified genes whose expression was significantly affected in all of the BPA microa-
nalysis data tested; those involved in the regulation of cell survival include: Tnfr2, Hgf-Met, Agtrla,
Bdkrb2; signaling through Mapk8 (Jnk1)); DNA repair (Hgf-Met, Mgmt); apoptosis (Tmbim6, Bcl2,
Apafl); and cellular junctions (F11r, Cldnd1, Ctnd1l and YesI). Our results highlight the benefit of
combining existing datasets for the integrated analysis of a specific topic when individual datasets
are limited in size.
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1. Introduction

Bisphenols have been in commercial use as plasticizers for over 70 years. They are
reported to be estrogenic mimics that may interfere with hormonal homeostasis. One very
prevalent bisphenol, bisphenol A (BPA), is used for manufacturing polysulfones and pol-
ycarbonate plastics, epoxy resins, and thermal paper. BPA is considered an endocrine and
metabolic disruptor, able to interfere with important physiological systems, such as insu-
lin-glucagon signaling [1-4]. Comparatively, BPA has one of the highest production vol-
umes of any chemical worldwide, with global production estimated at 7.7 million metric
tons in 2015, and it is expected to reach 10.6 million metric tons by 2022 [5]. Mammals are
exposed to BPA daily through several routes, such as the consumption of food and drink,
drugs, air born inhalation, and contact materials, such as various plastics, medical devices,
and store receipts [6-8]. However, the main exposure route of BPA is through diet as many
food packages contain BPA, allowing it to leach into the food and be ingested [6,9-12].
Due to its pervasiveness in the environment, BPA has been detected in the urine and sera
in 90% of the people sampled, as well as in the amniotic fluid, placenta, and breast milk
of women [7,13-18]. It has become increasingly clear that BPA can bioaccumulate in the
food chain. In fact, in a study in Africa, BPA reached very high concentrations in food (940
ng/g), biological fluids (209 ng/mL), consumer and PCPs (3.6 pg/g), and semisolids (154
Hg/g) [19].

Considering the prevalence of BPA in the biome and its suspected disruption of hu-
man physiology, many groups have used various model organisms, including mice or
human cell lines, in an attempt to determine how BPA interacts with different biological
signaling systems [20]. Some of these groups have performed a microarray analysis after
BPA exposure and deposited this information in public data banks [21,22]. However, most
of the published datasets are relatively small, and meta-analysis studies that attempt to
integrate existing microarray datasets regarding exposure to BPA are currently lacking.
There is an opportunity to combine the existing datasets to improve the accuracy of the
identified genes and pathways involved in BPA exposure.

It is somewhat surprising that most of the literature on data mining and chemometric
data calculations refers to the exposure-instrumental/biological testing loop while less at-
tention has been paid to exposure-gene expression correlations treatment with advanced
environmetrics. The impact of BPA on cardiometabolic factors [23] has shown a positive
correlation between patients’ BPA concentrations and diabetes (87%), overweight (28%),
obesity (85%), elevated waist circumference (100%), cardiovascular diseases (80%), and
hypertension (66%) in cross-sectional studies. Unfortunately, none of these studies can
confirm if BPA can be proven as a risk factor of the observed anomalies or if these elevated
BPA concentrations result from the already pre-disordered status of the given patient. The
problem is of increasing importance as BPA (at environmentally relevant concentrations)
has been confirmed to affect pre-implanted embryos and has been detected in samples of
serum and follicular fluid collected from women and the umbilical cord at ca. 1-2 ng/mL
levels [11]. For this reason, it is warranted to pay more attention to studies on the expo-
sure-gene expression loop to unveil these interrelationships.

The amount of functional genomics data in the form of expression profiles from var-
ious experimental designs and model organisms are increasing rapidly, with over 1000
new submissions yearly to the ArrayExpress repository (https://www.ebi.ac.uk/arrayex-
press/, accessed on 10 February 2020) [24]. Currently, the largest repositories of public
functional genomics data are ArrayExpresses and NCBI Geo
(https://www.ncbi.nlm.nih.gov/geo/, accessed on 10 February 2020) [25], which, in Janu-
ary 2020, contained 72,578 and 97,273 unique experiments, respectively; although 59,374
were found in both databases and, hence, redundant [26]. Currently, the majority of these
are in the form of microarray data, although, since 2018, the number of RNASeq experi-
ments submitted to ArrayExpress is higher than the number of microarray submissions
[24]. Utilizing these databanks for novel large-scale analysis poses challenges due to the
diversity of the technical platforms used to generate the data, resulting in differences in
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file formats, signal levels, and data variance, as well as differences in experimental design.
Although several attempts have been made to simplify data retrieval and data selection,
such as the All Of gene Expression (AOE) web portal [26] and Biostudies database, which
is now becoming the successor of ArrayExpress [24], the challenges of between-experi-
ments normalization and adjusting for the differences in experimental design remain.
These difficulties in combining and analysing functional genomics data from various
sources necessitate innovative and more powerful methods to utilize these data for novel
analyses.

