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3 Department of Otolaryngology, Faculty of Medicine, Medical University of Gdańsk, Marii Skłodowskiej-Curie
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Abstract: Septoplasty is a widely used method in treating deviated septum. Although it is successfully
implemented, there are problems with excessive bleeding, septal perforation, or infections. The use of
anatomically shaped implants could help overcome these problems. This paper focuses on assessing
the possibility of the usage of a nasal septum cartilage implant 3D printed from various market-
available filaments. Five different types of laments were used, two of which claim to be suitable
for medical use. A combination of modeling, mechanical (bending, compression), structural (FTIR),
thermal (DSC, MFR), surface (contact angle), microscopic (optical), degradation (2 M HCl, 5 M NaOH,
and 0.01 M PBS), printability, and cell viability (MTT) analyses allowed us to assess the suitability of
materials for manufacturing implants. Bioflex had the most applicable properties among the tested
materials, but despite the overall good performance, cell viability studies showed toxicity of the
material in MTT test. The results of the study show that selected filaments were not suitable for
nasal cartilage implants. The poor cell viability of Bioflex could be improved by surface modification.
Further research on biocompatible elastic materials for 3D printing is needed either by the synthesis
of new materials or by modifying existing ones.

Keywords: 3D printing; nasal septum; nasal cartilage; deviated septum; polyurethane

1. Introduction

A deviated nasal septum can be a source of bleeding, nasal obstruction, and recurrent
sinusitis. The ideal septum would be a simple structure, but most people have some degree
of curvature or irregularity somewhere in the bony or cartilage portion. This becomes
clinically significant when it leads to functional or aesthetic complications. Irregularities of
the nasal septum cause twisting of the nose, humps, or dorsal depressions [1]. Effective sur-
gical correction depends to a large extent on the accurate diagnosis of the anatomical point
of the defect. As with any preoperative planning, the interview and physical examination
are crucial to identify the cause of airway obstruction. Rhinoplasty planning is mainly
based on the study of digital preoperative photographic images. An anterior rhinoscopy
with a reflector is also used to visualize the nasal septum, as well as any disorders related
to the structures located in its vicinity.

Septoplasty with reduction of the nasal septum is one of the most common surgical
procedures to eliminate nasal obstruction [2]. A simple submucosal correction of bone or
cartilage deviations is a technically uncomplicated and highly effective operation. Correc-
tion of the septum or other parts of the nose usually requires separation of the lateral tissues
and placement of spreader grafts to open and maintain satisfactory angles, which prevents
subsequent collapse during inspiration. It is essential to leave the dorsal support intact to
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maintain the stability of the middle and distal parts of the nose [2]. This technique most
often consists of collecting cartilage and making grafts with dimensions of about 2–3 mm in
width and 7–10 mm in length [3]. The best material for this type of procedure is autologous
septal cartilage. It is firm and has excellent supportive properties to prevent deformation
caused by skin contraction and scarring during the healing process. Unfortunately, its
supply for direct transplantation is limited due to scarce tissue availability and solitary
presence in the human body. In the case of too little living remnant of the septal cartilage,
it is also possible to use the cartilage of the auricle and costal region, but there are not so
many advantages when using them. Sampling of costal cartilage entails a higher risk of
complications and is associated with a greater degree of resorption and distortion [4].

Fractures of the nasal bones often result in traumatic damage to the cartilage of the
nasal septum coupled with severe secondary deformities [5]. Moreover, because surgery
to correct a nasal fracture is relatively simple, accompanying nasal septal fractures are
sometimes overlooked. To prevent secondary deformation, a bioabsorbable mesh is used
as the inner splint. It is made using 3D printing technology using PLA [6] or PCL [7]. It
has a simple design, thanks to which it can be easily inserted between the septal cartilage
and the perichondrium without causing specific complications and without affecting the
union. Depending on the patient’s metabolism, it degrades after two to three years. This
is a sufficient period of time for the mesh to function satisfactorily as a support after the
treatment. It is an effective procedure preventing secondary deformation of the cartilage,
complementing the closed and open reduction performed in the case of fractures.

The treatment of nasal obstruction associated with internal valve obstruction and
the collapse of the external nasal valve is possible through the use of an FDA-approved
resorbable nasal implant. It consists of PLA, a 70:30 poly(L-lactide-co-D, L-lactide) blend,
generally absorbed within 18–24 months after insertion. After this time, it is replaced by
mature collagenous connective tissue, which is free from any inflammatory cells, with no
signs of degradation of the PLA material [8].

