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Abstract— A novel, general circuit-level description of coupled-
resonator microwave filters is introduced in this article.
Unlike well-established coupling-matrix models based on
frequency-invariant couplings or linear frequency-variant cou-
plings (LFVCs), a model with arbitrary reactive frequency-
variant coupling (AFVC) networks is proposed. The engineered
formulation is more general than prior-art ones—with the only
restriction that the coupling network is a reactive-type two-
port circuit—and can be treated as an extension of previous
synthesis models since constant or linear couplings are special
cases of arbitrary frequency dependence. The suggested model
is fully general, which allows for AFVCs with highly nonlinear
(even singular) characteristics, loaded or unloaded nonresonating
nodes (NRNs), frequency-dependent source–load coupling, multi-
ple frequency-variant cross couplings, and/or multiple dispersive
couplings for connecting the source and load to the filter network.
The model is accompanied by a powerful synthesis technique
that is based on the zeros and poles of the admittance or
scattering parameters and the eigenvalues of properly defined
eigenproblems. In the most general case, the zeros and poles of
the admittance or scattering parameters are related to solutions
of nonlinear eigenvalue problems. The synthesis is defined as
an inverse nonlinear eigenvalue problem (INEVP) where the
matrix is constructed from three sets of eigenvalues. This
is accomplished by optimization using an iterative nonlinear
least-squares solver with excellent convergence property. Finally,
the third- and fifth-order examples of bandpass filter topologies
involving AFVCs are shown, and the experimental validation of
the proposed theory is presented through the manufacturing and
characterization of a microstrip filter prototype with transmission
zeros (TZs).
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I. INTRODUCTION

COUPLED-RESONATOR bandpass filters are one of the
fundamental microwave components in RF front-end

chains to preselect the desired RF signals and suppress
unwanted out-of-band interfering signals and noise. While
different design approaches to synthesize bandpass filters have
become well established during the years, the coupling-matrix
formulation has acquired a paramount importance among
researchers since its inception [1]. This modeling framework is
based on a lumped-element circuit representation of the filter,
which reflects the topology of its resonator network and the
strength and nature of the interactions between its resonating
elements. Conventional techniques for coupling-matrix synthe-
sis generally assume that the inter-resonator coupling struc-
tures, also referred to as impedance or admittance inverters,
do not vary with frequency [2]–[5]. As a result, the accuracy
of this model to fairly represent the overall response of the
filtering device is mostly restricted to narrow-to-moderate-
bandwidth specifications. To partially circumvent this limita-
tion by considering specific frequency-variation profiles for
couplings, a new broadband model for the coupling matrix
in the passband domain was introduced in [6] that results in
coupling elements to be inversely proportional to frequency.
In [7], a combination of frequency-dependent inductive or
capacitive couplings was considered for higher modeling accu-
racy in wideband spectral intervals. In both cases, the goal
was to broaden the frequency range of the coupling-matrix
representation of a filter and to be able to place the trans-
mission zeros (TZs) at arbitrary positions, including a finite
number of TZs at the zero and infinity frequencies. However,
as already demonstrated during the first decade of this century,
dispersion—i.e., frequency-dependence—in couplings can be
conveniently exploited even for narrowband bandpass filters in
inline [8]–[11] or triplet [12] topologies to generate additional
TZs without significantly increasing the complexity of the
associated inter-resonator coupling arrangement.

Since the realization of high-selectivity bandpass filtering
actions in compact circuits with simple inter-resonator cou-
pling schemes is a desired feature, a new synthesis technique
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aimed at filtering networks with arbitrarily connected dis-
persively cross-coupled resonators was proposed in [13].
An advanced version of this synthesis method that includes
resonant-type source–load coupling to produce n + 1 TZs
in the nth-order bandpass filters was subsequently suggested
in [14] and then refined in [15] to also account for the
resonator-detuning effect due to the nonideal dispersive cou-
plings. The three variants of this technique share, as common
principle, the fact that the zeros and poles in a cross-coupled
filter with linear frequency-variant coupling (LFVC) or invert-
ers (LFVIs) in the low-pass prototype domain are the roots of
the characteristic equation for the generalized eigenvalue prob-
lem. On the other hand, new direct coupling-matrix synthesis
techniques for inline and cascaded topologies with LFVCs
have been lately developed, such as those in [16] and [17],
respectively.

Although linear frequency variation in couplings is often
sufficient to describe the filter behavior accurately, couplings
may exhibit more complex frequency-dependent patterns,
which can be employed to further increase selectivity. Exam-
ples of such generalized coupling networks for different RF
technologies encompass coupling elements in the form of
an iris with complex geometry [18] and an internal bypass
metallic loop structure [19] in the case of waveguide filters or
even alternative types of source–load coupling with additional
transmission-line and waveguide sections in the input/output
accesses for planar and 3-D implementations. The latter case is
especially suitable to further augment the number of produced
TZs due to the transversal signal-interference phenomenon so
that increased attenuation levels can be achieved in multiples
regions of the stopband range [20]–[23]. However, previously
mentioned coupling-matrix synthesis approaches are not fully
applicable to such more general filtering configurations.

In order to provide a systematic design methodology for a
much-broader variety of filtering structures, a novel coupling-
matrix model and synthesis technique, which allows for arbi-
trary frequency variation of inverters, are reported in this
article. Furthermore, since the inter-resonator couplings cannot
be implemented as ideal inverters—i.e., two-port networks
with admittance/impedance matrices having zero diagonal
elements—while detuning the resonators at the same time, this
loading effect is directly considered here during the synthe-
sis process by additionally allowing for it to be frequency-
dependent. Finally, in order to increase flexibility in terms
of distinct classes of filter networks that can be synthesized
by means of the devised filter synthesis procedure, the inclu-
sion of nonresonating nodes (NRNs) is also considered. The
frequency profile of the arbitrary reactive frequency-variant
coupling (AFVC) can be highly nonlinear and even show
singularities that generate poles. The only restriction is that
the coupling has to be a linear reciprocal lossless lumped- or
distributed-element two-port network with the Foster represen-
tation given by [24]

Z(ω) = A0

jω
+

∞∑
i=1

jωAi

ω2
i − ω2

(1)

where Ai (i = 0, 1, . . .) are 2 × 2, real-valued, frequency-
independent, rank-1 matrices, and ωi are poles. This ensures
that the AFVC describes a physically realizable circuit. To
the best of the authors’ knowledge, no coupling-matrix-based
filter model and synthesis technique of such level of generality
has been proposed in the technical literature to date. Note
that existing models with constant couplings or LFVCs may
be regarded as a zeroth- or first-order approximations of the
Foster representation.

