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Abstract: The problem of intelligent monitoring of the vertical dynamics of wheeled inspection vehicles 

is addressed. With the independent MacPherson suspension system installed, the basic analysis focuses 

on the evaluation of the parameters of the so-called quarter car model. To identify a physically motivated 

continuous description, in practice, dedicated integral-horizontal filters are used. The obtained discrete 

model, which retains the original parameters, is effectively identified using the classic least squares 

procedure. Using the method of identification in the sense of the least sum of absolute values, the results 

of such an assessment become insensitive to sporadic outliers in the sampled data. However, the early 

signs of possible mechanical defects of the suspension can be seen using the forgetting mechanism. This 

helps to identify failures that can be recognized by changes in system parameters. Ultimately, the quality 

of the intelligent vehicle suspension monitoring developed is verified by means of numerical simulations. 
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1. INTRODUCTION 

In recent years, many autonomous aerial drones, unmanned 

mobile robots and inspection vehicles have found a variety of 

practical applications. For example, professional remote-

controlled drones are successfully engaged in border patrols, 

while specific police quadcopters with vision systems ascend 

to the sky to monitor road traffic. Dedicated untethered 

robots, in turn, take on difficult diagnostic tasks, mentioning 

the detection of corrosion attacks inside pipelines or 

inspection of boiler tubes in power plants. In addition, 

wheeled or tracking inspection vehicles are extremely 

practical in discovering unknown areas and play an 

invaluable role in hazardous rescue operations after mining 

disasters. It is worth noting that these specific applications 

bring measurable economic benefits, which clearly justifies 

the intensive development of unmanned aerial and ground 

intelligent robots (Kowalczuk and Tatara, 2019). 

It is important that all component subsystems of the mobile 

robot are reliable and efficient enough. In particular, the 

mechanical efficiency of the suspension system is crucial for 

successful completion of tasks performed by wheeled 

inspection vehicles. Thus, the intelligent monitoring of the 

dynamics of the suspension mechanism is of importance. 

Early detection of mechanical damage can be a serious 

incentive to withdraw the vehicle from the area under 

exploration. This significantly reduces the risk of losing the 

vehicle with its load and expensive sensing systems. 

Therefore, the identification procedure resistant to 

disturbances and occasional outliers is important to avoid 

possible misinterpretation of measurement data disturbed by 

noise or sporadic errors (resulting, for example, from the 

unexpected maximal compression of the shock absorber). 

Therefore, the developed intelligent system that supervises 

the vertical dynamics of the inspection vehicle should meet 

the following requirements: (i) numerical processing (signal 

sampling, data registration) and evaluation of the suspension 

model parameters takes place in online mode; (ii) the 

implemented identification procedures enable tracking the 

evolution of time-variable parameters; (iii) the data 

processing is to some extent resistant to additive 

measurement noise and environmental disturbances; (iv) the 

estimation results are insensitive to occasional outliers in the 

recorded data; (v) the identification results remain reliable, 

even if non-linear saturation effects occur in the system (e.g. 

extreme compression or extension of the shock absorber). 

This study discusses the following issues. Section 2 presents 

the suspension model for a quarter car. Due to the use of 

integration operators with a finite horizon, the appropriately 

rearranged description takes the form of an equivalent 

discrete model that retains the original parameters. Different 

recursive and iterative estimaation algorithms are introduced 

in section 3. It is explained that the proposed estimation in 

the sense of the least sum of absolute values make the 

identification results robust to occasional outliers in the data 

being processed, while the least squares estimates are usually 

heavily influenced by such occasional measurement errors. 

The results of the numerical test are given in section 4, while 

section 5 summarizes the research and draws conclusions. 

2. VEHICLE SUSPENSION MODEL 

2.1  Quarter Car Dynamics 

Essentially, a vehicle suspension is a system of tires, shock 

absorbers (dampers), springs and appropriate mechanical 
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couplings that connect wheels and the car body. The main 

purpose of this system is to guarantee passengers the comfort 

of traveling. In the case of unmanned vehicles, proper 

suspension mechanisms should protect the cargo (e.g. 

expensive sensors or medical material needed in rescue 

operations), and also prevent vehicle incidents with 

potentially fatal consequences (e.g. accidents with turnover).  

The general dynamics of a moving vehicle are determined by 

three basic forces: longitudinal, lateral and vertical. Given 

that these directions are perpendicular, the monitored vertical 

acceleration is in fact independent of other movements. 