In this manuscript, we studied the gene expression changes from four available mi-
croarray datasets of mice under the influence of BPA exposure. The standard approach in
analysing gene expression changes is to perform differential expression analysis with sta-
tistical tests for differences in intensity [27]. We performed this traditional differential
gene expression analysis of individual GEO datasets. However, this method suffers from
various issues, such as uncertainty in p-value choice to select the right set of “important”
genes in terms of biological effects and the necessity of dealing with the problem of mul-
tiple comparisons. In contrast, machine learning methods, especially feature selection
methods, are widely used today in gene expression analysis, providing the ability to select
the right set of “important” genes in terms of the quality of the prediction model [27,28].
In this study, we focused on applying machine learning methods in terms of feature se-
lection (FS), revealing key genes influenced by BPA exposure.

We constructed three joint datasets following three different correlation-based pre-
processing approaches, namely using all of the common genes through four GEO datasets,
uncorrelated, and no co-expressed genes, respectively. By applying machine learning
methods to these joint datasets, we identified genes whose expression was significantly
changed in all of the BPA microanalysis data tested. We went on to determine that a subset
of these genes is involved in the regulation of cell survival and apoptosis. Our results
highlight the benefit of combining existing datasets for integrated analysis for a specific
topic when individual datasets are limited in size, in our case when studying the effects
of BPA.

2. Results
2.1. Differential Gene Expression Analysis

Differential gene expression analysis was performed in several ways in terms of sta-
tistical significance. As described in the Methods section, we declared a gene differentially
expressed if an observed expression difference between two experimental conditions re-
ported an adjusted p-value < 0.05. We also performed the same analysis with an adjusted
p-value < 0.1, non-adjusted p-value < 0.05, and non-adjusted p-value < 0.1 (Figure 1). After
applying multiple adjustment corrections, the analysis determined that GSE26728 was the
only dataset with differentially expressed genes. All of the other datasets examined did
not show any differentially expressed genes, neither with an adjusted p-value < 0.05 nor
with an adjusted p-value < 0.1. On the contrary, all the datasets showed differentially ex-
pressed genes with both a non-adjusted p-value < 0.05 and a non-adjusted p-value < 0.1.
Therefore, we could state that there were no common differentially expressed genes
among the four datasets.
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Figure 1. Volcano plots of differential expression analyses, using adjusted p-values (left column)
and non-adjusted p-values (right column), for (A) GSE26728, (B) GSE126297, (C) GSE43977, and (D)
GSE44088 datasets. Dashed blue lines are used to designate p-value of 0.05, dashed red lines for p-
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value of 0.1. Only GSE26728 has differentially expressed genes with respect to both adjusted and
non-adjusted p-values. Other datasets have differentially expressed genes with respect to non-ad-
justed p-values only.

2.2. Machine Learning Methods

In our study, we found that ensemble-based methods (Section 4.2.1) tended to overfit
the data studied (Table 1). Both the Random Forest (RF) model and the Support Vector
Machine (SVM) ensemble model were able to learn the training dataset, producing 1.0
training accuracy, but failed to generalize, producing a test accuracy only slightly higher
than 0.5. Due to the high differences in training and test accuracies for fitted models, we
did not use feature sets from these models in any subsequent analysis.

In contrast, the iterative model seemed to be able to construct more meaningful fea-
ture sets before it overfit our data. The iterative feature selection procedure (Section 4.2.2)
with two binary classification models, Naive Bayesian classifier (NB) and Logistic Regres-
sion (LR), were applied to the datasets. The resulting feature sets, composed of selected
genes, were used to train a single SVM model in order to prove the predictive ability of
the selected features (Section 4.3). Table 2 and Table 3 show the test/training cross-valida-
tion accuracies and ROC AUC scores of the SVM model. Although the training accuracies
and ROC AUC scores remained close to 1.0, the differences between the training and test
scores significantly decreased, showing the ability of the models to generalize.

Table 1. Test/train cross-validation accuracy for ensemble models. Random Forest and SVM ensem-
ble models were applied to simple scaled (simple_scaled), without correlated genes (without_cor-
related), and without co-expressed genes (without_coexpressed) datasets. Both Random Forest and
SVM ensemble models failed to generalize on each of the datasets.

