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A B S T R A C T

Glassy carbon electrodes modified by conductive polymers and membrane with derivatives of bis(benzo-
15-crown-5) were tested as solid contact ion selective electrodes for K+ ions concentration
determination. PEDOT with PSS, Cl� and ClO4

� counter ions was electrochemically deposited onto
glassy carbon substrates using four different electrochemical approaches (potentiostatic, galvanostatic,
potentiodynamic and potentiostatic pulses). Scanning electron microscopy was applied to investigate
influence of electrodeposition method on morphology of polymer films and drop-casted pseudo liquid
membrane with an ionophore. The presence of the polymer film and method of deposition affect
morphology of tested electrodes and sensing properties as well. The best sensing properties were
obtained for the electrodes with biscrown I as ionophore with polymer which have a developed surface
prepared via potentiostatic pulses (logKK/Na = �5.6 using separate solution method (SSM 1M)).
Galvanostatic method of electrodeposition which resulted in relatively smooth layer of the PEDOT
exhibited the poorest sensing properties for sensor with biscrown I as ionophore (logKK/Na = �4.3 for SSM
1M). All prepared sensors exhibited very favorable values of selectivity coefficients KK/Na (log KK/Na = �5.6
- -4.0). Detection limit equals to 10�7M was achieved. The influence of pH for sensing properties were
investigated for the selected electrodes.
1. Introduction

The ability of precise determination of potassium ions activity is
one of the most important part of a diagnostics of many diseases as
well as in routine health screening which is conducted in large
number of laboratories for medical analysis. The atomic absorption
spectrometry (AAS), flame emission spectrometry and ion selec-
tive electrodes (ISEs) are currently leading methods of a
determination of K+ concentration in human blood. Since the
AAS is relatively expensive method and its usage is limited by
sophisticated apparatus, the potentiometric method with the use
of the ISEs is the cheapest and fastest technique.
http://dx.doi.org/10.1016/j.electacta.2017.05.197
The most popular cationic ionophores are based on neutral,
naturally occurring ion carriers. Among them, the most studied
ionophore is valinomycin, which is selective for potassium cations
and is most commonly used, e.g. in clinical applications [1]. Also
popular group of synthetic ionophores used in ion-selective
electrodes are biscrown ethers. For the first time, this type of
compounds was tested by Kimura et al. in construction of classic
ion-selective electrodes [2]. They have tested 9 compounds and
concluded that an appropriate design regarding ring size, variety of
heteroatom, connectivity, and flexibility of linkage in crown ether
derivatives affects electrochemical selectivity of the electrodes
based on them. Moody et al. tested different biscrown ether in the
ISEs used to K+ and Na+ determination in human blood plasma [3].
Xia et al. used biscrown ether as ionophore and studied the effect of
conformationally constrained bridge in ionophore for Ion-Selective
Electrodes performance [4]. In the case of K+ determination, the
most commonly used crown ionophores are derivatives of benzo-
15-crown-5. Bis(15-crown-5) ethers react differently with Na+ and
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K+ ions, forming sandwich complexes only with K+ but not with
Na+ ions [5]. The selectivity of electrodes based on derivatives of
benzo-15-crown-5 is mainly determined by stoichiometry of
formed ionophore-ion complexes: 2:1 for sandwich type with
potassium ions (diameter of ion is slightly larger than crown gap)
and 1:1 in the case of sodium ions (diameter of ion fits to the crown
gap) [6,7].

The combination of two monocrowns and form biscrown is very
often advantageous for properties of ionophore. The structure of
complex with ions characterized by slightly larger diameter than
gap of the crowns depends on the length and nature of the linking
bridge between two crowns. In the case of appropriate long chain
capable to rotation, complex with stoichiometry 1:1 (biscrown:
ion) can be formed. For shorter and rigid bridge is more likely
formation of a complex double sandwich type (stoichiometry 2:2)
[8–11], however it was suggested that open clam type complex is
also likely [12].