The 3D printing process is based on the development of virtual three-dimensional
plans of objects using a CAD file for computer design. It is then exported in STL form for
slicer software, oriented in the most appropriate way for printing, divided into a number of
layers, and finally combined to achieve the relevant shape. One of the printing technologies
is the use of a specific instruction from the CAD system, which directs the print head along
the x, y, and z planes. In this way, it is possible to build an object vertically, layer by layer.
There are dozens of 3D printing processes. Each has a different technology platform, print
accuracy, production efficiency, and input material requirements. However, using any
of the technologies, it is possible to build a 3D object in whatever shape specified in the
CAD file. Additive manufacturing is expected to revolutionize healthcare technology by
providing advanced diagnostic and imaging options [9]. Since one of the modern goals
of medicine is the implementation of personalized medicine, the 3D printing technique
should support such approaches. With its use, it is possible to provide a product tailored
to the needs of an individual patient in a short time without significantly affecting costs
and without losing benefits [10]. Thee-dimensional printing techniques are highly versatile
and are increasingly being used to produce custom and complex craniofacial components.
By using appropriate materials for this purpose, such as polymers, it is possible to obtain
structures that ensure the proper growth of new tissue or maintain the desired mechanical
properties. However, there are still many limitations related to the biocompatibility and
proper design of personalized implants.

Currently available prefabricated implants often require manual carving during the
surgery, which is highly dependent on the surgeon’s skill. It can lead to sharp edges, which
could injure the tissue, deviations in desired nose shape, or unstable positioning [11,12].
The usage of 3D printing in preparing nasal septum implants can overcome the mentioned
problems [13]. The proposed technique could be used for the fabrication of biodegradable
patient-specific implants with improved fit, comfort, and reduced complications. However,
the patient-oriented design is only one of the many implant aspects to be considered.
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The other most important part is the selection of material, which implicates the mechan-
ical and biological properties of the manufactured implant, which is in the scope of the
presented paper.

This paper is dedicated to assessing the possibility of cost-effective nasal septum
implant manufacturing by 3D printing from various market-available filaments. A nasal
septum model was prepared, and a computer simulation of bending and compression was
conducted based on the available literature data on nasal cartilage properties. Properties of
five different filaments were analyzed by mechanical (bending, compression), structural
(FTIR), thermal (DSC, MFR), surface (contact angle), microscopic (optical), degradation
(2 M HCl, 5 M NaOH, and 0.01 M PBS), and printability studies and compared to cartilage
properties. Based on this, the Bioflex filament was chosen for cell viability (MTT) analysis,
which allowed us to assess the suitability of the material for manufacturing implants.

2. Materials and Methods
2.1. Filaments

The study was performed on 5 different filaments: thermoplastic poly(ester urethane)
(TPU) (TPU, DevilDesign, Mikołów, Poland), MediFlex (MediFlex 96, Noctuo, Gliwice,
Poland), polylactide (PLA) (Easy PLA, Fiberlogy, Brzezie, Poland), poly-ε-caprolactone
(PCL) (PCL, SUNLU, Zhuhai, China), and Bioflex (Bioflex, Filoalfa, Ozzero, Italy). TPU
was chosen due to its excellent flexibility. MediFlex was chosen because it is made from
raw materials of high medical grade. PLA and PCL filaments were chosen because both
materials are most commonly used to produce nasal septum scaffolds. Bioflex was chosen
due to its flexibility and medical certification. The summary of properties of the chosen
filaments is presented in Table 1.

Table 1. Selected properties of filaments used in the study.

Property
Value

TPU [14] MediFlex [15] PLA [16] PCL [17] Bioflex [18]

Color Natural Natural White White White
Density (g/cm3) 1.23 0.89 1.24 1.28 1.09

Hardness 55 ShD 96 ShA NG * NG 27 ShD
Tensile strength at break (MPa) 44 33 53 20 16

Elongation at break (%) 400 >700 NG 560 800
Melting point (◦C) NG NG 155–160 58–62 185

Glass transition temperature (◦C) NG NG 55–60 NG −70

* NG–not given.

2.2. Anatomical Model Design

The septal cartilage model was prepared using an MRI scan of the human head of
one male adult subject without septal deviation. The segmentation process was achieved
using 3D Slicer 5.2.1 software, which is an open-source software platform for visualization
and medical image computing [19]. By a combination of threshold (43 to 95), scissors,
islands (remove smaller than 500 voxels), and smoothing (kernel size 2 mm, 5 mm, and
10 mm) tools, the septal cartilage model was prepared. The obtained model was exported
from the 3D Slicer program in the form of STL files. Autodesk Inventor Professional 2023
software was used to process the exported STL files and prepare models suitable for the
study of degradation and mechanical analysis.