Without_Coex-

Model Simple_Scaled Without_Correlated
Pressed
Random Forest 0.54/1.0 0.53/1.0 0.54/0.94
SVM ensemble 0.52/1.0 0.53/1.0 0.54/1.0

Table 2. Test/train cross-validation accuracies of SVM model, trained on all genes and genes selected
by the iterative feature selection procedure with Naive Bayesian classifier or Logistic Regression
classifier. SVM model was applied to simple scaled (simple_scaled), without correlated genes (with-
out_correlated), and without co-expressed genes (without_coexpressed) datasets. In contrast to all
genes as a feature set, genes selected by the iterative procedure show predictive ability.

Without -
Simple_Scaled =~ Without_Correlated ithout Coex

Pressed
All genes 0.54/1.0 0.55/1.0 0.54/1.0
Top genes from Na- - 0.82/0.9 0.74/0.84

ive Bayesian classifier

TOP genes fron} Lo- 0.6/0.73 ) )
gistic Regression
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Table 3. Test/train cross-validation ROC AUC scores of SVM model, trained on all genes and genes
selected by the iterative feature selection procedure with Naive Bayesian classifier or Logistic Re-
gression classifier. SVM model was applied to simple scaled (simple_scaled), without correlated
genes (without_correlated), and without co-expressed genes (without_coexpressed) datasets. In
contrast to all genes as a feature set, genes selected by the iterative procedure show predictive abil-

ity.

Without -
Simple_Scaled  Without_Correlated ithout_Coex

Pressed
All genes 0.62/1.0 0.60/1.0 0.62/1.0
Top genes from Na- - 0.93/0.97 0.85/0.93

ive Bayesian classifier

T f Lo-
op genes from Lo 0.72/0.83 ) )
gistic Regression

2.3. Gene Lists Analysis

In the next step, we analyzed the number of appearances of each feature in the feature
sets, obtained by 100 runs of the iterative feature selection procedure on each of the da-
tasets (ref. to Section 4.4.1). We considered the most frequent features to be the most im-
portant genes in terms of distinguishing between the BPA-exposed and control samples.
For these genes, pathway analysis was performed using DAVID [29] to determine the
most enriched pathways and biological processes within each dataset (Section 4.4.2). This
revealed that the most frequent genes from the simple scaled dataset (Figure 2A and Table
4), without correlated genes dataset (Figure 2B and Table 5), and without co-expressed
genes dataset (Figure 2C and Table 6) did not cluster together in any Gene Ontology (GO)
biological processes (BP). By examining the top genes for all of the datasets, we could
observe 24 common genes (Table 7).

A Feature frequencies for simple scaled dataset B Feature frequencies for dataset without correlated genes
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Figure 2. Feature frequencies, obtained by 100 runs of iterative feature selection procedure, for (A) simple scaled dataset,
(B) dataset without correlated genes and, (C) dataset without co-expressed genes. There are 4 features for the simple scaled
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dataset, 6 features for the dataset without correlated genes, and 7 features for dataset without co-expressed genes, which
have noticeably higher frequencies than other features.

Table 4. The most frequent genes within 100 runs of the iterative feature selection procedure on the
simple scaled dataset.

Entrez ID Gene Symbol Gene Name Frequency/100

Amyloid beta precursor
protein (cytoplasmic

654810 Appbp2os tail) binding protein 2, 33
opposite strand
Transmembrane BAX
110213 Tmbimé inhibitor motif contain- 21
ing 6
Ribosomal protein
22121 Rpl13a L13A 19
11603 Agrn Agrin 17

Table 5. The most frequent genes within 100 runs of the iterative feature selection procedure on the
dataset without correlated genes.

Entrez ID Gene Symbol Gene Name Frequency/100

Colony stimulating fac-

12984 Csf2rb2 for 2 receptor, beta 2, 50

low-affinity (granulo-
cyte-macrophage)
19367 Rad9a RADS9 checkpoint 47
clamp component A

230085 Phf24 PHD finger protein 24 46
Hairy/enhancer-of-split

15213 Hey1 related with YRPW mo- 42

tif 1
72805 Zfp839 Zinc finger protein 839 31
229279 Hnrnpa3 Heterogeneous nuclear 08

ribonucleoprotein A3

Table 6. The most frequent genes within 100 runs of the iterative feature selection procedure on the
dataset without co-expressed.

Entrez ID Gene Symbol Gene Name Frequency/100

Colony stimulating factor
2 receptor, beta 2, low-af-

12984 Cef2rb2 finity (granulocyte-macro- 12
phage)
Hairy/enhancer-of-split re-
15213 Heyl lated with YRPW motif 1 4
230085 Phf24 PHD finger protein 24 34
19367 Rad9a RADS checkpoint clamp 31
component A
72805 Zfp839 Zinc finger protein 839 26
220279 Hnrnpa3 Heterogeneous m.tclear ri- 25
bonucleoprotein A3
12593 Cayl Chromodomain protein, Y 20

chromosome-like

A\ MOST
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Table 7. Genes common among all important features from three datasets: simple scaled dataset,
dataset without correlated genes and dataset without co-expressed genes.