Synthesized by our group, highly lipophilic derivatives of bis
(benzo-15-crown-5) (Fig. 1) have been already tested as potassium
ionophores for classic electrodes [13,14]. However, obtained
selectivity coefficients (logKK/Na) were sufficient only to analyze
concentration of potassium ions in urine (required logKK/Na

< �3.1), but were not fully satisfactory to analyze concentration
of K+ in human blood plasma (required logKK/Na< �3.6), according
to requirement indicated by U. Oesch et al. [15]. Thus, effort has
been taken to further improve properties of ISEs based on
derivatives of bis(benzo-15-crown-5).

There are many methods of ion-selective electrodes (ISEs)
modification that utilize conductive polymers (CPs) [16]. One of
the possibility is to deposit a conductive polymer interlayer
between the substrate (e.g. glassy carbon or graphite) and
membrane with ionophore and use it as an ion-to-electron
transducer [17]. This method is versatile and allows to enhance
sensing properties of sensors based on almost all known
ionophores [18,19]. Conductive polymer can be also dissolved in
Fig. 1. Biscrowns used as ionophor
the same solution as components of ion-selective membrane and
then be deposited onto the electrode substrate [20]. In this case,
the CPs, which act as ion-to-electron transducer, are built in the
membrane matrix [21]. There is a possibility to direct bond
ionophore to CP chains by specific functional groups [22].
Appropriate combination of ionophore and conductive polymer
may allow the covalent bond between polymer and ionophore to
occur [23]. The usage of conductive polymer as interlayer between
membrane with ionophore and glassy carbon substrate does not
require any sophisticated ionophore and CP modification and it has
been applied in this report.

The presence of the CPs, positively affects the ISE properties. It
was reported that modification of the electrodes with poly
(pyrrole), poly(N-methylpyrrole) and poly(3,4-ethylenedioxythio-
phene) (PEDOT) allows to achieve lower detection limit (LDL) of K+

ions [24]. It was also shown that the type of CP and the method of
deposition strongly affect the ISE properties. One of the most
promising polymer is PEDOT, because it is stable in a wide range of
pH and in the presence of oxygen and carbon dioxide [25]. PEDOT
and carbon nanotubes deposited onto glassy carbon electrode
enhanced long-term stability of ISE based on the potassium
ionophore – valinomycin [26]. Mir et al. reported that the
miniature electrodes based on tridodecylamine and modified by
PEDOT deposited on gold were stable in acidic pH, thus they can be
the good candidates e.g. for endoscopic sensing in the stomach
[27]. ISEs modified by PEDOT were successfully used for e.g.
Pb+[28], K+, Na+, H+ [29], Ag+ [30,31] and Cl� [32] ions
determination that confirms its versatility.

In this work, PEDOT deposited on glassy carbon was tested as
ion-to-electron transducer in the ion selective electrodes for K+

ions determination. Derivatives of bis(benzo-15-crown-5) �
compounds I-V (Fig. 1) were used as the ionophores [13,14].
Prepared electrodes were tested in the presence of disturbing ions
(Na+, NH4

+, Li+, Mg2+ and Ca2+) and also in the various pH. The
influence of conductive polymer and method of electrodeposition
es in the investigated sensors.
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Table 1
The composition of the ion-selective membranes.

membrane ionophore (wt %) PVC (wt %) plasticizer o-NPOE (wt %) ion-exchanger KTpClPB (wt %)

1 4.7 31.4 63.8 0.1
2 4.75 31.7 63.4 0.15
3 1.1.17 1 31.7 67 0.3
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will be discussed based on the selectivity coefficients, lower
detection limits and E vs. f(aK+) slope (S). The SEM images of the
electrodes surface will be presented.