However, the MacPherson suspension column design (with 

wheels reacting independently to field impacts) simplifies the 

problem, taking into account the so-called dynamics of a 

quarter car (Fig. 1). 

The physical model explaining the vertical dynamics of the 

vehicle is shown in Fig. 2. In this model, the body with 

passengers and load is represented by the sprung mass (M). 

Unsprung weight (m), in turn, includes a wheel (tire and rim), 

wheel hub, rolling bearings, brake blocks, bolts and other 

structural components not protected by the spring. Parameters 

K and  describe the spring stiffness and the shock absorber 

damping of the suspension system, respectively. 

Analogically, the parameters K0 and 0 define the respective 

properties of the tire (Hassaan, 2014). 

The influence of spring stiffness can be described by Hooke's 

well-known law. According to a suitable rule, the tensile 

force of an elastic body (a spring or tire) increases linearly 

with the distance change. In the case of hydraulic dampers, 

the occurring Stokes viscosity force is proportional to the 

speed of movement of the shock absorber sleeve. In fact, tire 

elasticity is usually only relevant in the dynamics of heavy 

vehicles (buses or trucks). Most often the damping of the tire 

is radically smaller compared to the damping provided by the 

shock absorber, so you can simply ignore parameter 0 in 

further considerations. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Quarter car suspension system. 

Thus, following the Newton’s laws, the differential equations 

describing the vertical dynamics can be written down as 
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where z(t) and w(t) describe movements of the sprung and 

unsprung masses, respectively, while the road-tire reaction 

(i.e. system excitation) is represented by (t). One should 

also realize that an initial compression of the spring 

compensates the gravity force acting on the vehicle. Since a 

certain static equilibrium of the suspension is observed in the 

motionless vehicle, the gravity can be neglected in (1) – (2). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Physical model of the suspension system. 

By introducing an equivalent state-space representation of the 

mechanical suspension, a possible numerical implementation 

of the respective dynamics can be facilitated. With the 

convenient phase variables (x1 = z, x2 = w, x3 = z’, x4 = w’) 
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three basic forces: longitudinal, lateral and vertical. Given 

that these directions are perpendicular, the monitored vertical 

acceleration is in fact independent of other movements. 

However, the MacPherson suspension column design (with 

wheels reacting independently to field impacts) simplifies the 

problem, taking into account the so-called dynamics of a 

quarter car (Fig. 1). 

The physical model explaining the vertical dynamics of the 

vehicle is shown in Fig. 2. In this model, the body with 

passengers and load is represented by the sprung mass (M). 

Unsprung weight (m), in turn, includes a wheel (tire and rim), 

wheel hub, rolling bearings, brake blocks, bolts and other 

structural components not protected by the spring. Parameters 

K and  describe the spring stiffness and the shock absorber 

damping of the suspension system, respectively. 

Analogically, the parameters K0 and 0 define the respective 

properties of the tire (Hassaan, 2014). 

The influence of spring stiffness can be described by Hooke's 

well-known law. According to a suitable rule, the tensile 

force of an elastic body (a spring or tire) increases linearly 

with the distance change. In the case of hydraulic dampers, 

the occurring Stokes viscosity force is proportional to the 

speed of movement of the shock absorber sleeve. In fact, tire 

elasticity is usually only relevant in the dynamics of heavy 

vehicles (buses or trucks). Most often the damping of the tire 

is radically smaller compared to the damping provided by the 

shock absorber, so you can simply ignore parameter 0 in 

further considerations. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Quarter car suspension system. 

Thus, following the Newton’s laws, the differential equations 

describing the vertical dynamics can be written down as 

)()( zwKzwzM    (1) 

)()()( 0   wKzwKzwwm  (2) 

where z(t) and w(t) describe movements of the sprung and 

unsprung masses, respectively, while the road-tire reaction 

(i.e. system excitation) is represented by (t). One should 

also realize that an initial compression of the spring 

compensates the gravity force acting on the vehicle. Since a 

certain static equilibrium of the suspension is observed in the 

motionless vehicle, the gravity can be neglected in (1) – (2). 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Physical model of the suspension system. 