The organization of the rest of this article is as follows.
In Section II, the theoretical foundations of the proposed
coupling-matrix synthesis methodology formulated as an
inverse eigenvalue problem are presented. In Section III, a new
filter model is introduced. Next, the step-by-step synthesis
procedure for filter networks with nonideal AFVCs or inverters
(AFVIs), which can also include NRNs to increase the variety
of affordable filtering topologies, is described. Specific types
of AFVCs particularized in transmission-line realizations are
shown in Section IV, which are then used in Section V
for several theoretical examples of equiripple-type third-
and fifth-order bandpass filters with TZs derived from the
engineered coupling-matrix synthesis method. In Section VI,
the experimental results of a built proof-of-concept microstrip
prototype associated with one of the third-order filter examples
previously synthesized are provided. Section VII gives a brief
discussion of limitations of the proposed approach. Finally,
a summary and the main concluding remarks of this work are
set out in Section VIII.

II. SYNTHESIS OF A COUPLING MATRIX AS AN INVERSE

EIGENVALUE PROBLEM

A. Theoretical Foundations

The fundamental core of the proposed synthesis technique
is the relationship existing between the zeros and poles of the
short-circuit admittance or scattering parameters of the filter
network and the eigenvalues of the coupling matrix and its
two principal submatrices. Therefore, a few basic preliminaries
related to various categories of eigenproblems will be given
first. In the simplest case of a standard eigenvalue problem
with one matrix A, nontrivial solutions are sought of a matrix
equation

(A − λI)x = 0 (2)

where I is the identity matrix and λ is a scalar that is
called eigenvalue. This equation has nonzero solution(s) if
the determinant of the matrix (A − λI) is zero. Therefore,
the eigenvalues are the roots of the characteristic equation
det(A − λI) = 0. Analogously, the generalized eigenvalue
problem with a pair of matrices (A, B) is defined as

(A − λB)x = 0 (3)

so that the eigenvalues are the roots of

det(A − λB) = 0. (4)

This can be made even more general by considering a
parameter-dependent matrix A(λ) and the nonzero solutions
of equation A(λ)x = 0. This equation defines a nonlinear
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matrix eigenvalue problem. Again, the eigenvalues are the
roots of the characteristic equation det A(λ) = 0. To find
the eigenvalues for a given matrix, numerical procedures have
to be applied. For standard and generalized eigenproblems,
the QR and QZ algorithms are recommended [25]. For a
nonlinear problem, the characteristic equation can be either
solved directly by using a root-finding algorithm [26]–[28] or
indirectly by applying a specialized technique for parameter-
dependent matrices [29], [30].

After these preliminary remarks, the relation of vari-
ous categories of eigenvalue problems to the synthesis of
coupled-resonator filters can be explained. To start with, let
it be considered the conventional circuit description of a
bandpass filter consisting of a two-port network. For such filter
circuit, Kirchhoff’s voltage law reads as follows:

Zn(ω)i = e (5)

where Zn(ω) is a frequency-dependent impedance matrix for
the network, i is a vector of loop currents, and e is the voltage
source vector. In a conventional coupled-resonator synthesis
technique, Kirchhoff’s equations are expressed in the low-pass
prototype domain � as follows:

� = 1

�

(
ω

ω0
− ω0

ω

)
(6)

where ω0 is the center frequency of the bandpass filter and � is
its fractional bandwidth. Using this frequency transformation,
the following formula is obtained for the entire network:

[R + j (Mc + �I)]i = e (7)

where Mc is the (symmetric) coupling matrix, R is the
matrix corresponding to the source and load resistances (this
matrix is zero except for the first and last element on the
main diagonal that take the value of the internal resistance
of the source and load, respectively), and I is the identity
matrix. In this work, it is assumed that the coupling matrix is
symmetric, but nonsymmetric matrices, such as in [31], can
also be considered. The reactive part of the network can be
characterized by the short-circuit admittance parameters [5].
For instance, yc

11 is given by

yc
11 = − j [Mc + �I]−1

11 = − j
det[M′

c + �I′]
det[Mc + �I] (8)

where the prime symbol is used to denote the matrices with
the first row and first column deleted. Such matrix will be
called lower principal submatix. A similar expression can be
formulated for the short-circuit output admittance yc

22 except
that an upper principal submatrix, obtained by deleting the
last row and column of the matrix Mc, is used instead in the
numerator. For the transadmittance parameter yc

21, an analo-
gous formula that involves a submatrix obtained from Mc by
deleting the first column and last row (upper right principal
submatrix) can be derived. Referring to (4), it is then evident
that the expression in the numerator and denominator for all
admittance parameters is the characteristic equation for finding
the eigenvalues. Hence, the poles of the admittance parameters
are the eigenvalues of the coupling matrix Mc, while the zeros
of the short-circuit admittance parameters are the eigenvalues

of its appropriate principal submatrices. Equation (8) is valid
for a traditional category of filters, in which the coupling
elements are frequency-invariant. However, this assumption
can be relaxed by allowing for linear frequency variation of the
inverters (in the prototype domain) so that Mc = M0 + �M1.
In such case, the input short-circuit admittance of the reactive
part is as follows:

yc
11 = − j [M0 + �M1]−1

11 = − j
det

[
M′

0 + �M′
1

]
det[M0 + �M1]

. (9)

Again, the prime symbol is used to refer to the lower prin-
cipal submatrix of a matrix. The expressions for the remaining
short-circuit admittance parameters have a similar form. As a
result, the poles of the admittance parameters are eigenvalues
of the symmetric matrix pencil (M0, M1), while the zeros of
the short-circuit admittance parameters are eigenvalues of pen-
cils obtained from the pair (M0, M1) by deleting an appropri-
ate row and column. At this point, an observation can be made
related to the equivalence of filters with constant couplings
and filters with LFVCs. A symmetric generalized eigenvalue
problem can be transformed to a standard one as follows:

(A − λB)x = (
B1/2AB1/2 − λI

)
x = 0. (10)

Obviously, the structure (nonzero pattern) of B1/2AB1/2 is
different from the structure of the pencil. From the filter
synthesis perspective, this equivalently means that every filter
network with LFVCs can be implemented as a filter with
constant couplings, albeit with a different coupling scheme,
as observed also in [8].

The matrix eigenvalue problems considered above arise
from the expressions for the short-circuit admittance para-
meters derived from the Kirchhoff equations. These equa-
tions are quite general, so nothing prevents this study from
going one step further, and assume that the inverters in the
coupling matrix exhibit more-general frequency dependence.
For this situation, all the elements of the reactance matrix
will be frequency-variant. As a result, the expression for the
short-circuit input admittance of the reactive part adopts the
following form:

yc
11 = − j [X(�)]−1

11 = − j
det

[
X′(�)

]
det[X(�)]

. (11)

As in the previous two cases, the formula in the numerator
and denominator is the characteristic equation, this time for
nonlinear eigenvalue problems involving the entire reactance
matrix X(�) and lower principal submatrix X′(�).