2.3. Stress Analysis

The study consisted of simulating the bending and compressing of the human car-
tilage tissue, which corresponded to the designed implant, using Stress Analysis tool in
Autodesk Inventor Professional 2023 software. Based on literature data corresponding to
the properties of cartilage, a new material was defined and stored in the Inventor material
library. The material properties applied to human cartilage are presented in Table 2. Next,
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the newly defined material was assigned to the prepared model of cartilage. For the need to
determine the immovable elements necessary for static analysis, the implant was modified
by adding supports. Loads of different ranges were applied to the model surface.

Table 2. The material properties used for the human cartilage model stress analysis [20–23].

Material Property Unit Value

Young’s modulus MPa 2.72
Poisson’s ratio - 0.26
Shear modulus MPa 1.9

Density g/cm3 1.099
Yield strength MPa 1

Tensile strength MPa 1.9

2.4. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR Nicolet iS 10 spectrometer (Thermo Fisher Scientific, Waltham, MA, USA)
was used to examine the chemical functional groups of the tested filaments. The spectral
range was from 4000 to 500 cm−1, using 16 scans with a resolution of 4 cm−1.

2.5. Differential Scanning Calorimetry (DSC)

The DSC measurements were performed using a Netzsch 204F1 Pheonix apparatus
with Proteus80 software (Netzsch, Selb, Germany) under a nitrogen atmosphere (flow rate
20 mL min−1) at the temperature range of 25/30–250 ◦C. The heating/cooling rate was
10 K min−1.

2.6. Melt Flow Rate (MFR) and Melt Volume Rate (MVR)

The MFR and MVR of the studied filaments were measured using load plastome-
ter Zwick Roell BMF-001 and TestXpert® II software. The study conditions were based
on ISO 1133 standard. The measurement was conducted at printing temperatures (TPU,
PLA–215 ◦C, MediFlex–240 ◦C, Bioflex–190 ◦C, and PCL–180 ◦C) under a load of 2.16 kg.
Three repetitions were performed for each material, and the result was presented as
an average (n = 3).

2.7. Three-Dimensional Printing

Original Prusa i3 MK3S+ (Prusa Research, Prague, Czech Republic), an FFF 3D printer
with PrusaSlicer (2.5.0 version) was used to print the test elements. The most important 3D
printing parameters of all test samples are listed in Table 3. Parameters were established
based on previous DSC and MFR tests.

Table 3. The most important established 3D printing parameters.

Printing Parameter
Value

TPU MediFlex PLA PCL Bioflex

Extrusion temperature (◦C) 215 240 215 180 190
Bed temperature (◦C) 80 80 60 35 60

Cooling Fan on; ramp up from 0 (1st layer) to 100% (3rd layer)
Layer height (mm) 0.15

First layer height (mm) 0.2
Wall thickness 3 contours

Closing layers (top; bottom) 0; 0
Infill 20%, gyroidal

Base printing speed (mm/s) 40 (walls), 50 (infill)
Retraction length (mm) 4
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2.8. Contact Angle

Contact angle study was performed using a Rame-Hart 90-U3-PRO goniometer and
dedicated software Drop Image Pro. Prior to measurements, pieces of filament were
pressed on a hot plate heated to extrusion temperature (Table 3) to obtain thin, flat films.
Ten measurements were taken for each sample, which allowed for the calculation of average
values. The liquid used in the analysis was water. The test material was placed on the
goniometer table. Then, using a syringe, a drop of water was applied to the structure and
measured using a camera mounted in front of the table. Completed results for each sample
in the form of the contact angle, work of adhesion, or surface energy were obtained using
dedicated software.

2.9. Compression and Flexural Strength/Mechanical Properties

Compression strength was performed on the Zwick & Roell Z020 machine and com-
patible TestXpert® II software. Samples for the compressive strength testing were prepared
according to ISO 604 standards. The samples were in the shape of cuboids with dimensions
of 10 × 10 × 4 mm. Five samples were printed for each material with infill along the
compression direction and five samples with infill transverse to the compression direction.
Initial force (F0) was 5 N with an initial crosshead speed (V0) of 50 mm/s. Crosshead speed
during the test (V) was 1 mm/min. The measurement was conducted up to the maximum
length change of 60%.

