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The Inertial Navigation System (INS) is usually employed to determine the position of 
an underwater vehicles, like Remotely Operated Vehicles (ROV) and, more recently, 
Autonomous Underwater Vehicle (AUV). The accuracy of the position provided by the INS, 
which uses accelerometers and gyroscopes, deteriorates with time. An external aiding sources 
such as the Global Positioning System (GPS) can be employed to reduce the error growth in 
the INS. The GPS aided INS system provides enhance positioning accuracy of the underwater 
vehicles compared to that of a stand-alone INS technique. 

In the paper integration algorithm of inertial sensors (accelerometers and gyroscopes) 
and GPS system data for underwater navigation is presented. For data integration algorithm 
External Kalman Filter (EKF) is proposed. 

 
INTRODUCTION 

The GPS is widely used in navigation. The GPS receiver can offer long-term stable 
absolute positioning information with output rate at around 1 to 10 Hz. However, the system 
performance depends largely on the signal environments. In an INS system, the angular rate 
and specific force measurements from the Inertial Measurement Unit (IMU) are processed to 
yield the position, velocity and attitude solution. Such systems can navigate autonomously 
and provide measurements at a higher data rate (e.g., 100 Hz). However, the system has to be 
initialized and calibrated carefully before application. Moreover, the sensor errors are growing 
unboundedly over time. Due to the complimentary characteristics of GPS and INS, they are 
often integrated to obtain a complete and continuous navigation solution [1, 2]. 

The inertial sensors used in IMU are made in MEMS (Micro Electro-Mechanical 
Systems) technology. MEMS technology enables miniaturization, mass production, and cost 
reduction of many sensors. In particular, MEMS inertial sensors that include an acceleration 
sensor and an angular velocity sensor (gyroscope, or simply “gyro”) are the most popular 
devices. Almost all MEMS acceleration sensors have a seismic mass and support spring made 
of silicon. The structure of MEMS gyros is somewhat similar to that of acceleration sensors – 



a mass supported by a spring is continuously vibrated in the device, and the Coriolis force 
generated by the applied angular velocity affects the movement of the mass (vibrating 
gyroscope). The mass in a MEMS device is very small, and therefore, the inertial forces 
acting on the mass, especially the Coriolis force, are also extremely small. Thus, the design of 
the circuit that measures the movement in mass due to the force is important in addition to the 
design of the mechanical structure. Recently MEMS inertial sensors have been built with an 
integrated circuit, with sensor structure on a single device chip [3]. 

A typical structure of a MEMS acceleration sensor is shown in figure 1 [3], where a 
silicon mass is supported by silicon springs and the displacement of the mass due to 
acceleration is measured by capacitance change between the mass and fixed electrodes. Since 
the mass is very small and the displacement is also small, the resolution of the device is 
generally limited to around 0.1 mg Hz-1/2. 

 
Fig.1. Structure of MEMS acceleration sensor (2-axis). 

 
The basic structure of MEMS gyroscopes is similar to acceleration sensors, i.e., a mass 

is supported by springs. The main difference in operation is that the angular velocity is 
obtained by measuring the Coriolis force on the vibrating mass. Thus, the movement of the 
mass should have at least two degrees of freedom. The device is shown in figure 2.  

 

 
Fig.2. Conceptual structure of an MEM gyroscope. 
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Inertial sensors have numerous applications. An Inertial Navigation System (INS) is a 

self-contained system that integrates three acceleration and three angular velocity components 
with respect to time and transforms them into the navigation frame to deliver position, 
velocity, and attitude components. The three orthogonal linear accelerations are continuously 
measured through three-axis accelerometers while three gyroscopes monitor the three 
orthogonal angular rates in an inertial frame of reference. In general, inertial measuring unit 
(IMU), which incorporates three-axis accelerometers and three-axis gyroscopes, can be used 
as positioning and attitude monitoring devices. However, INS cannot operate appropriately as 
a stand-alone navigation system. 

The presence of residual bias errors in both the accelerometers and the gyroscopes, 
which can only be modeled as stochastic processes, may deteriorate the long-term positioning 
accuracy. Hence, the INS/GPS data integration is the desirable solution to provide navigation 
system that has better performance in comparison with either a GPS or an INS stand-alone 
system. 