It is obvious that, regardless of the assumed frequency
dependence of the reactance matrix, the zeros and poles of
the admittance parameters are nothing else but the eigenvalues
of properly defined matrices or matrix pencils. Since the
zeros and poles of the short-circuit admittance parameters
for a given filter configuration can be derived analytically
from the filtering function [5], the coupling-matrix synthesis
is in fact an inverse matrix eigenvalue problem. This problem,
in linear algebra, refers to the construction of a matrix with
the prescribed structure from its eigenvalues.

Based on the observations made so far, this section con-
cludes with the definition of the coupling-matrix synthesis
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in terms of inverse eigenvalue problem (IEVP). Note that
depending on the frequency behavior of the inverters, the IEVP
may be of the standard, the generalized or, in the most general
form, of the nonlinear type.

Definition 1 (Coupling-Matrix Synthesis as an IEVP):
Given the three known rational functions y11, y21, and y22

corresponding to the desired short-circuit admittance para-
meters of a filter and the intended coupling-routing scheme,
the coupling-matrix synthesis as an IEVP can be set as
finding a symmetric reactance matrix X(�) with the structure
(i.e., locations of the nonzero elements) determined by the
coupling-routing scheme such that it satisfies the following
conditions.

1) Its eigenvalues are the poles of y11 and y22.
2) The eigenvalues of its lower principal submatrix are the

zeros of y11.
3) The eigenvalues of its upper right principal submatrix are

the zeros of y21.
4) The eigenvalues of its upper principal submatrix are the

zeros of y22.

Some additional remarks to be considered are given as follows.
Remark 1: To synthesize the reactive part of a lossless

filtering network, only two rational functions are needed.
However, for lossy filters, synthesis scenarios based on three
sets have to be used [32].

Remark 2: For frequency-invariant inverters (FIIs) and dis-
persive inverters with linear frequency variation, the reactance
matrix X(�) is given by Mc+�I and M0+�M1, respectively,
and the eigenvalues of X(�) are simply the eigenvalues of the
matrix Mc or matrix pencil (M0, M1).

Remark 3: For a large number of coupling schemes with
FIIs, the solution to the IEVP involving the matrix Mc can be
found directly by a series of eigenvalue-preserving similarity
transformations applied to the transversal matrix, which can
be found analytically [5].

Remark 4: A solution of the IEVP for all three categories
of frequency variation of inverters considered here can be
formulated in terms of the optimization problem. The details
will be presented in Section III.

Remark 5: In the IEVP framework, the synthesis problem
can also be solved in the bandpass domain. In this case, only
the nonlinear variant is applicable.

Remark 6: In contrast to standard and generalized eigen-
value problems, the number of eigenvalues in a nonlinear
eigenvalue problem can be greater than the size of the matrix.
This is especially true when the matrix elements are periodic-
type functions. In this case, the synthesis gives rise to a
network with a response that properly matches the filter
specification only within a certain bandwidth.

B. Alternative Formulations

The formulation presented above based on short-circuit
admittance parameters is not directly applicable to more com-
plex coupling schemes, such as those of filters involving mul-
tiple dispersive couplings for connecting the source and load
as well as direct, possibly resonant-type, source–load connec-
tions. One possible alternative—more-general—formulation

for the synthesis as an INEVP can be derived by consid-
ering the relationship that links the coupling matrix and
the scattering parameters. For the frequency-invariant model,
the following formula is obtained:

S11(�) − 1 = 2 j Rs
det

(
M′

c − jR′ + �I′)
det(Mc − jR + �I)

. (12)

In the above expression, it is immediate to recognize the
characteristic equations for the eigenvalues of complex matri-
ces M′

c− jR′ and Mc− jR for the numerator and denominator,
respectively. Allowing for the inverters to exhibit an arbitrary
frequency-variation profile, a generalized equivalent version
of (12) can be written as follows:

S11(�) − 1 = 2 j Rs
det

(
X′(�) − jR′)

det(X(�) − jR)
. (13)

Analogous expressions, but with different principal sub-
matrices in the numerator, arise for S22(�) − 1 and S21(�).
Specifically, the expression for S22(�) − 1 involves the upper
submatrix of X(�)− jR, whereas the one for S21(�) uses the
upper right submatrix.

It is now evident that the synthesis can be considered in
terms of the zeros and poles of expressions related to the
scattering parameters and solved via an INEVP involving
an alternative set of roots of the characteristic equations
for the numerator and denominator. The reference roots can
be taken from the formulas defining the scattering para-
meters in terms of polynomials generated by the filtering
function [5]. Alternatively, the reference poles and zeros for
the construction of the coupling matrix with AFVC can be
determined from the characteristic equations for the numer-
ator and denominator of the filter with frequency-invariant
couplings. This links the approach proposed in this article
with synthesis techniques developed in the past for par-
ticular configurations, such as the transversal topology that
allows for fully canonical filters [5], resonant-type source–load
coupling [14], or frequency-dependent mSS and mLL [33].
A filter with a desired characteristic can be synthesized
with frequency-invariant couplings and the resulting coupling
matrix can be then substituted into (25), providing the refer-
ence zeros and poles that are needed in the INEVP—which is
solved for the target coupling topology and frequency-variant
inverters.

Finally, it should be remarked upon that, for some cases,
the reference eigenvalues may also be obtained directly by
computing three sets of eigenvalues of reference coupling
matrices with FIIs [34].

III. FILTERS WITH NONIDEAL ARBITRARY

FREQUENCY-VARIANT INVERTS AND NONRESONATING

NODES

For the sake of generality, a filter network consisting of N
reactances j Xi(ω) (i = 1, 2, . . . , N) that are mutually coupled
through inverters is considered. The network is connected to
the source and load by means of input and output inverters.
This gives rise to an N + 2 network—i.e., N in-series reac-
tances plus the source and load—as shown in Fig. 1.
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Fig. 1. N + 2 network with multicoupled series reactances. All the elements in the network are assumed to be frequency-variant.

The series reactances in the filter network, which are
frequency-dependent, can be either resonators or nonresonat-
ing elements. In particular, the i th reactance can be mathemat-
ically expressed as follows:

j Xi = jχi(ω/ωi1 − ωi2/ω). (14)

This general formula covers various possibilities for a filter
network represented by a coupling diagram with different
types of nodes as follows.

1) Resonator—when ωi1 = ωi2 = ωi where ωi is the
resonant frequency and χi is the reactance slope at ωi .

2) Nonresonating reactance—to account for NRNs in the
coupling diagram—of different type:

a) inductive NRN with inductance χi —when ωi1 = 1 and
ωi2 = 0;

b) capacitive NRN with capacitanceχ−1
i —when ωi1 →

∞ and ωi2 = 1;
c) frequency-invariant NRN—when ωi1 = ω and ωi2 = 0,

being zero if χi = 0 is also satisfied.

Note that a combination of a capacitive or inductive and
constant values in the NRNs is also admissible.