2. Experimental

2.1. Chemicals

Biscrowns (I-V) used as the ionophores were obtained by
synthesis. Synthesis of I-IV was described in the earlier paper [13].
Ionophore V was synthesized via the alkylation reaction of naphto-
15-crown-5 of the appropriate diol [14]. Valinomycin was
purchased from Sigma-Aldrich. The other chemicals for membrane
preparation: poly(vinyl chloride) (PVC, high molecular weight), 2-
nitrophenyl octyl ether (o-NPOE), potassium tetrakis(p-chloro-
phenyl)borate (KTpClB), tetrahydrofuran (THF, Selectophore) were
purchased from Sigma-Aldrich. The chemicals used for electro-
polymerization: 3,4-ethylenedioxythiophene (EDOT), poly(sodium
4-styrenesulfonate) (NaPSS) (Mw� 70,000) and LiClO4 were
purchased from Sigma-Aldrich. Poly(3,4-ethylenedioxythio-
phene)/poly(styrenesulfonate) blend (PEDOT/PSS, used as 1.3%
(w/w) dispersion in water (conductive grade)) used as reference
was purchased from Sigma-Aldrich. KCl, CaCl2, MgCl2 and NH4Cl
(POCH) and LiNO3 (Sigma Aldrich) were used for model aqueous
solutions preparation. The aqueous solutions were prepared with
Fig. 2. Exemplary curves recorded during PEDOT:PSS electrodepositon: a) – poten
18.2 MV�cm resistivity deionized water from Millipore Milli-Q A10
system.

2.2. Apparatus

The potentiometric measurements were performed at room
temperature using a 16-channel system (Lawson Lab Inc., Malvern,
PA), which has been connected to computer equipped with the
EMF Suite version 1.03 program. As a reference electrode an Philips
double junction Ag|AgCl was used with 3 M KCl and 1 M CH3COOLi
as inner and outer filling solutions. The solid contact electrodes
based on glassy carbon (outer diameter 2 mm) were purchased
from MINERALS1 (Poland). Automatic micropipettes (20–200 ml)
were purchased from LABMATE + HTL. The morphology of the
samples was investigated by Schottky field emission scanning
electron microscopy (FEI Quanta FEG 250) with an ET secondary
electron detector. Beam accelerating voltage was kept at 10 kV.

Conductive polymers electrodeposition were performed using
the potentiostat–galvanostat system AutoLab PGStat10 under
GPES 4.9 software control. Electrochemical experiments were
carried out in a 3 electrode cell system with Ag/AgCl/0.1 KCl used as
a reference electrode and platinum mesh acting as counter
electrode.
tiostatic, b) – potentiodynamic, c) – galvanostatic, d) – potentiostatic pulses.

http://mostwiedzy.pl


Fig. 3. The SEM images of PEDOT:PSS surfaces deposited by a) galvanostatic, b) poteniostatic, c) potentiostatic pulses, and d) drop-casting methods.

Fig. 4. The SEM images of the drop-casted membrane deposited on the PEDOT:PSS surfaces deposited via a) potentiostatic pulses and b) potentiostatic method.
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Fig. 5. Response of the electrode PEDOT/PSS/a/I/1 to various concentrations of K+

and Na+ ions: a) dynamic responses, b) resulting calibration curves E = f(log(a)).
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2.3. Membrane deposition

Membrane, which is the main element of the properly
functioning potentiometric sensor was formed with typical
components of membranes which contain: macrocyclic ionophore,
plasticizer (o-NPOE), PVC and salt with lipophilic anion (potassium
tetrakis(4-chlorophenyl) borate). The composition of the ion-
selective membranes is specified in Table 1. The membrane
components (�48 mg total mass) were dissolved in 0.375 ml of THF
to prepare a membrane cocktail for drop-casting. The volume of
the drop-casted membrane cocktail was equal to 20 ml. After
deposition, electrodes were kept under the protective glass cover
for at least 24 h, until the complete evaporation of THF. Each
electrode was conditioned in a solution containing the primary ion
� KCl 10�3M, for 24 hours.

2.4. Polymer electrodeposition

PEDOT was electrochemically deposited from a electrolyte
containing monomer (0.0066 M EDOT) and the source of counter
ion (0.05 M NaPSS, LiClO4 or KCl). Four methods of electrodeposi-
tion were tested: potentiostatic, galvanostatic, potentiodynamic
and potentiostatic pulses. PEDOT films were electrosynthesized
directly on the glassy carbon disc electrodes with 2 mm in a
diameter. The details of electropolymerization conditions are
presented in Fig. 2.
Comparative electrodes with PEDOT/PSS blend were prepared
via drop-casting method using 5 ml of aqueous suspension of
PEDOT/PSS onto glassy carbon electrode and dried overnight at
room temperature.