Entrez ID Gene Symbol  Gene Name GO Terms  Biological Process
colony stimulat-
ing factor 2 re-
12984 Csf2rb2 ceptor, b.etfz 2, PCO0197! Tr.ansmembrane
low-affinity signal receptor
(granulocyte-
macrophage)
RADS checkpoint -
19367 Rad9a clamp component  GO:0000076 D\ replication
A checkpoint
purinergic recep- cellular response
18441 P2ry1 tor P2Y, G-pro-  GO:00714072  to organic cyclic
tein coupled 1 compound
SUMO/sentrin Protein modifica-
320213 Senp5 specific peptidase  GO:0070646  tion by small pro-
5 tein removal
YES proto-onco-
22612 Yes gene 1, Srefam-— o h00gpg3  CCll population
ily tyrosine ki- proliferation
nase
nuclear receptor cellular response
268903 Nripl interacting pro-  GO:0071392  to estradiol stimu-
tein 1 lus
13642 Efnb2 ephrin B2 GO:0007411 Axon guidance
transducin Histone deacetyla-
21372 Tbl1x (beta)-like 1 X-  GO:0016575 .
. tion
linked
S i
56530 Cnpy?2 naling requlator  GO:00109882 ) .
) tein particle clear-
ance
esterase Hydrolase activ-
13885 Esd D/formylgluta-  GO:0016788 ity, acting on ester
thione hydrolase bonds
13639 Efna4 ephrin A4 GO:0007411 Axon guidance
11607 Agiria angiotensin I re- GO:0006954 Inflammatory re-
ceptor, type la sponse
regulating synap- Regulation of neu-
116837 Rims1 tic membrane ex-  GO:0046928  rotransmitter se-
ocytosis 1 cretion
amyloid beta pre-
cursor protein . .
654810 Appbp2os  (cytoplasmic tail)  GO:0008017 Mlcmh,lbuie bind-
binding protein e
2, opposite strand
Maturation of
213773 THi3 transducin GO:0000462 SSU-rRNA from

(beta)-like 3

tricistronic rRNA
transcript
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D site albumin

RNA polymerase
II regulatory re-

13170 Dbp promoter binding ~ GO:0000977 gion sequence-
protein specific DNA
binding
barttin CLCNK
140475 Bsnd type accessory GO:0006821  Chloride transport
beta subunit
CUGBP, Elav- Alternative
13046 Celf1 like family mem-  GO:0000380  mRNA splicing,
ber 1 via spliceosome
aminolevulinic .
11656 Alas2 acid synthase 2, PCoo2161 1 rotoporphyrin-IX
) biosynthesis
erythroid
10458 Cer6 chen'wkzne (C-C GO:0006954 Inflammatory re-
motif) receptor 6 sponse
DEAH (Asp- regulation of
13211 Dhx9  Glu-Ala-His) box  GO:0050684 8 .
) mRNA processing
polypeptide 9
cytoskeleton-de-
18951 Septinb septin 5 GO:0061640  pendent cytokine-
sis
tetratricopeptide
repeat, ankyrin Dendritic spine
66860 Tancl , GO:0097062 2 .
repeat and coiled- maintenance
coil containing 1
nuclear receptor Transcription ini-
tiation f RNA
75692 Nr2c2ap  2C2-associated ~ GO:00063672 o on 1O

polymerase II pro-

protein
moter

I PANTHER Protein Class 2 GO TERM Molecular Function.

Next, the 24 common genes were used for pathway analysis using DAVID to find the
most enriched biological processes. The functional annotation in DAVID showed that one
cluster of genes (Dbp, P2ry1, Tbl1x, Nripl, and Yes1) was related to GO:004594: the positive
regulation of transcription from RNA polymerase Il promoter. There were also two genes
belonging to the ephrin receptor signaling pathway (GO:0048013), Efnb2 and Efna4.

We then examined important features for the intersection of the top 30 genes from
the machine learning models with the cut-off of 20 appearances. It was expected that im-
portant (the most frequent) features for datasets without correlated and without co-ex-
pressed genes would be similar due to the similarity of the pre-processing procedure. Five
common genes among the top 30 genes were found for these datasets: F11r, Pfkfb1, Zfp839,
Csnls2b, Yesl. Moreover, there were two genes (Rad9a, Senp5) that appear in the top 30
genes in the simple scaled dataset only.