Nonresonating modes [35] can also be considered by this
general synthesis framework, as they can be either treated as
resonators with ωi being away from the passband or approx-
imated by NRNs. In relation to the formula (14), it should
be pointed out that it can be replaced by a more complex
frequency-dependent expression for the node reactance, such
as the one associated with a set of resonators—e.g., doublet,
triplet, or quadruplet. In this case, the node in the network
may be regarded as a higher level node describing a whole

building block that is possibly predesigned. Note that using
building blocks or constituent sections is a popular approach
for creating complex filtering networks, and this technique
can easily be accommodated in the model and the INEVP
framework proposed in this article.

The reactances, as well as the source and load, are all
coupled by inverters that can be either constant or frequency-
variant. At this stage, it is assumed that the inverters are ideal
in the sense that the diagonal elements of their open-circuit
impedance parameters are zero—the modifications to be
considered for the frequency-dependent case are discussed
later. With regard to the kind of frequency dependence
of the off-diagonal elements, three different categories are
defined depending on their frequency-derivative behavior as
follows.

1) FII—when the first and higher-order derivatives vanish
everywhere.

2) LFVI—when the first derivative is nonzero, and the
second-order and higher order derivatives vanish every-
where.

3) AFVI—when the second derivative or any higher order
derivative is nonzero.

To denote the different categories of nodes and inverters
to be used in a coupling-routing diagram, the representa-
tion convention of symbols shown in Fig. 2 is adopted
here.

The reactance matrix X(ω) for the network shown in Fig. 1
has two extra rows and columns—so its dimension is

Authorized licensed use limited to: Politechnika Gdanska. Downloaded on December 01,2021 at 07:25:27 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Fig. 2. Convention of symbols of nodes and inverters used in coupling-
routing diagrams.

(N + 2) × (N + 2)—as follows:

X(ω) =

⎡
⎢⎢⎢⎢⎢⎣

xSS xS1 xS2 · · · xSN xSL

xS1 x11 x12 · · · x1N x1L
...

...
...

. . .
...

...
xSN x1N x2N · · · xNN xNL

xSL x1L x2L · · · xNL xLL

⎤
⎥⎥⎥⎥⎥⎦. (15)

The diagonal entries in this matrix are given by j xii = j Xi .
For practical reasons, it is convenient to normalize the coupling
matrix as it is done in the conventional synthesis of the
frequency-invariant coupling matrix in the prototype domain.
To normalize rows and columns, the source RS and load RL

resistances, the fractional bandwidth �, and the parameter χ
(reactance slope for resonators and inductance or inverse of
capacitance for inductive or capacitive NRNs, respectively)
are used. The normalization process is carried out by left and
right multiplying the coupling matrix by diagonal matrices Q,
where the diagonal entries of the Q matrix are given by

qSS = R−1/2
S , qLL = R−1/2

L (16)

qii =
{
χ

−1/2
i �−1/2, when χi �= 0

1, otherwise.
(17)

After introducing this normalization, the following expres-
sion is obtained for the extended coupling matrix:

M = QX(ω)Q. (18)

Besides, for the termination impedance matrix R in (13),
it is also normalized. Observe that when all the inverters
are frequency-invariant, all the coupled reactances are con-
sidered to be identical—i.e., synchronously tuned resonators
with ω0i = ω0—, and no NRNs are present in the filter
network; the coupling matrix adopts the well-known form that
is commonly used in the traditional synthesis in the low-pass
prototype domain. In addition, it is noteworthy to notice that
the normalization process does not affect the localization of
the roots of the characterization equation so that the diagonal
elements of matrix Q can be chosen differently. For instance,
the normalization for NRNs can be performed as in [36].

Note that the model introduced here is much more gen-
eral than the one proposed in [6]—which only addressed
couplings that are either constant or inversely proportional
to frequency—or the one in [7]—where a combination of
frequency-dependent couplings proportional or inversely pro-
portional to frequency (either capacitive or inductive) was con-
sidered. Such constraints on the type of frequency dependence
for couplings are overcome by the proposed synthesis method.

A. Loading Effect Due to Nonideal Inverters

The matrix derived above can be used in the inverse eigen-
value problem to find the parameters that are required to fulfill
the filter specification. It is, however, convenient to consider
the effect of the loading reactances on the main diagonal
when the inverters are nonideal. By a nonideal inverter, it is
understood a two-port reactive coupling network characterized
by its open-circuit impedance parameters; nevertheless, unlike
for ideal inverters, which do not have the Foster representation
and are mathematical concepts that facilitate filter design,
these coupling networks are reactive two-port circuits and
have nonzero diagonal entries in their impedance-parameter
description. For example, if the coupling between reactances
i and k is considered, the reactive coupling network associ-
ated with it can be described by the following open-circuit
impedance matrix:

Zik =
[

z11
ik z12

ik

z12
ik z22

ik

]
. (19)

The diagonal elements will load both reactances, and this
can be considered in the coupling-matrix definition. Note that
each reactance can be coupled to other reactances so that
all the nonideal inverters that load each reactance consid-
ered. Like for ideal inverters, frequency-invariant (i.e., con-
stant) couplings (FICs) and the two categories of dispersive
couplings—LFVCs and AFVCs—are distinguished. The open-
circuit impedance matrix of the AFVC must have the Foster
representation as in (1). As noted above, in order to com-
pensate for the loading effect due to any of these couplings,
the reactances will have to be modified. It is useful to reflect
this effect in the coupling matrix so that the loading effect is
expressed in an explicit way. To this end, the coupling matrix
is decomposed into three parts as follows:

jX(ω) = jXx + jXl + jXI (20)

where Xx is the diagonal matrix of reactances, Xl is the
diagonal matrix that accounts for the cumulative loading effect
due to all the nonideal inverters, and XI is a matrix with zeros
on the diagonal that describes the coupling provided by ideal
inverters, in general with arbitrary frequency variation

Xx = diag[X S, X1, X2, . . . , X N , X L ] (21)

Xl = diag
[
xl

SS, xl
11, . . . , xl

NN, xl
LL

]
(22)

with

j x l
kk =

N+2∑
l=k+1

z11
kl +

k−1∑
l=0

z22
kl (23)

and

j x I
ik = −z12

ik , i �= k j x I
kk = 0. (24)

Note that in the above equations i, k = 0, 1, . . . N + 1 and,
for the sake of compactness in (23) and (24), i , k, or l = 0
is assigned to the source and i, k, or l = N + 1 refers to the
load.

The above expression defines the component of the non-
normalized coupling matrix. Practical computation involves
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normalized component matrices and the entire normalized
coupling matrix is

M = QX(ω)Q = Mx + Ml + MI . (25)

As a final remark, note that the elements of the matrix
Ml are not optimizable when the IEVP is solved. This is
because their values are a function of variables related to the
off-diagonal elements of the open-circuit impedance parame-
ters of the inverters contained in the matrix XI . Consequently,
entries in Ml change implicitly as a result of variations in MI .