 
1. ALGORITHM  FOR INS AND GPS DATA INTEGRATION 

The INS/GPS data integration algorithm consists in Extended Kalman Filter (EKF) 
usage. EKF uses Taylor series where the idea of a linear approximation to describe a function 
in the neighborhood of some point by a linear function is applied. The algorithm works in a 
two-step prediction/correction process. In the prediction step, the Kalman filter produces 
estimates of the current state variables. Because of the recursive nature of the algorithm, it can 
be run in real time. The present input measurements and the previously calculated state is 
used; no additional past information is required [4]. The very idea is presented in the figure 3 
where: 

- ,  are á priori and á posteriori system state, 
- ,  are á priori and á posteriori covariance matrix, 
-  is measurement matrix, 
-  is Kalman gain, 
- ,  are process and state variance of the system, 
-  is measurement matrix, 
-  is process model. 

 

 
Fig.3. EKF sensor data integration algorithm diagram [4]. 

 
Prediction can be describe as follows (1) and (2) where  is nonlinear function, 

which uses a previous filter state as well as control impact and the process noise.  (or ) is 
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a Jacobian,  with respect to ,  (or ) is a Jacobian,  with respect to  function. Where 
 and  are follows: 

        (6) 

      (7) 

And correction is applied as follows (3), (4) and (5) where  (or ) is Jacobian, derivative 
of the function  with respect to ,  (or ) is Jacobian, function  derivative of with 
respect to  and  is nonlinear function of the state and measurement relation. Jacobians 

 and  can be expressed as follows: 
      (8) 

      (9) 

where: 
      (10)  

All Jacobians Ought to be recalculated In every iteration step. 
 

2. RESULTS 

The figures 4, 5 and 6 show a comparison between the INS position and the EKF filter 
position estimation following the three axes x, y and z. As can be seen from figures 4 and 5, 
the performances of the EKF and theoretical state are quite similar especially when the 
process and observation noises are uncorrelated zero mean Gaussian with known covariance. 
The figures 5 and 6 show that the EKF estimator is more accurate than the INS position, the 
latter diverge exponentially with time. We also observe, from figure 6, that the EKF have a 
poor performance facing the heavy system nonlinearity since there are large deviations of the 
estimated state trajectory from the nominal trajectory. Thus, the nonlinear signal model is less 
accurately approximated by the Taylor series expansion, neglecting the higher order terms, 
about the conditional mean. 

 
Fig.4. Estimation of the position x. 
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Fig.5. Estimation of the position y. 

 
 
 

 
Fig.6. Estimation of the position z. 

 
 

Figure 7 shows the UAV 3D trajectories given by the INS,  EKF filter and GPS. These 
trajectories are compared with the theoretical one. 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 
Fig.7. UAV localization. 

 
3. CONCLUSIONS 

In this paper, we proposed a External Kalman Filter to estimate the location of an 
underwater vehicles, using INS/GPS information. The proposed method solves issues related 
to linearization, which is linked mostly to classical filtering techniques. Different trajectories 
of the UAV are tested, and an accuracy UAV position was obtained by the EKF filter. We 
obtained quite good and promising results for future work. 
   
REFERENCES  

[1]  N. Abdelkrim, A. Nabil, Robust INS/GPS sensor fusion for UAV localization using 
SDRE  nonlinear filterin, IEEE Sensors Jurnal, Vol. 10, No. 4, 2010. 

[2] W. Ding, J. Wang, A. Almagbile, Adaptative filter design for UAV navigation with 
GPS/INS/optic flow integration, 2010 International Conference on Electrical and 
Control Engineering, 2010. 

[3] K. Maenaka, MEMS inertial sensors and their applications, 5th international conference 
on network sensing systems, INSS 2008. 

[4] J. Kedzierski, Filtr Kalmana - zastosowania w prostych ukladach sensorycznych, 
Wroclaw, Koło Naukowe Robotykow KoNaR, Politechnika Wroclawska, 2007. 

 
 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