2.5. Methods of measurements

The experiments were conducted with the use of model water
solutions for the measured (K+) and disturbing (Na+, Ca2+, Mg2+,
NH4

+, Li+) ions in selected ranges of activities. The characteristics of
the electrodes were determined for the model activities from 1 M
to 10�9M. The selectivity coefficients have been determined with
the use of Separate Solution Method (SSM) [33] for the log(a) = 0
(extrapolated to 1 M excluding data recorded for 1 M in extrapola-
tion due to the anionic effect) and log(a) = �1. For the better
characterization of sensors, selectivity coefficients were deter-
mined using Fixed Interference Method (FIM) as well [33]. Both
methods (SSM and FIM, 0.1M) are recommended by International
Union of Pure and Applied Chemistry (IUPAC) [33]. Single-ion
activity coefficients were calculated theoretically by using the
Debye–Hückel equation [34]. HCl and LiOH were used for pH
adjustment.

2.6. Measurement in human blood plasma

Previously presented comparison between different types of
tested electrodes allows the best sensor for K+ ions to be choose.
The PEDOT/PSS/d/I/1 was utilized to determine K+ in biological
sample � human blood plasma rich in potassium and sodium ions.
Standard addition method (SAM) [35] and equation 1 was used for
determination of the potassium ions concentration. As a standard,
10 ml of 1 M KCl was added to 50 ml of human blood plasma.

C ¼ Cs � Vs

ðVx þ VsÞ � 10
DE
S � Vs

ð1Þ

Cs� standard concentration; Vs� standard volume; Vx� source
volume, DE � potential difference before and after the addition of
KCl; S � slope of the KCl characterization 10�4–10�1M.

3. Results and discussion

3.1. Morphology of conductive polymer and membrane

The method and conditions of conductive polymers electrode-
position affects the properties and morphology of resulting layers
[36–38]. Four methods of PEDOT electrosynthesis were applied: a)
� potentiostatic, b) � potentiodynamic, c) � galvanostatic, d) �
potentiostatic pulses. Exemplary curves registered during PEDOT:
PSS electrodepositon are presented in Fig. 2. The parameters of
deposition are added to the graphs.

The morphology of such prepared electrodes were investigated
using scanning electron microscopy technique (SEM). Examples of
SEM images of the electrodes surfaces are presented in Fig. 3a-c.
The morphology of drop-casted PEDOT is presented in Fig. 3d. The
galvanostatic approach lead to the uniform polymer layer, that
covered whole surface of glassy carbon, see Fig. 3a. Easy control of
consumed charge for electrodeposition and quality of the obtained
polymers film makes this method the most convenient and most
commonly used [25,39]. In the case of the potentiostatic method,
polymer grew in a form of humps. The main drawback of this
method is the fact, that obtained layers did not closely cover the
conductive substrate as it is presented in Fig. 3b. Films of polymers
obtained via short, 0.2 s potentiostatic pulses were characterized
by completely different morphology. Deposited layer was very
rough, but covered the glassy carbon surface, see Fig. 3c. In the case
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Table 2
The resulting log LDL, slopes and selectivity coefficients for potassium selective glassy carbon ISEs (logKK,X, SSM, 1 M/logKK,X, SSM, 0.1 M/(logKK,X, FIM) with derivatives of bis
(benzo-15-crown-5) as ionophores (I-V as in Fig. 1); methods of polymer electrodeposition (a-d as in Fig. 2).