B. Coupled-Resonator Filter Synthesis Step by Step

Given the filter specifications (bandwidth, center frequency,
return-loss level, location of TZs, filter order n, number
of nodes N and network topology, formulas for reactances
and characteristics of the AFVC elements—passive two-port
networks with open-circuit impedance matrix with frequency
dependence according to the Foster representation in (1)—,
and a chosen reference model as discussed in the previous
section—e.g., short-circuit admittance parameters, scattering
parameters, or eigenvalues of the reference frequency-invariant
network), the following steps have to be executed assuming
that the reference model is associated with the poles and zeros
of y11 and y22 or S11 − 1 and S22 − 1.

Step 1. Based on the desired transmission characteristics and
the filter order, synthesize three polynomials for the
numerators and denominator of the reference filter-
network model.

Step 2. Define three sets of reference roots as follows: ωp

with the reference poles associated with eigenvalues
of the entire target coupling matrix, ωu with the
reference zeros associated with the eigenvalues of the
upper principal submatrix of the target filter model,
and ωl with the reference zeros associated with the
eigenvalues of the lower principal submatrix.

Step 3. Evaluate the normalization coefficients for the rows
and columns of the coupling matrix.

Step 4. Solve the INEVP by optimization. The goal function
for the optimization is given by

C = ‖λu − ωu‖ + ‖λl − ωl‖ + ‖λ − ωp‖
where λ, λu , and λl are vectors of eigenvalues of the
coupling matrix and its two principal submatrices.

Step 5. Denormalize the elements of the coupling matrix to
get the values of the reactance part of the network as

X = Q−1M(ω)Q−1. (26)

Some additional remarks to be considered are given as
follows.

Remark 7: The choice of the reference sets is somehow
arbitrary. They can be selected according to the needs, and
they can also be the roots associated with bottom-left or top-
right principal submatrices (e.g., for S21) or even as central
principal submatrix (poles of y11, y21, and y22 in the extended
coupling matrix). Note also that for lossy or nonreciprocal [31]
networks—which are not discussed in this work—, a total of
four sets is needed.

Remark 8: Due to the presence of AFVCs or NRNs, the
size of the coupling matrix to be synthesized, that is, (N +
2) × (N + 2), is not equal to (n + 2) × (n + 2), where n is
the degree of the network. In fact, as it will be seen in the
synthesis examples provided in Section V, both n > N and
n < N , as well as n = N , are possible.

Remark 9: The INEVP is solved in the passband domain,
but the synthesis of the polynomials can be carried out in
the low-pass filter domain and, then, the reference sets can
be transformed to the passband domain. This is recommended
as the polynomial synthesis in the low-pass domain is more
stable numerically than in the passband domain.

Remark 10: The reference polynomials have to be known;
for instance, these polynomials can be synthesized analytically
or by optimization. Examples include polynomials for filtering
functions involving arbitrary locations of TZs [6], [7], polyno-
mials for dispersive delay structures (DDSs) with controlled
magnitude [37], or even functions with n + 1 TZs that can be
achieved by adding a resonant-type source–load coupling [14].

Remark 11: During the optimization process needed to
obtain the INEVP solution, splitting (25) may be used so
that each design parameter can be altered independently. The
optimizable parameters can be related to reactances at the
filter nodes (e.g., resonant frequency ω0i ) and to the coupling
networks (parameters controlling the off-diagonal elements
of the frequency-variant couplings MI ). As noted before,
the diagonal elements of the couplings, which are collected in
the matrix Ml , are in general not optimizable, and they change
whenever the elements of MI are altered in order to ensure
that the coupling network preserves a reactive-type character.
It is also possible to assign the parameter χi in some or all
nodes as an optimization variable. In this case, the element of
the normalization matrix Q in (17) corresponding to this node
needs to be replaced by an arbitrary scaling constant (χ0

i )1/2.
Remark 12: The synthesis procedure will not converge in

the following situations.

1) The desired specification cannot be achieved with the
assumed coupling scheme and type of frequency-variation
profile for the open-circuit impedance parameters of the
coupling networks.

2) The number of eigenvalues of the coupling matrix or
its principal submatrices is different from the number of
reference zeros and poles.

IV. ARBITRARY FREQUENCY-VARIANT COUPLINGS

As previously mentioned, the proposed synthesis frame-
work is fully general for the design of microwave filters
with coupling networks exhibiting arbitrary frequency-variant
profiles. Nevertheless, for illustration purposes of the engi-
neered filter synthesis methodology, three particular cases of
frequency-variant coupling topologies are considered here.

The circuit configurations of the three selected examples
of AFVC networks are shown in Fig. 3. As can be seen,
they consist of reciprocal two-port circuits—which are also
symmetrical for the cases shown in Fig. 3(a) and (b)—,
whose electrical behavior can be represented by means of their
impedance-parameter matrix as follows.
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Fig. 3. Examples of two-port circuits corresponding to AFVC networks (the
impedances Za and Zb and the electrical length θC of the transmission-line
segment are assumed to be frequency-dependent). (a) Type I: shunt impedance.
(b) Type II: two in-parallel shunt impedances. (c) Type III: two shunt
impedances separated by a transmission-line segment.

1) Type I: Shunt impedance Za = Za(ω)—i.e., Fig. 3(a)

Z11(ω) = Z22(ω) = Z21(ω) = Za. (27)

2) Type II: Two shunt impedances Za = Za(ω) and Zb =
Zb(ω) that are connected in parallel—i.e., Fig. 3(b)

Z11(ω) = Z22(ω) = Z21(ω) = Za Zb

Za + Zb
. (28)

3) Type III: Two shunt impedances Za(ω) and Zb(ω) that
are separated by a transmission-line segment with charac-
teristic impedance ZC = 1/YC and frequency-dependent
electrical length θC = β(ω)l (where β(ω) and l
are the phase constant and the physical length of the
transmission-line segment, respectively)—i.e., Fig. 3(c)

Z11(ω) = Za Zb + j Za ZC tan θC

(Za + Zb) + j(ZC + YC Za Zb) tan θC

Z22(ω) = Za Zb + j Zb ZC tan θC

(Za + Zb ) + j(ZC + YC Za Zb) tan θC

Z21(ω) = Za Zb/ cos θC

(Za + Zb) + j(ZC + YC Za Zb) tan θC
.

(29)

Note that if θC = 0, then the Type-III coupling network
becomes the Type-II one.

It should be remarked upon that these three types of
frequency-variant coupling networks can exhibit different
behavior in terms of transmission zero and pole generation.
For example, if the impedances Za and Zb are realized by
means of open-ended transmission-line segments or stubs so
that

Za(ω) = − j Z A/ tan(ωθA0/ω0) (30)

Zb(ω) = − j Z B/ tan(ωθB0/ω0) (31)

where Z A and Z B are the characteristic impedances and θA0

and θB0 are the electrical lengths at ω0 of the transmission-line
segments, and then, the following features are obtained for the
coupling networks in Fig. 3 that can be adjusted independently.