By introducing an equivalent state-space representation of the 

mechanical suspension, a possible numerical implementation 

of the respective dynamics can be facilitated. With the 

convenient phase variables (x1 = z, x2 = w, x3 = z’, x4 = w’) 

represented in the state vector 
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the state-space representation of the dynamics of the 

suspension system is given by 
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Practical methods for discrete approximation of continuous 

models are discussed in the next section. 

2.2  Continuous-Time Modelling 

Consider a differential equation model of the linear dynamics 
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with u = u(t) and y = y(t) standing for the input and output 

signals, respectively. The system can be subject to certain 

(usually unknown) initial conditions: y(n–1)(0), … , y(0), and 

u(n–1)(0), … , u(0). Numerical identification of the parameters 

ai and bi is based on processing of the recorded samples of 

the input and output signals. This methodology, commonly 

referred to as discrete identification of continuous models, 

employs dedicated methods of numerical approximation of 

continuous quantities (Unbehauen and Rao, 1990). Among 

different approaches, the idea of linear integral filtering (LIF) 

in transformation of (7) brings promising results. 

The LIF operation (Sagara and Zhao, 1990) subject to an rth 

derivative of a measurement signal x(t) 
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is simply represented by the multiple nth order integration of 

the signal x(r)(t) over an assumed time interval h. By 

employing the well-known trapezoidal method of numerical 

integration, the operation (8) can easily be approximated in 

discrete domain Jn x(r)(t)  Ir
n x(kT) using the FIR filter 

nLrrnrnn
r qqqqTI )...1()1()1()( 1111

2
1    (9) 

where q–1 is the delay operator (q–1x(kT) = x(kT – T) ) and an 

integer parameter L expresses the integration horizon h as a 

multiplicity of the sampling time T (i.e. h = LT). The 

accuracy of the above processing can be improved by 

employing more sophisticated rules of numerical integration.  

Application of the method of splines, for instance, makes the 

processing (8) robust to possible accumulation of numerical 

errors (Kowalczuk, 1993; Kowalczuk and Kozłowski, 2000). 

Finally, the discrete model retaining the original parameters 

represented in (7) takes a convenient regression form 
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T
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with k standing for the sampling moment kT, (k) denoting 

the reference signal, e(k) being the residual error, and (k) 

and  representing the regression and parameter vectors, 

respectively. 

It is worth noticing that the described LIF approach to 

approximation of continuous models brings rational 

advantages. First, the entries of (11) obtained from the FIR 

filtering of the measurement signals stay bounded, provided 

the system (7) is stable (i.e. the input-output signals are 

bounded). Second, the respectively integrated free response 

of the system (7) is entirely eliminated after the elapse of 

time nLT, and thus the unknown initial conditions of (7) do 

not influence the results of parameter estimation. 

Yet, the bias of estimates influenced by additive noises can 

significantly be reduced, provided the integration horizon 

(h = LT) is tuned so that the magnitude characteristics of the 

identified system (7) and the LIF operator (8) are closely 

matched (Sagara and Zhao, 1990). 

Now, by employing suitable estimation procedures the 

parameters (12) of the underlying continuous dynamics (7) 

can easily be identified. 

3. ESTIMATION PROCEDURES 

3.1  Least Squares Estimator 

It is realistic that the monitored vehicle suspension can 

sometimes be a variable-parameter system. Of course, weight 

losses resulting from fuel consumption in combustion 

engines are almost unnoticeable in a short time period. There 

exist, however, situations in which changes of the sprung 

mass are evident. This takes place, for instance, when an 

agricultural vehicle spreads herbicides, pesticides, fertilizers 

or other chemical agents on the reclaimed soil. What is more, 

a possible damage of the mechanical system (e.g. oil leak in a 

hydraulic damper) can also influence variations in the 

identified parameters. It is therefore practical that estimation 

procedures utilize a specific forgetting mechanism allowing 

for on-line tracking the evolution of variable parameters (12). 

Most commonly, the weighted least squares (LS) algorithm 

resulting from minimization of the classical quadratic 

criterion 
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can be used to identify the parameters of the monitored 

system. The LS routine in its algebraic form can be shown as 
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where the so-called forgetting factor  usually falls in the 

range of 0.9…1. The choice of  influences the memory 

length of the LS routine. This length (referred to as an 

effective number of observations) is given by:  = 1/(1 – ). 