The genes from the top 30 important genes dataset were also utilized in the pathway
analysis using DAVID to determine the most enriched biological processes. Although
most of the genes did not form any obvious clusters, the functional annotation in DAVID
showed that the two largest clusters of Gene Ontology (GO) biological processes (BP) were
related to the regulation of apoptosis (GO:0042981) and proteolysis (Table 8). In fact, two
clusters, having some gene overlap, were related to the general regulation of apoptosis or
the negative regulation of apoptosis (GO:0043066) (Table 8 and Figure 3).
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Table 8. Annotation clusters with significantly enriched GO biological processes and pathways for

the top 30 genes.
Category Term FDR! Gene symbols
Trafl, Hgf, Bdkrb2,
GOTERM_ BP Regulanon' of apopto- 0.04 Tmbim6, Apafl, Rad9a,
sis Mapk8, Agtrla, Mgmt,
Btgl
GOTERM_BP Lipid localization 0.08 Nripl, Atp9b, Gulpl,
Osbpl11
GOTERM_BP Negative regul'atlon 011 Hgf, Bdkrb2, Tmbim6,
of apoptosis Mapk8, Agtrla
Senpb, Hgf, Hectd1,
GOTERM_BP Proteolysis 0.13 Adam11, Psmb8,

Apafl, Bacel, Clqgb, Ide

! FDR—false discovery rate.
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Figure 3. Biological pathways for the top 30 genes (Names or proteins in red = top 30 genes). A subset of the genes recov-
ered in our analysis relates to the regulation of cell survival, DNA repair, apoptosis, and cellular junctions. In fact, many
of the pathways recovered, including Tnfr2, Hgf-Met, Agtrla, Bdkrb2, signal through Mapk8 (also known as Jnk1) to regulate
cell survival. One of these pathways, Hgf-Met, also functions to regulate another recovered gene, Mgmt, to allow for DNA
repair. Two of the recovered genes, Tmbimé6 and Bcl2L, inhibit Bax in order to prevent apoptosis, while one gene, Apafl, is
necessary for forming apoptosomes to induce apoptosis. Cellular junctions are also centrally important for cell survival,
and four of the genes recovered, F11r, Cldnd1, Ctndl, and Yes1, function for maintain cellular junctions.
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3. Discussion

Bisphenols are important pollutants that significantly infiltrated the biome. Their po-
tential to disrupt physiology has led several groups to perform microarray analysis using
biological material from mice after BPA intervention. The large datasets created by these
works have been deposited in public data banks [21,22], but no other analysis has been
performed. Using machine learning, we mined a subset of these microarray datasets and
were able to define not only a method for performing a meta-analysis of these large da-
tasets but also produce pathways conserved across different BPA interventions within a
species.

Our research confirms the importance of combining datasets in a meta-analysis but
also highlights the importance of different pre-processing steps before applying machine
learning methods, especially for small datasets. In this study, we focused on various cor-
relation-based gene averaging processes. We showed that the usage of these strategies
leads to different, but, in general, related, solutions. This suggests that co-expression-
based pre-processing produces a dataset modification that promotes a solution candidate.
Using hard voting, the final result was aggregated from the results of running three mod-
els on dataset modifications. The strategies to improve this process might include a deeper
investigation of the differences in outcomes between the models, as well as more sensitive
aggregation.

BPA exposure has been shown to disrupt mitochondria integrity, leading to elevated
ROS levels and apoptosis rates in human granulosa and HT-22 cells, which are derived
from the mouse brain [30,31]. The BPA-inhibited proliferation of neural progenitor cells
and rat embryonic midbrain cells through the suppression of the JNK signaling pathway
has also been reported [32,33]. Our gene ontology analysis using DAVID indicated that a
significant group of the top 30 transcripts recovered from machine learning models were
linked to the regulation of apoptosis (see Table 8). Furthermore, by using DAVID and
STRING;, it became evident that many of the genes encoding these transcripts categorized
as being involved in the regulation of apoptosis were, in fact, cell survival pathways that
converged on Mitogen-Activated Protein Kinase 8 (Mapk8, also known as Jnk1) (Figure
3). The protein of one of the transcripts recovered, Hepatocyte growth factor (Hgf), acti-
vates MET Proto-Oncogene, Receptor Tyrosine Kinase (Met), which not only regulates
Mapk8 activation but also leads to increased transcriptional expression of another gene in
our dataset, O-6-Methylguanine-DNA Methyltransferase (Mgmt) [34]. Mgmt and Rad9a pro-
teins, whose transcript levels were also shown to be affected by BPA, are both involved in
repairing damaged DNA [35]. Furthermore, in mouse macrophages, it was determined
that BPA-induced mitochondrial disruption reduced BCL2 protein expression, which led
to caspase-dependent apoptosis [36]. In our study, one of the top 30 genes was Bcl2l1,
whose protein is known to inhibit Bax-induced apoptosis (Figure 3). Furthermore, the
protein of another gene recovered in the study, Apafl, acts downstream of Bax, and, along
with Caspase-9, forms an apoptosome to induce apoptosis (Figure 3) [37]. Interestingly,
we also showed that Tmbim6 transcript levels are affected by BPA, and Tmbimé was shown
to inhibit Bax-induced apoptosis (Figure 3) [38].