1) Type I: One TZ at ωz = ω0π/(2θA0).
2) Type II: Two TZs at ωz1 = ω0π/(2θA0) and ωz2 =

ω0π/(2θB0) with one pole between them at ωp so that
Za(ωp) = −Zb(ωp).

3) Type III: Two TZs at ωz1 = ω0π/(2θA0) and ωz2 =
ω0π/(2θB0), being both below or above one pole at ωp—
or even each of them at one different side with regard to
the pole location as for the case θC = 0.

Fig. 4. Examples of Z21 parameter—imaginary part—for the
frequency-variant coupling networks in Fig. 3 (Z0 = 50 �). (a) Type-I
coupling network in Fig. 3(a) (Z A = Z0 and θ0A = π/2). (b) Type-II
coupling network in Fig. 3(b) (Z A = Z0, θ0A = 0.625π, Z B = Z0, and
θ0B = 0.4167π ). (c) Type-III coupling network in Fig. 3(c)—both TZs
are produced above the pole: Z A = 0.78Z0, θ0A = π/2, Z B = 0.4Z0,
θ0B = 0.4444π, ZC = 1.3Z0, and θ0C = 0.0722π .

For illustration purposes, Fig. 4 shows the examples of
the transimpedance parameter Z21 (imaginary part) for the
three types of frequency-variant coupling networks in Fig. 3,
where the aforementioned properties in terms of TZ and pole
generation are verified. Note also that, due to the inherent
frequency-periodic behavior of the transmission-line segments
building these coupling networks, additional TZs and poles are
created at other frequency ranges, despite that their spectral
positions cannot be controlled independently.

V. SYNTHESIS EXAMPLES

This section presents the synthesis results of seven
different bandpass filter architectures using a variety of
frequency-dependent couplings or NRNs. The provided exam-
ples include six inline topologies and one quadruplet. In all
these examples, the reference poles and zeros were determined
from the targeted filtering functions, which were constructed
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TABLE I

RESONANT FREQUENCIES FOR NODES fi = (ωi/2π) (IN GHz), STUB IMPEDANCES (IN �), AND THEIR ELECTRICAL LENGTHS AT f0 (IN DEGREES)
(THIRD-ORDER BANDPASS FILTERS WITH TWO TZs)

Fig. 5. Coupling-routing diagrams for the third-order bandpass filter
examples. (a) Three resonators with two LFVCs. (b) Three resonators with
two AFVCs. (c) Four resonators with one NRN. (d) Two resonators with one
AFVC.

using the analytical procedure described in [5]. The coupling
matrix was split as indicated in (25). In all those examples
that involve dispersive couplings (either LFVC or AFVC of
Type-I, Type-II, and Type-III), nonzero diagonal elements in
their open-circuit impedance-parameter matrices were intro-
duced as previously discussed. Consequently, when solving
the associated INEVP, the resonant frequencies ωi in (14) in
the matrix Mx were exploited as optimizable parameters to
compensate for the loading effect of the imperfect inverters
(matrix Ml). The elements of the matrix MI were also con-
sidered optimizable variables, while the entries of the matrix
Ml changed only implicitly as a result of modifications in MI .

A. Third-Order Filters With Two Transmission Zeros

To illustrate the capabilities of the proposed synthesis
method based on INEVP for various types of dispersive
couplings and topologies involving NRNs, five distinct exam-
ples of synthesized third-order bandpass filters with two TZs
are provided here. In each case, it is assumed that the center
frequency and bandwidth are 2.4 and 0.15 GHz (i.e., 6.25%
in relative terms), respectively, while the minimum in-band
return-loss level is 20 dB. For the first-to-four filters, the TZs
are placed at 2.26 and 2.62 GHz (i.e., at both sides of the
passband). Specifically, the four configurations considered for
these four bandpass filter examples are as follows.

1) Three resonators with two LFVCs: Fig. 5(a).

TABLE II

VALUES OF FREQUENCY-INVARIANT COUPLINGS
(THIRD-ORDER BANDPASS FILTERS WITH TWO TZs)

Fig. 6. Power transmission (|S21|) and reflection (|S11|) responses of the
third-order bandpass filter examples with two TZs (one TZ at each passband
side) computed from the synthesized coupling matrix for four different
implementations involving FVCs or NRNs: Fig. 5(a)–(d)—the inset shows
the responses near the passband range. (Note that curves (a) and (c) are
overlapping.)

2) Three resonators with two Type-I AFVCs: Fig. 5(b).
3) Four resonators with one NRN: Fig. 5(c).
4) Two resonators with one Type-II AFVC: Fig. 5(d).

In the fifth bandpass filter example, the two TZ are positioned
above the passband at 2.62 and 2.82 GHz, for which two
resonators that produce two poles and one Type-III AFVC
that generates the two TZs and one pole are employed. The
coupling-routing topology for this filter is shown in Fig. 5(d).
Hence, all three types of coupling networks shown in Fig. 3
are considered in these filter examples.

As can be inferred from the description above, even though
the specification for the bandpass filter example with two TZs
at both sides of the passband is the same, the way in which
the TZs are obtained in each design is different. In particular,
the dispersive couplings exhibit different frequency-variation
patterns. For reference, the first filter example is synthesized
in the low-pass prototype domain by using the assumption
of linear frequency dependence for the inverters, and the
procedure described in [13] and [15] is used. It involves the
solution of the generalized IEVP in (3). In all other cases,
the synthesis is performed in the bandpass domain and the
new INEVP framework outlined above is employed. The final
design parameter values resulting from the synthesis for all
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these third-order bandpass filter examples are given in Tables I
and II, while their power transmission and reflection responses
derived from the synthesis process are compared in Fig. 6.
In this figure, the representation of these responses in a broad
frequency interval is given, whereas the inset shows their detail
in the vicinity of the passband. As demonstrated, between
2 and 2.8 GHz, the coupling-matrix responses of the four
examples exactly match the filter specifications (characteri-
zation obtained directly from the rational representation of
the prototype response). The differences among them are
clearly visible above 3 GHz, where the characteristics for
the designs involving AFVCs deviate from the desired one.
This is a natural consequence of the nonlinear and periodic
frequency-variation patterns of the inverter parameters. It has
to be pointed out that the results given in Table I clearly show
that the resonators are detuned, as a result of the loading effect
due to the nonideal inverters.