In order to overcome the numerically inconvenient matrix 

inversion, a recursive realization of (14) can be derived using 

the matrix inversion lemma (Ljung, 1987). This results in 
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where the covariance matrix P(k) appearing in (15) – (17) is 

simply the inverse of the information matrix R(k) represented 

in the first brackets of (14). The start-up value of this matrix 

is usually assumed as P(0) = diag (105, … , 105). Note that 

the LS estimates are consistent provided the regression data 

(k) and the residual process e(k) represented in (10) are 

uncorrelated (E[(k)e(k)] = 0). This takes place, for instance, 

when e(k) is a zero-mean white noise sequence. Otherwise 

(i.e. for correlated noises), the estimates (17) suffer from an 

asymptotic bias. The instrumental variable method is a good 

remedy to the bias problem (Söderström and Stoica, 1981). 

5.2  Least Absolute Values Estimator 

The introduced recursive LS routine is numerically simple 

and convenient for implementation. Unfortunately, the 

respective method is very sensitive to possible outliers in 

measurement data. In order to overcome this problem an 

estimator in the sense of the least sum of absolute values 

(LA) can be put into practice (Janiszowski, 1998). Since 

analytical minimization of the respective goal function 
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is problematic, an iterative solution can be proposed. 

Assuming that approximate values of the residual error e(k) 

are available (e.g. from a running-in-parallel LS procedure), 

the LA criterion can be rearranged as follows 
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what allows for analytical minimization of (19), which gives 
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The result (20) can further be improved by performing an 

iterative processing. With the initial estimates of the residual 

error e(i) = (i) – T(i) obtained from an LS scheme 

//T// )()()(ˆ pp iiie θφ  (21) 
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the ultimate iterative procedure (21) – (22) of successive 

approximations (p = 0, 1, …) follows instantly. 

It is of fundamental importance that the index (18) is 

decreasing in consecutive iterations of the above algorithm 

(Kozłowski, 2003). Therefore the processing (21) – (22) can 

be terminated, if the observed decrease in minimization of 

(18) falls below an assumed threshold value (e.g. min = 10–6) 

min
/1/

LA
//

LA )ˆ()ˆ(  pp VV θθ . (23) 

It is natural that the residual errors (21) tend to zero, so the 

presented iterative solution suffers from the problem of small 

divisors. In such cases the so-called regularization can be 

applied in computations. Namely, the close-to-zero absolute 

values appearing in (22) are substituted with a fixed threshold 

min (e.g. min = 10–8). 

The LA routine can be simplified, provided the processing 

(21) – (22) is bounded to a single iteration only. Application 

of the matrix inversion lemma leads to an approximate 

recursive LA scheme (Kowalczuk and Kozłowski, 2011) 
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where, as before,  stands for the forgetting factor. The 

derived algorithm has to be initiated. In early instants (for k = 

1 … k0), the LS estimates can be used. Then, beginning with 

k = k0 + 1, the recent covariance matrix P(k) and the estimate 

of  can be supplied in (24) – (26). This initiation is efficient 

for the weighted estimator ( < 1). This is so, because the 

finite memory ( < ) of the algorithm allows for gradual 

elimination of the temporary start-up data from the 

information matrix R(k) (i.e. R(k) = P–1(k) ). Identically, as 

before, the correlation E[(k)e(k)] influences the consistency 

of the estimates, so the instrumental variable method can 

again be helpful to improve the accuracy of estimation. 

The described LS and LA algorithms are subsequently used 

in identification of the suspension model parameters. 

4. SIMULATION RESULTS 

To determine the dynamics of the suspension system (Fig. 2), 

the appropriate measurement signals should be selected. In 

the simplest way, two accelerometers can be used to record 

the dynamics of both elastic and unsprung masses. 

Unfortunately, an additional (and usually expensive) in-tire 

accelerometer is necessary to ensure a reliable measurement 

of the road-tire reaction. In this study, the model used has 

been further simplified by ignoring the stiffness of the tire 

(K0  ). This assumption is absolutely realistic in the case 

of unmanned vehicles that use non-pneumatic tires. Of 

course, rolling resistance is thereby increased, but the risk of 

losing the vehicle immobilized by tire damage is eliminated. 