Electrode
code

PEDOT/PSS/a/I/1 PEDOT/PSS/a/II/1 PEDOT/PSS/a/III/1 PEDOT/PSS/a/IV/2 PEDOT/PSS/a/V/2

log LDL -6.9 -6.5 -6.2 -5.8 -5.8
S[mV/dec] 52.5 55.4 51.2 52.7 51.0
logKK/Na -5.0/-4.6/-4.4 -4/-3.6/-3.7 -4/-3.8/-3.5 -4.1/-3.9/-3.8 -4.5/-4.1/-3.8
logKK/Ca -4.5/-4.8/-5.0 -5.7/-5.5/-5.0 -5.5/-5.3/-5.0 -4.1/-4.3/-4.8 -5/-4.9/-4.2
logKK/Mg -4.7/-5.1/-4.9 -5.6/-5.1/-4.9 -5.8/-5.4/-5.0 -6.2/-5.3/-5.0 -6/-5.7/-4.8
logKK/Li -5.2/-4.9/-4.8 -5.4/-5.0/-4.7 -5.1/-4.8/-4.3 -5.4/-5.1/-4.6 -5.9/-5.1/-4.7
logKK/NH4 -2.8/-2.6/-3.1 -2.1/-2.0/-3.0 -2/-1.9/-3.0 -3.5/-3.2/-2.8 -3.8/-3.3/-3.4
logKK/H -/-/-4.0 -/-/-4.1 -/-/-4.0 -/-/-4.8 -/-/-3.2
Electrode
code

PEDOT/Cl�/d/I/1 PEDOT/PSS/d/I/1 PEDOT/ClO4
�/d/I/1 PEDOT/PSS/b/I/1 PEDOT/PSS/c/I/1 PEDOT/PSS/A (without

membrane)
log LDL -7.3 -7.2 -6.4 -6 -6.2 -4.2
S[mV/dec] 54.3 58.1 53.1 51.4 51.1 52.3
logKK/Na -5.6/-5.2/-4.7 -5/-4.8/-5.1 -5.2/-4.9/-4.4 -4.4/-4.0/-3.8 -4.3/-4.1/-3.9 -1.5/-1.7/-1.9
logKK/Ca -5.8/-5.1/-4.8 -5.1/-4.8/-4.4 -4.1/-3.9/-3.6 -4.4/-4.3/-4.1 -4.3/-4.2/-4.1 -2.8/-2.7/-3.2
logKK/Mg -6.7/-5.5/-5.2 -6.1/-5.1/-4.8 -4.5/-4.4/-4.2 -5.2/-4.7/-4.3 -5/-4.7/-4.3 -3.2/-3.2/-3.3
logKK/Li -5.9/-5.3/-4.7 -5.7/-5.2/-4.9 -3.9/-3.9/-3.0 -4.5/-4.2/-4.1 -4.3/-4.2/-4.1 -2.8/-3.0/-3.2
logKK/NH4 -2.8/-2.7/-3.0 -2.9/-2.9/-3.0 -2.8/-2.7/-3.0 -2/-2.2/-2.8 -1.9/-2.1/-2.2 -1.6/-1.4/-1.1
logKK/H -/-/-3.2 -/-/-3.9 -/-/-3.4 -/-/-3.1 -/-/-3.2 -/-/-1.5
Electrode
code