Three of the top 30 genes, F11 Receptor (F11r, also known as Jam-1), Claudin Domain
Containing 1 (Cldndl), and Catenin Delta 1 (Ctnnd1), are associated with either tight or ad-
herens junctions (see Table 8 and Figure 3). In a recent study, the reproductive toxicity of
BPA was investigated. Male CD-1 mice were orally administrated BPA, and the results
showed that this exposure was sufficient to induce disorders in spermatogenesis, includ-
ing damaging the tight junctions between Sertoli cells [39]. Another study examined the
effect of BPA in female rats on the expression levels of tight junction (TJ) transcripts in the
uterus during early pregnancy. This study found profound alterations in the T] gene tran-
script levels of uterine epithelial cells when the rats were exposed to BPA, which led to
changes in fluid and ion transport across the epithelium, blocking the receptivity of the
uterus to blastocyst implantation [40]. In fact, this study saw profound effects on claudin
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transcript levels, such as Cldndl, including low expression levels or even the loss of ex-
pression.

Interestingly, our study recovered transcripts for two receptors that are in pathways
regulated by Angiotensin I Converting Enzyme (ACE), Angiotensin II Receptor Type la
(Agtrla), and Bradykinin Receptor B2 (Bdkrb2) (see Table 8 and Figure 3). In both rat cardiac
cells and human endothelial cell lines, it was shown that BPA was proangiogenic, includ-
ing the upregulation of Nitric Oxide Synthase 3 [41-43]. In another report, it was discov-
ered in rat striatum that the inhibition of ACE was able to alleviate the ROS-inducing ef-
fects of a BPA + 1-methyl-4-phenylpyridinium ion (MPP(+)) mixture [44]. Interestingly,
both Agtrla and Bdkrb2 signal upstream of Nos3, where Agtrla leads to Nos3 inhibition
and Bdkrb2 leads to activation (Figure 3).

In terms of computational methods, in this paper, we suggest using a new cross-val-
idation-based greedy feature selection algorithm with three different preprocessing strat-
egies. Using this approach, one has the flexibility to incorporate different machine learn-
ing models and stopping criteria into the feature selection procedure depending on the
properties of the data. We also provided gene importance analysis based on the frequen-
cies of the genes’ appearances in the feature lists from 100 runs of the proposed algorithm.
For small datasets, this process is more stable than using feature selection techniques
based on a single run.

Our results highlight the value of integrating data from multiple datasets for co-anal-
ysis, revealing new biological knowledge. However, a key limitation of our study is still a
lack of publicly available microarray data after BPA exposure, which restricts our inves-
tigation to the baseline machine learning methods. This is also an important constraint for
analyzing the differences between the results from datasets without correlated and with-
out co-expressed genes. We used co-expression analysis with the WGCNA package for
each GEO dataset, but it should be carefully used for datasets with less than 15 samples
[45]. This means that a pre-processing method should be attentively chosen based on the
available data.

In summary, we developed a new approach for the meta-analyses of microarray data,
which could be very useful for analyzing other datasets relating to any environmental
pollutants. The pathways that we have identified align well with the previous evidence
for the molecular actions of BPA and prompt further studies into pathways that relate to
the regulation of cell survival, DNA repair, apoptosis, and cellular junctions.

4. Materials and Methods
4.1. Dataset Collection of BPA-Exposure-Related Data

We restricted our survey to the datasets devoted to BPA-exposure experiments using
male mice. Four publicly available microarray datasets from the GEO database were ex-
amined: GSE26728 [21], GSE126297 [22], GSE43977 [43], and GSE44088 [43]. In GSE26728,
liver gene expression was measured from CD-1 mice exposed for 28 days to bisphenol A
at doses 0 (controls), 50 (TDI or low dose), or 5000 pg/kg/day (NOAEL or high dose) via
food spiking [21]. The GSE126297 dataset used pancreatic islets from OF1 male mice after
exposure of organisms to 100 ug/kg/day (two injections of 50 pg/kg/day) for four days
[22]. The GSE43977 and GSE44088 datasets used hepatic samples from C57BL/6] mice [43]
after exposure to ~21.93 mM (5000 ppm) for 7 days and 10 uM for 24 h, respectively. Four
datasets have 41 samples in total, 21 control untreated samples and 20 treated samples.

We examined each dataset separately for differential expression analysis. For ML-
based analysis, we combined datasets following three different strategies. Below is the
detailed description of all pre-processing procedures.