 

Fig. 3. LS identification of time-variant system parameters 

(vertical lines indicate the appearance of outliers). 
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where the covariance matrix P(k) appearing in (15) – (17) is 

simply the inverse of the information matrix R(k) represented 

in the first brackets of (14). The start-up value of this matrix 

is usually assumed as P(0) = diag (105, … , 105). Note that 

the LS estimates are consistent provided the regression data 

(k) and the residual process e(k) represented in (10) are 

uncorrelated (E[(k)e(k)] = 0). This takes place, for instance, 

when e(k) is a zero-mean white noise sequence. Otherwise 

(i.e. for correlated noises), the estimates (17) suffer from an 

asymptotic bias. The instrumental variable method is a good 

remedy to the bias problem (Söderström and Stoica, 1981). 

5.2  Least Absolute Values Estimator 

The introduced recursive LS routine is numerically simple 

and convenient for implementation. Unfortunately, the 

respective method is very sensitive to possible outliers in 

measurement data. In order to overcome this problem an 

estimator in the sense of the least sum of absolute values 

(LA) can be put into practice (Janiszowski, 1998). Since 

analytical minimization of the respective goal function 
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is problematic, an iterative solution can be proposed. 

Assuming that approximate values of the residual error e(k) 

are available (e.g. from a running-in-parallel LS procedure), 

the LA criterion can be rearranged as follows 
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what allows for analytical minimization of (19), which gives 
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The result (20) can further be improved by performing an 

iterative processing. With the initial estimates of the residual 

error e(i) = (i) – T(i) obtained from an LS scheme 
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the ultimate iterative procedure (21) – (22) of successive 

approximations (p = 0, 1, …) follows instantly. 

It is of fundamental importance that the index (18) is 

decreasing in consecutive iterations of the above algorithm 

(Kozłowski, 2003). Therefore the processing (21) – (22) can 

be terminated, if the observed decrease in minimization of 

(18) falls below an assumed threshold value (e.g. min = 10–6) 

min
/1/

LA
//

LA )ˆ()ˆ(  pp VV θθ . (23) 

It is natural that the residual errors (21) tend to zero, so the 

presented iterative solution suffers from the problem of small 

divisors. In such cases the so-called regularization can be 

applied in computations. Namely, the close-to-zero absolute 

values appearing in (22) are substituted with a fixed threshold 

min (e.g. min = 10–8). 

The LA routine can be simplified, provided the processing 

(21) – (22) is bounded to a single iteration only. Application 

of the matrix inversion lemma leads to an approximate 

recursive LA scheme (Kowalczuk and Kozłowski, 2011) 
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where, as before,  stands for the forgetting factor. The 

derived algorithm has to be initiated. In early instants (for k = 

1 … k0), the LS estimates can be used. Then, beginning with 

k = k0 + 1, the recent covariance matrix P(k) and the estimate 

of  can be supplied in (24) – (26). This initiation is efficient 

for the weighted estimator ( < 1). This is so, because the 

finite memory ( < ) of the algorithm allows for gradual 

elimination of the temporary start-up data from the 

information matrix R(k) (i.e. R(k) = P–1(k) ). Identically, as 

before, the correlation E[(k)e(k)] influences the consistency 

of the estimates, so the instrumental variable method can 

again be helpful to improve the accuracy of estimation. 

The described LS and LA algorithms are subsequently used 

in identification of the suspension model parameters. 

4. SIMULATION RESULTS 

To determine the dynamics of the suspension system (Fig. 2), 

the appropriate measurement signals should be selected. In 

the simplest way, two accelerometers can be used to record 

the dynamics of both elastic and unsprung masses. 

Unfortunately, an additional (and usually expensive) in-tire 

accelerometer is necessary to ensure a reliable measurement 

of the road-tire reaction. In this study, the model used has 

been further simplified by ignoring the stiffness of the tire 

(K0  ). This assumption is absolutely realistic in the case 

of unmanned vehicles that use non-pneumatic tires. Of 

course, rolling resistance is thereby increased, but the risk of 

losing the vehicle immobilized by tire damage is eliminated. 

 

Fig. 3. LS identification of time-variant system parameters 

(vertical lines indicate the appearance of outliers). 
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Fig. 4. LA identification of time-variant system parameters 

(vertical lines indicate the appearance of outliers). 

Since the road-tire reaction can then be monitored by the 

‘wheel accelerometer’, the ultimately considered model of 

the vehicle suspension assumes the following form 

)()( 01 zwbzwbz   (27) 

with b1 =  /M, b0 = K /M, and w(t) = (t) + R, where R 

stands for the radius of the wheel. 