PEDOT/PSS/drop-
casted/I

PEDOT/PSS/drop-
casted/II

PEDOT/PSS/drop-
casted/III

PEDOT/PSS/drop-
casted/IV

PEDOT/PSS/drop-
casted/V

PEDOT/PSS/d/Valinomycin/3

log LDL -6.5 -6.6 -6.0 -7.2 -5.6 -6.1
S[mV/dec] 53.4 57.1 56.3 53.1 58.4 58.2
logKK/Na -4.0/-/- -3.5/-/- -3.2/-/- -3.8/-/- -3.5/-/- -4.6/-4.5/-4.2
logKK/Ca -4.5/-/- -5.4/-/- -4.3/-/- -5.1/-/- -4.5/-/- -4.9/-4.7/-4.3
logKK/Mg -4.6/-/- -4.4/-/- -4.8/-/- -5.7/-/- -4.3/-/- -5.1/- 4.6/-4.8
logKK/Li -3.5/-/- -3.2/-/- -3.4/-/- -3.5/-/- -3.5/-/- -5.3/-5.0/-5.0
logKK/NH4 -2.2/-/- -2.4/-/- -2.3/-/- -2.4/-/- -2.5/-/- -2.5/- 2.4/-2.1
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of drop-casted layer of PEDOT, the surface after solvent evapora-
tion is very smooth. However, obtained layer is characterized by
long cracks causing the pieces of material detachment from the
electrode. As it can be concluded, the method of PEDOT deposition
affects the morphology and surface area of deposited films.
Moreover, layers deposited using electrochemical route are
characterized by better adhesion of the polymer to the substrate
in comparison with drop-casted material. Noteworthy, surface of
the polymer acts as a template for membrane deposition. As it is
presented in Fig. 4, morphology of the membrane surface prepared
by drop-casting method depends on the morphology of the
polymer interlayer. The pseudo liquid membrane drop-casted onto
the rough surface of polymer (deposited via potentiostatic pulses)
was characterized by higher roughness in comparison with
membrane deposited onto smoother film deposited via potentio-
static method, see Fig. 4a and b. The influence of polymer and
membrane morphology on the ISE parameters was tested.

3.2. Ion selective electrodes performance

Obtained electrodes were tested as ion selective electrodes for
K+ activity determination. The exemplary potentiometry
Table 3
Comparison our biscrown ethers with other non-commercial ionophores.

Ionophore used in membrane construction carbosilane 1 [41] poly(benzyl-
[42]

Slope [mV/dec] 58.3 56.3
logKK/Na -4.7 [FIM] -1.3 [SSM]
logKK/Ca -3.4 [FIM] -2.5 [SSM]
logKK/Mg -3.5 [FIM] -3.2 [SSM]
logKK/NH4 -5.0 [FIM] -0.2 [SSM]

*MPM – matched potential method.
calibration curves showing the change of the electrode potential
depend on K+ and Na+ activity (E vs. log(a)) in aqueous solutions are
presented in Fig. 5. In the case of K+ solution, there is a range of
activities (�10�5 � 10�1M) where the slope is close to Nernstian.
The anionic effect in the case of K+ containing electrolyte was
observed for concentration higher than 10�1M. Noteworthy,
Nernstian slope is observed only for high activities (10�1M to
1 M) in the case of sodium ions. Such analysis were performed for
all tested electrodes to determine: selectivity coefficients, lower
detection limits and E vs. f(aK+) slopes. Obtained results are
collected in Table 2 and compared with results obtained for
electrodes based on commercially available ionophore � valino-
mycin.

Additional experiment was performed for GC/PEDOT:PSS
electrode without membrane. Electrodes were coded as: polymer
(PEDOT)/counter ion (PSS, Cl�, ClO4

�)/deposition method (a-d as in
Fig. 2)/ionophore (I–V as in Fig. 1)/membrane composition (1-3 as
in Table 1).

The values of log(LDL) for electrodes modified with PEDOT
varies in a range between �5.6 and �7.3. However, polymer
electrode without PVC membrane with ionophore exhibited the
worst detection limit (log LDL = �4.2). The best value of detection
eugenol) rifamycin [43] dbdb-18-6 [44] calix[4]azacrown ether [45]

56.7 58.2 55.3
-2.4 [SSM] -2.7 [SSM] -3.8 [MPM*]
-3.4 [SSM] -3.9 [SSM] -4.5 [MPM*]
-3.4 [SSM] -2.4 [SSM] -4.8 [MPM*]
-2.5 [SSM] – -1.4 [MPM*]
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Fig. 6. The influence of pH on potentiometric response of electrodes based on ionophore I and modified with electrodeposited PEDOT/PSS in a) 10�1M, b) 10�2M, c) 10�3M
and 10�4M solutions of KCl.
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limit (logLDL = �7.3) was registered for electrode with ionophore I
coded as PEDOT/Cl�/d/I/1. The slopes were determined for linear
range of E = log(a) results. The E = log(a) slopes for PEDOT/PSS with
ionophore I and PEDOT/PSS with ionophore V deposited via
potentiostatic pulses and drop-casting method, respectively were
the closest to the Nernstian slope. Noteworthy, all sensors with
PEDOT layer exhibited satisfactory S values. Obtained results were
compared to previous literature reports about sensors based on
biscrowns ethers. Prepared biscrown ethers-containing sensors
exhibited the best sensing properties (slope, selectivity coefficient,
detection limit) among previously presented electrodes based on
the biscrown ethers [2–4,13,14]. The main challenge of the K+