4.1.1. Data Pre-Processing for Differential Expression Analysis of Individual Datasets

In the bioinformatic pipeline, we examined each dataset separately, where datasets
themselves were given log2-transformed values. Expression data files were pre-processed
using the R limma package (version 3.42.0) [46]. We annotated datasets with Entrez ID and
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dropped NA values. We defined low-expression genes with a constant threshold for log-
transformed probe intensity values and removed them manually from the dataset [47].
We also removed probe replicates using the avereps function and performed quantile nor-
malization using the normalizeBetweenArrays function.

4.1.2. Data Pre-Processing for Machine Learning-Based Analysis for Combined Datasets

In order to analyze combined datasets, we reduced each dataset to the common genes
set among all datasets. This left us with four datasets having 6742 genes in each. Then, we
scaled intensity values for each gene in each dataset in the range of 0 to 1, following equa-
tion 1.

x —min(x)

1)

x = -
sealed = pax(x) — min(x)’

where x is an intensity value for the specific gene.

Finally, we combined scaled datasets into a single dataset, following three different
strategies. The first strategy was not to use any modification. The second and third strat-
egies use two different ways to construct independent feature sets in order to meet the
requirement of machine learning algorithms with independence assumptions between the
features.

Simple scaled dataset. The first strategy is to combine four datasets without any mod-
ifications, resulting in a dataset with a matrix size of 41x6742.

Dataset without correlated genes. In the second strategy, we built a correlation graph.
In this graph, vertices correspond to the genes, and edges correspond to the correlated
genes with a level of Pearson correlation. Then, we replaced each connectivity component
with an averaged value of its vertices. Thus, the new dataset consists of uncorrelated ele-
ments, representing genes or averaged groups of genes. We varied a from 0.7 to 0.99 and
finally used 0.7 because, for higher levels, most of the genes did not belong to any corre-
lation cluster. This strategy resulted in a dataset with a shape of 41x5704.

Dataset without co-expressed genes. In the third strategy, we used the R package
WGCNA (version 1.46) [48] to build co-expressing clustering based on biweight midcor-
relation. For a combined scaled dataset, we analyzed genes’ co-expression with the fol-
lowing steps. First, we clustered the samples (in contrast to clustering genes that will be
described later) with hclust function to see if there are any potential outliers. Figure 4A
shows a sample tree without any outliers.

Then, we built a gene-gene similarity network with soft-threshold power selection
using pickSoftThreshold function. Figure 4B,C show soft-threshold power selection. We
chose the threshold equal to 7 (this value is the lowest power for which the scale-free to-
pology fit index curve flattens out upon reaching a high value).

In the next step, we built the corresponding gene network and identified modules
within each network. Figure 4D shows the heatmap for the gene network. Each row and
column of the heatmap corresponds to a single gene. The heatmap can depict adjacencies
or topological overlaps, with light colors denoting low adjacency (overlap) and darker
colors higher adjacency (overlap). In addition, the gene dendrograms and module colors
are plotted along the top and left side of the heatmap. Based on results presented in Figure
4D, one can conclude that genes taken into account do not have strong co-expression.
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Figure 4. (A) Sample tree for combined dataset of GSE26728, GSE126297, GSE43977, GSE44088. Scale independence (B)
and Mean connectivity (C) for combined dataset of GSE26728, GSE126297, GSE43977, GSE44088. Soft threshold is the
lowest power for which the scale-free topology fit index curve flattens out upon reaching a high value. (D) Genes heatmap

for combined dataset of GSE26728, GSE126297, GSE43977, GSE44088.

Finally, we averaged genes among each cluster. In total, 3 clusters with 1094 genes
were averaged. This strategy resulted in a dataset with a matrix size of 41x5651. As a re-
sult, we have obtained the simple combined dataset, the dataset without correlated genes,
and the dataset without co-expressed genes.

4.1.3. Differential Gene Expression Analysis

We performed differential expression analysis using the R package limma (version
3.42.0) [46]. Benjamini-Hochberg correction was applied as multiple testing correction. A
gene was declared differentially expressed if an observed expression difference between
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two experimental conditions was equal or more than 1.5 and statistically significant (ad-
justed p-value < 0.05).

4.2. Machine Learning-Based Genes Selection

We used machine learning to build binary classification models considering genes as
features and then find “important” features in terms of distinguishing BPA-exposed sam-
ples from control ones. In particular, we used two different machine learning-based ap-
proaches, namely ensemble-based methods and new iterative feature selection procedure.

4.2.1. Ensemble-Based Approach

We used Random Forest and Support Vector Machine (SVM) ensemble methods,
with feature bagging, to all three datasets. Random Forest is a widely used classification
model; we used it with 1000 Gini impurity-based trees and 100 features in each tree. In
order to find the most “important” genes, we used Gini importance, which is computed
as the total reduction of Gini impurity brought by that feature. Similar to Random Forest,
we built an SVM ensemble with feature bagging. As a feature importance criterion, we
used weights, assigned to each feature by the SVM classifier.