Now, with the output y = z” representing the acceleration of 

the sprung mass, and the input u = w” – z” being the 

difference of both the monitored accelerations, the discrete 

counterpart of (27) can be shown in the regression form 

)()()()( T2
2 kekkyIk  θφ  (28) 

T2
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2
1 ])()([)( kuIkuIk φ  (29) 

T
01 ][ bbθ . (30) 

In the performed numerical tests the mechanical parameters 

 = 150 (kg·s–1), K0 = 690 (kg·s–2), and M = 50 (kg) define 

the initial dynamics (27) of the suspension. The road reaction 

is represented by the function (Fig. 7) 
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where G1 = 1, G2 = 2, G3 = 3, G4 = 4 (cm), and T1 = 1.3, 

T2 = 1.9, T3 = 2.5, T4 = 2.8 (rad·s–1). 

 

Fig. 5. LS identification of time-variant system parameters 

(vertical lines indicate the saturation effect). 

 

Fig. 6. LA identification of time-variant system parameters 

(vertical lines indicate the saturation effect). 

In experiments (Fig. 3, Fig. 4) the loss of measurement data 

(i.e. z(t) = w(t) = 0 for 25  t  26 (s) and for 65  t  66 (s)) 

is supposed to represent occasional measurement faults. 

Additionally, a specific component is added to excitation (31) 

(i.e. (t)  (t) + (t)) so as to simulate sporadic road bumps 

influencing saturations of the shock absorber (Fig. 5, Fig. 6) 
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2 ])([exp)(
i
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The function (t) is subject to H1 = H2 = 15 (cm), 1 = 85 (s), 

2 = 110 (s), and 1 = 2 = 22.2 (s–2). 

The sampling time equals T = 0.02 (s), while the independent 

additive noises corrupting the measurements of accelerations 

are assumed as zero-mean uniformly distributed processes 

with equal standard deviations ( = 2.4). 

Yet, a mechanical damage of the shock absorber results in an 

observed gradual change (i.e. from 150 down to 100 (kg·s–1)) 

of the damping parameter  in the time interval 40…100 (s). 

The integration horizon L = 30 (h = LT = 0.6 (s)) is 

implemented in numerical realization of the FIR operators 

(9), and both the employed recursive estimators utilize the 

forgetting mechanism with  = 0.98 ( = 1/(1 – ) = 50). The 

simulation time of a single experiment is equal to 120 (s). 

 

Fig. 7. Simulation of the road reaction (t) and bumps (t) 

(signals observed in the time interval 80…86 (s)). 
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It is obvious that the LS identification results are very 

sensitive to occasional errors in the processed data: outliers 

(Fig. 3) and saturation (Fig. 5). In contrast, the LA procedure 

is almost insensitive to such effects (Fig. 4 and Fig. 6). 

Therefore, the generated estimates are reliable. Apparently, 

using the mechanism of forgetting, both LS and LA 

estimation procedures obtain the ability to track variable 

parameters of the monitored system. 

5. CONCLUSIONS 

The presented studies use weighted LS and LA algorithms to 

identify the dynamics of the suspension system in online 

mode. The conducted numerical tests prove that the 

implemented forgetting mechanism allows on-line tracking of 

the parameters evolution of the considered continuous model. 

The LA procedure shows robustness in case of occasional 

errors in the data being processed (in relation to outliers in 

measurements and nonlinear effects attributed to occasional 

saturations in the shock absorber). In contrast, such 

undesirable phenomena have a very large impact on the 

results obtained from the classic LS routine. 

The concept of integration with the finite horizon used seems 

particularly convenient for the numerical mechanization of 

the continuous description (differential equation) considered. 

This is because the resulting discrete model retains the 

original parameters, while the FIR processing of the sampled 

input-output signals greatly facilitates the final formation of 

regression data. The solution also guarantees that unknown 

initial conditions of the system do not falsify the 

identification results. To improve identification of the model, 

specific nonlinear system components and surface roughness 

should be taken into account (Gaspar et al., 2007). 

Since basic data processing (FIR filtering) results in the 

unavoidable coloring of the additive measurement noise, the 

residual error becomes a correlated process, and the 

parameter estimates suffer from an asymptotic load. Specific, 

instrumental variable modifications of the LS and LA 

procedures can effectively improve the consistency of 

estimation (Söderström and Stoica, 1981). 
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