sensors construction is to achieve electrode with the lowest as
possible value selectivity coefficient relative to the Na+ ions.
Problem of the Na+ disturbing ions presence is observed due to the
common occurrence in a biological samples [40]. As it is presented
in Table 2, in the most cases, the presence of electrodeposited
conductive polymer improves the values of selectivity coefficients
logKK,Na in comparison with electrodes modified with drop-casted
PEDOT/PSS. Values of selectivity coefficients of the best PEDOT
modified electrode (PEDOT/Cl�/d/I/1) were compared with other
non-commercial ionophores in a form of a table (see Table 3). As it
can be concluded, modification of ISE with PEDOT interlayer is a
very promising way of selectivity coefficient improvement.
However, it was also shown that the method of polymer deposition
strongly affected these values. Since the specific surface area of
polymer (and membrane) was higher for PEDOT deposited via
potentiostatic pulses (as shown in Fig. 3 and 4), improved
selectivity coefficients may result from more efficient complexa-
tion of ions on the electrode/solution interface.

All modified, miniature electrodes exhibited improved sensing
properties in comparison with the same ionophores in the classic
electrodes without CP [13]. Taking into account all determined
parameters, the best characteristics was obtained for electrode
with ionophore I with PEDOT/PSS deposited using short, potentio-
static pulses.

3.3. pH influence

The stability of the ion-selective electrodes in a wide range of
pH is crucial for biomedical applications. Thus, the influence of pH
in a range from 2 to 10 on the electrode potential was measured for
different concentration of K+ ions (10�4M � 10�1M) for electrodes
based on ionophore I (see Fig. 1) and modified by electrodeposited
PEDOT/PSS. Obtained results are presented in Fig. 6a-d. The pH in
whole measured range did not affect potential of electrodes in
10�1M KCl solution. However, lower concentration of KCl, higher
impact of pH is observed. The clear change of potential was
registered for pH lower than 4 for solutions with concentration
10�2,10�3 and 10�4M. Decrease of electrode potential at pH 10 was
observed for electrode prepared via potentiodynamic polarization.
Thus, proposed electrodes can work as sensors in a range (4-9) of
pH even at low concentration of KCl.

3.4. Performance in the biological fluids

1.1.23 Prepared electrodes can be successfully used as sensor in
biological samples. The physiological concentration of potassium
ions for an adult is in the range between 3.5 and 5.1 mmol/dm3

[46]. The concentration of K+ ions determined using proposed
sensor was equal to 4.19 mmol/dm3. The results were compared
with concentration determined by certificated laboratory which
was equal to 4.11 mmol/dm3. Result obtained using PEDOT/PSS/d/I/
1 electrode is in the given range and confirms possible applicability
of proposed ISEs in clinic applications.
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3.5. Comparison with other non-commercial ionophores

We compared our biscrown ethers with other non-commercial
ionophores. As we can see, most of the best parameters show our
derivative.

4. Conclusions

Presented work compares directly, based on derivatives of bis
(benzo-15-crown-5), ion selective electrodes with conductive
polymer as interlayer, prepared by different methods of electro-
deposition. Electrodes were tested as sensors for K+ ions
determination in aqueous solution. Both, detection limit and
selectivity coefficient can be improved by polymer electrodeposi-
tion. Proposed method of polymer deposition (short 0.2 s
potentiostatic pulses) allows to obtain improved properties of
tested sensors. It was shown, that method of polymer synthesis
affects the morphology of polymer film and membrane with
ionophore deposited onto the polymer. The improved properties of
electrode prepared via potentiostatic pulses may result from
higher specific area of electrode surface. Tested electrodes based
on synthesized ionophores exhibited even better sensing proper-
ties than electrode based on commercially available valinomycin.
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