4.2.2. Tterative Feature Selection Procedure

We constructed a cross-validation-based greedy feature selection procedure (Figure
5). On each step, this procedure tries to expand a feature set by adding a new feature. It
fits a model with different alternatives and selects a feature that is the best in terms of
cross-validation accuracy on that step.

Data: dataset X, outcome values y, BinaryClassifier,
AccuracyDelta = 0.05, M axDecreaseCounter = 10
Result: Subset S C X of selected features
S« 0;
BestAccuracy < 0.0;
DecreaseCounter < 0;
while X # () do
Accuracy + 0;
for z in X do
Xg+ SUux;
ys < outcome values from y for Xg ;
M <+ BinaryClassifier(Xs,ys);
Accuracy < Accuracy U CrossValidationAccuracy(M, X, y);
end
T, < argmazx,Accuracy ;
X+ X\z;
if maxAccuracy > BestAccuracy then
BestAccuracy < Accuracy;
DecreaseCounter < 0;
else
| DecreaseCounter < DecreaseCounter + 1;
end
if BestAccuracy — maxAccuracy > AccuracyDelta OR
DecreaseCounter > MaxDecreaseCounter then
| break;
else
| S+ SUz,;
end
end
return S;

Figure 5. Algorithm 1. The algorithm of the cross-validation-based greedy selection procedure. The
algorithm takes as inputs the following parameters: dataset X (gene features of each of three
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datasets, simple scaled, without correlated genes, and without co-expressed), BinaryClassifier (a
function of binary classification), AccuracyDelta (the minimum significant difference in the accu-
racy score), and MaxDecreaseCounter (the maximum number of steps to evaluate in case of accu-
racy decrease). The iterative feature selection procedure returns a subset of selected features.

An alternative to this idea could be a Recursive Feature Elimination procedure (RFE),
which fits a model once and iteratively removes the weakest feature until the specified
number of features is reached. The reason why we did not use RFE procedure is its ina-
bility to control the fitting process, while our greedy selection algorithm provides us an
opportunity to set up useful stopping criteria. We stopped when there was no significant
increase in cross-validation accuracy, which helped us overcome overfitting.

Because of the small number of samples in our dataset, we used 50/50 split in cross-
validation. This led to an issue of unstable feature selection at each step. In order to reduce
this instability, we ran the procedure 100 times and calculated a gene’s appearances in
“important genes” lists.

The crucial step of the algorithm is to train a binary classifier, which could be any
appropriate classification model. In our study, we focused on strong baseline models. We
used Logistic Regression with L1 and L2 penalties for the simple combined dataset and
Naive Bayesian classifier for the datasets without correlated or co-expressed genes. Naive
Bayesian classifier is known to be a strong baseline for problems with independence as-
sumptions between the features. It assigns a class label y_NB from possible classes Y fol-
lowing maximum a posteriori principle (equation 2):

Ynp = argmax,ey P[] P(x;Vy), 2)

under the “naive” assumption that all features are mutually independent (equation
3):

P(x1,%3,..., ., VY) = P(x; VY)P(x3 VY)...P(x, VYY), 3)

where xi stands for an intensity value for the specific gene 7, y stands for a class label,
P(x; Vy) stands for a probability of class y for the intensity value x;, P(y) stands for y class
probability. Both probabilities P(x; V y)and P(y) are estimated with relative frequencies
in the training set.

Logistic Regression is a simple model that assigns class probabilities with sigmoid
function of linear combination (equation 4):

Yir = argmaxyeyo(yw’x), (4)

where x stands for a vector of all intensity values, w stands for a vector of linear co-
efficients, y stands for a class label and o is a sigmoid function.

We used it with ElasticNet regularization, which includes penalties to L1 and L2
norms of weight vector w.

4.3. Genes Selection Validation

In order to prove predictive ability of selected features, we used them in the S classi-
fier, which is known to be a strong model for binary classification. We checked the in-
crease in cross-validation ROC AUC scores for each feature set.

4.4. Gene Lists Analysis
4.4.1. Identification of the Most Important Genes

We calculated the genes’ appearances in feature lists from 100 runs of the Algorithm
1 (Figure 5). From these frequencies, we were able to range genes in each dataset in terms
of their importance for binary classification.

In order to compare gene lists to each other, we built a summary table using the top
30 genes of each dataset. We also annotated them with corresponding p-values from dif-
ferential expression analysis.
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4.4.2. Annotation and Pathway Analysis

Pathway enrichment analysis was performed in DAVID (Database for Annotation,
Visualization and Integrated Discovery) and PANTHER, using Gene Ontology (GO), and
Reactome databases (PMID: 22543366; PMID: 30804569; PMID: 31691815). The MetaCore
default setting of false discovery rate (FDR) < 0.05 was used as threshold for significance
in enrichment analysis.
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