Note that the results given in Tables I and II show that the
designs involving three resonators and two FVCs [see Fig. 5(a)
and (b)] differ, even though the dispersive couplings are
implemented as shunt open-ended stubs in both examples—
each stub is quarter-wavelength long at the TZ frequency
generated by it and shows a nonlinear frequency-variation
profile in its equivalent impedance. For the sake of illustration,
in the coupling scheme in Fig. 5(a), such impedance was
approximated by a linear function of frequency—which is
a relatively accurate approximation for this type of stub—,
where its slope is determined by the characteristic impedance.
In the second design [see Fig. 5(b)], the stub impedance
was not approximated by a linear function of frequency.
Thus, the stubs were modeled as AFVCs with the Type-I
coupling network. Accordingly, the synthesis was carried
out in this case by considering an INEVP. After reaching
convergence, the values for the stub impedances were found
to be 158.72 and 89.40 �. This result is slightly different from
what was obtained by linearization (153.10 and 92.45 �), and
this is due to the different models of the frequency-variant
inverters.

The implementations involving four resonators and one
NRN [see Fig. 5(c)] and two resonators with one Type-II
AFVC [see Fig. 5(d)] lead to designs with identical mS1 and
mNL. In fact, the middle section in the design with one NRN
produces one pole and two TZs [38]. They are created at
exactly the same locations as for the Type-II AFVC. However,
while the locations of the TZs in the NRN section are the
same as the resonant frequencies of resonators 3 and 4, they
are determined by the lengths of the stubs in the AFVC.

Concluding the discussion related to the synthesis of the
bandpass filter examples with two TZs at both sides of
the passband, two major points must be highlighted. First,
the convergence of INEVP process solution in all these cases
was found to be very quick. This is shown in Fig. 7. It has
to be noted, however, that the number of iterations depends
on the starting point. For the results presented in Fig. 7,
the initial values were quite far from the final ones (which
is evident from the high value of the goal function at the
first iteration, as shown in the plot). The second aspect is
the number of eigenvalues (M) versus the number of nodes

Fig. 7. Convergence of the optimization procedure for solving the INEVP—
third-order bandpass filter examples with two TZs at both sides of the
passband.

Fig. 8. Power transmission (|S21|) and reflection (|S11|) responses of the
third-order bandpass filter example with two TZs above the passband using
one Type-III AFVC: Fig. 5(d).

(N) in the network and the filter order n (n = 3 in all
the examples considered above). For the first structure with
two LFVCs, the number of finite eigenvalues of the coupling
matrix matches the number of nodes (three in this case) so
that M = N = n. In the implementation involving Type-I
AFVCs, M = N = n is also satisfied; however, the number of
eigenvalues of the INEVP depends on the frequency range—it
is three when the interval is not too wide (e.g., 1.5–3 GHz)
and increases to five when the frequency range is extended
up to 7 GHz. For the structure with the NRN, N = 5
and M = 5, while n = 3 (i.e., M = N > n); here,
the two extra eigenvalues are at infinity and the number of
eigenvalues is the same regardless of the considered frequency
range. In the implementation involving two resonators and one
Type-II AFVC, there are two nodes in the network, while the
filter order is three, so that n > N . In such case, the INEVP
gives three eigenvalues when considering the frequency range
1.5–3 GHz (M = n > N) and four when the upper limit is
set to 7 GHz, thus resulting in M > n > N .

The last example of third-order bandpass filter is an inline
filter with one Type-III AFVC [see Fig. 5(d)]. In this case,
both TZs were imposed to be placed above the passband, as it
can be seen in the filter transfer function drawn in Fig. 8. The
optimization procedure converged in 17 steps for this example.
The final result of the optimization is shown in Tables I and II.

B. Higher Order Filters With AFVCs and NRNs

As more challenging examples, the synthesis of higher order
bandpass filters with multiple TZs is subsequently addressed.
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Fig. 9. Coupling-routing diagrams for the fifth-order bandpass filter exam-
ples. (a) Four resonators with one AFVC. (b) Seven resonators with two
NRNs.

The first example consists of a fifth-order bandpass filter
with four resonators and one Type-II AFVC. Similar to the
previous example of the third-order bandpass filter with one
Type-II AFVC, the number of nodes is smaller than the
order of the filter (i.e., N < n). The center frequency is
3 GHz, the absolute bandwidth is 120 MHz (i.e., fractional
bandwidth equal to 4%), the minimum in-band return-loss
level is 20 dB, and its three TZs are imposed to be positioned
at 2.85, 3.12, and 3.25 GHz. Its coupling-routing diagram is
shown in Fig. 9(a), which corresponds to a quadruplet with one
cross-coupling between resonators 1 and 4. In this network,
two symmetrically located TZs are inherently produced by the
quadruplet with FIIs. In addition, by replacing the coupling
between resonators 2 and 3 with the Type-II AFVC, the filter
order is increased by one and one additional TZ is created
above the passband. Note also that there is no symmetry in
the location of TZs. In this case, the solution of the INEVP
was obtained after 21 iterations, leading to the following final
solution: f1 = f4 = 2.999 GHz, f2 = f3 = 3.008 GHz, Zs1 =
10.861 �, Zs2 = 31.631 �, θ1 = 96.819o, θ2 = 87.013o,
mS1 = m4L = 1.001, m12 = m34 = 0.889, and m14 = 0.018.
The response of the filter is shown in Fig. 10(a).

The second example is another fifth-order bandpass filter,
but in this case, its associated coupling network comprises a
total of seven resonators and two NRNs. The coupling-routing
diagram of the filter is shown in Fig. 9(b). Each set shaped by
an NRN and its two adjoining resonators produces one pole
and two TZs. The filter is centered at 3.5 GHz, its bandwidth is
equal to 300 MHz (i.e., 8.57% in relative terms), its minimum
in-band return-loss level is equal to 20 dB, and the positions
of its four TZs are set at 3.1, 3.2, 3.75, and 4 GHz. The final
result of the optimization is as follows: f1 = 3.495 GHz,
f3 = 101 GHz, f4 = 4.000 GHz, f5 = 3.506 GHz, f7 =
3.200 GHz, f8 = 3.750 GHz, f9 = 3.526 GHz, mS1 = 1.051,
m12 = 0.470, m23 = 1.024, m24 = 1.088, m25 = 0.355,
m56 = 0.533, m67 = 0.984, m68 = 0.783, m69 = 0.781,
and m9L = 1.159. Fig. 10(b) shows the response of the filter.
In this case, the solution of the INEVP required 27 iterations.

VI. EXPERIMENTAL RESULTS

For practical validation purposes, one of the filter synthesis
examples presented in Section V has been manufactured in
microstrip technology and characterized. It corresponds to a

Fig. 10. Power transmission (|S21|) and reflection (|S11|) responses of the
fifth-order bandpass filter examples. (a) Quadruplet with one Type-II AFVC.
(b) Seven resonators with two NRNs.

third-order bandpass filter design shaped by two resonators
and one inter-resonator Type-II AFVC, which adds the two
finite TZs and increases the filter order by one. The prefixed
specifications are those that were previously indicated.

By using the coupling-matrix parameters given in Tables I
and II, the filter was implemented as a distributed-element
circuit network shaped by the following elements: two
quarter-wavelength open-ended transmission lines correspond-
ing to two series-type resonators (the additional 0.5o-long
line segments are added to make them to exactly resonate
at 2.387 GHz in accordance with the theoretical synthesis
results), two open-ended stubs associated with the Type-II
AFVC, and input and output couplings realized through
parallel-coupled-line stages. The ideal transmission-line circuit
schematic of the filter is shown in Fig. 11. Its theoretical
power transmission and reflection parameters, along with those
corresponding to its associated coupling-matrix synthesis, are
plotted in Fig. 12.

The layout—with indication of dimensions—and a pho-
tograph of the developed microstrip filter prototype are
shown in Fig. 13. For circuit manufacturing, an Isola
680-338 substrate with the following parameters was used:
relative dielectric permittivity εr = 3.38, dielectric thickness
H = 0.762 mm, metal thickness t = 17.5 μm, and dielec-
tric loss tangent tan(δD) = 0.0035. Although the obtained
theoretical values for the different filter parameters were
exploited as the initial solution for the dimensional synthesis,
their dimensions were finely adjusted with the zero–pole
optimization technique available in the 3-D finite-element-
method electromagnetic software package InventSim. The final

Authorized licensed use limited to: Politechnika Gdanska. Downloaded on December 01,2021 at 07:25:27 UTC from IEEE Xplore.  Restrictions apply. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

Fig. 11. Circuit schematic of the ideal transmission-line circuit realization of
the third-order bandpass filter with one Type-II AFVC—topology in Fig. 5(d).

Fig. 12. Theoretical power transmission (|S21|) and reflection (|S11|)
responses in a wide frequency interval of the transmission-line-based third-
order bandpass filter with one Type-II AFVC along with those corresponding
to its coupling-matrix synthesis—topology in Fig. 5(d).

simulations, considering the dielectric and conductor loss as
well as the finite metal thickness, were carried out in ADS
Momentum. The measurements were performed with a PNA-X
N5242A network analyzer from Agilent Technologies.

The simulated and measured power transmission and reflec-
tion parameters of the manufactured microstrip filter prototype
are compared in Fig. 14. As can be seen, apart from some
discrepancies in terms of spectral shifting to a lower frequency
range and some bandwidth reduction that are attributed to
the tolerances of the manufacturing process and the relative
dielectric permittivity, the filter principle is fairly verified. The
main measured characteristics of the built filter prototype are
as follows: center frequency of 2.377 GHz, 3-dB absolute
bandwidth equal to 130 MHz—i.e., equal to 5.42% in rela-
tive terms—, minimum in-band power-insertion-loss level of
1.18 dB, minimum in-band power-matching level of 23.7 dB,
and TZs located at 2.238 and 2.584 GHz.

VII. DISCUSSION

The model and the synthesis technique proposed in this
study have some restrictions. First of all, the reference zeros
and polynomials have to be known. Currently, we find then
using a classical low-pass prototype polynomial synthesis
procedure, but it may not be sufficient for the same filters.
Furthermore, even if the NEVP framework yields the zeros
and poles associated with the spurious response, it cannot
be directly considered in the synthesis process. The model is
general, but the synthesis focuses on the region around the
passband—i.e., the characteristics provided by the filtering

Fig. 13. Layout and photograph of the manufactured microstrip filter
prototype (nonredundant dimensions in mm: w1 = 1.76, w2 = 0.78, w3 =
0.93, w4 = 2.98, w5 = 0.51, l1 = 10, l2 = 1.42, l3 = 13.85, l4 = 18.38,
l5 = 17.43, l6 = 3.37, and s1 = 0.27; the taper connections in the cross
junction are 1 mm long and terminate in 0.3 mm width).

Fig. 14. Measured and simulated power transmission (|S21|) and reflection
(|S11|) responses of the manufactured microstrip prototype corresponding to
the third-order bandpass filter with one Type-II AFVC—topology in Fig. 5(d).

function. The locations of the spurious resonances are not
known beforehand. Sometimes, such spurious resonances or
bands can be estimated by examining the frequency charac-
teristics of the constituent distributed elements, and certainly,
they can be identified from the NEVP when the considered
frequency range is wide enough. The spurious response can
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be considered later on via optimization. Once the filter is
synthesized according to the filtering function, the filter spec-
ification in the passband could be then kept as a constraint
and the optimization may try to push away the spurious reso-
nances/bands if needed by the intended application—this may
be, however, indefeasible in the circuit representation that will
always be an approximation of a full-wave electromagnetic
response. Besides, an additional term can be added to the goal
function in an attempt to push the spurious bands away.

Even if the model is more general than a traditional one,
it can be regarded as a more restrictive model for a designer
since the frequency characteristics of the coupling elements
have to be decided upon very early on. This differs from the
conventional approach, where the coupling matrix provides
just the strength and sign of the coupling and a designer can
later decide how to implement a particular coupling element.

Another drawback of the synthesis based on optimization is
that, in general, any optimization method may fail to converge
if a minimum cannot be reached from the assumed starting
point. As the frequency profiles of the coupling elements
can be arbitrary—as long as they are reactive networks—,
general guidelines for the selection of a starting point cannot
be formulated. However, engineering common sense seems to
have worked for all the examples that have been synthesized
to date using the technique based on the INEVP framework.
It seems that the goal function based on zeros and poles
is particularly well suited for optimization tasks related to
filters, and it converges satisfactorily, as shown in Fig. 7. For
full-wave-based design-by-optimization, the zero–pole goal
function was exhaustively tested for random specifications
and random starting points, showing excellent robustness for
300 trials as demonstrated in [39]. Still, even though the
specifications and the starting points were random, engineering
common sense was used to restrict the selectable ranges for
these random picks. Finally, it must be remarked upon that
the convergence will not be achieved if the minimum is
not reachable for a given network topology and admissible
frequency profiles for the coupling elements.

VIII. CONCLUSION

A new model for multicoupled-resonator filters with net-
works comprising nonideal AFVCs and NRNs was proposed.
The synthesis procedure for determining the coupling matrix
described by this general model was developed by using
an inverse nonlinear eigenvalue framework. The synthesis
process solves the associated INEVP by optimization and
requires knowledge of the reference polynomials, whose roots
can be matched to the characteristic frequencies of the filter
parameters (i.e., zeros and poles). Its convergence requires that
the solution is reachable for a preselected filter configuration
and frequency-variation profiles of its coupling elements. The
proposed model and synthesis technique are fully general,
allowing for AFVCs, loaded or unloaded NRNs, nonresonating
modes, frequency-dependent source–load coupling, multiple
frequency-variant cross couplings, or even multiple dispersive
couplings to connect the source/load to the filter network.
Further research work to be carried out is the extension of

this approach to more challenging filter topologies, such as
multiband filters, multiport filtering devices (e.g., multiplexers
or frequency channelizers), and filters with resistive elements
(e.g., enhanced-in-band-amplitude-flatness lossy filters and
reflectionless/absorptive filters).
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