For flexural strength, a three-point bending test was conducted on the Zwick & Roell
Z020 machine and compatible TestXpert® II software. Flexural strength tests were per-
formed on 3D-printed samples of the nasal septum with added supports. The parameters
of the test were based on ISO 178 standard. The study was carried out at room tempera-
ture. Distance between supports (L) was 13 mm, and initial force (F0) was 1 N with initial
crosshead speed (V0) of 50 mm/min. Crosshead speed during the test (V) was 60 mm/min.
The measurement was conducted up to the maximum length change of 6 mm.

2.10. Degradation Studies

The degradation studies of filaments were conducted in selected media: 2 M HCl
(pH = ~0), 5 M NaOH (pH = ~14), and 0.01 M PBS (phosphate-buffered saline) (pH = 7.4).
The medium was replenished every 7 days [24]. Before replenishing each medium, the
pH of solutions was checked (PH-100 ATC, Voltcraft) and corrected if needed. For the
study, disc-shaped samples with a height of 3 mm and a diameter of 13 mm were used. The
obtained samples were cleaned in ethanol and then dried in a thermobalance (RADWAG
MAX50/SX) set at 40 ◦C and weighed on an analytical balance (RADWAG AS 220.R2).
Nine discs were printed from each material, three discs per medium, and then placed in
24-well cell culture plates filled with 2.5 mL of degradation medium. The samples were
incubated at 37 ◦C for 56 days. The weight change in the samples was examined after 1, 2,
7, 14, 21, 28, 42, 49, and 56 days of incubation in the media. The mass change in the samples
was measured as follows: Samples were removed from a 24-well plate and dried on a paper
towel to remove excess solution. The samples were then placed in a thermobalance for
complete drying and weighed. Mass loss was calculated by Formula (1):

∆m =

(
m0 − m1

m0

)
× 100%, (1)

where m0 is the sample weight before the test (g) and m1 is the sample weight incuba-
tion (g). Three samples were tested for each medium, and the result was presented as
an average (n = 3).
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2.11. Cell Culture, Cytotoxicity, and Morphology Assesment

The cytotoxicity of Bioflex filament was studied according to the ISO 10993-5 standard
in indirect cytotoxicity test using MTT assay. Only Bioflex printouts were tested due to
favorable properties of the material, i.e., similar mechanical properties of the implant in
comparison to septum cartilage and lowest contact angle of all filaments.

Mouse fibroblast L-929 cells (Sigma Aldrich/Merck, St. Louis, MO, USA) were chosen
due to being recommended for the biological evaluation of biomedical devices in ISO
10993-5 standard. L-929 cells were cultured in medium recommended by manufacturer:
low-glucose Dulbecco’s modified Eagle’s medium (DMEM LG, Sigma Aldrich/Merck,
St. Louis, MO, USA) supplemented with 10% heat-inactivated fetal bovine serum (FBS;
Biowest, Nuaille, France), 100 µg/mL streptomycin, 100 U/mL penicillin, and 2 mM glu-
tamine (Sigma Aldrich/Merck, St. Louis, MO, USA). Cells were incubated in a humidified
atmosphere containing 5% CO2 at 37 ◦C. All the experiments were carried out with cells in
the exponential phase of growth.

Four samples were printed according to paragraph 2.7. in the shape of a 46 × 46 × 1 mm
cuboid. Printouts were sterilized for 30 min each side under UV radiation. Then, 70 mL of
extract of the studied samples was prepared in culture medium DMEM LG supplemented
with 10% FBS, 100 U/mL penicillin, 100 µg/mL streptomycin, and 2 mM glutamine. The
prepared extract was incubated for 24 h at 37 ◦C and 5% CO2.

The L-929 cells were seeded in 24-well plates with a density of 20,000 cells/well and
cultured for 24 h to allow for attachment. Then, cell culture medium was removed and
replaced with extract solutions for the next 24 h, 48 h, and 72 h. DMEM LG supplemented
with FBS and antibiotics was used as a non-toxic control. After the cell incubation with
extract solutions, the MTT assay was performed. The absorbance of the prepared solutions
was measured at λ = 540 nm using iMark Microplate Absorbance Reader (Bio-Rad, Hercules,
CA, USA). The results from three independent experiments (n = 3) were shown in the
graph as cells’ viability towards control (100% of viability). The statistical analysis was
performed with the use of Origin Pro 9.0. Statistical differences were evaluated by the
one-way ANOVA (α = 0.05) and Tukey’s post hoc test (α = 0.05).

The morphology of L-929 cells following treatment with the extract solutions was eval-
uated using light microscope (Olympus IX83, Tokyo, Japan; objective 100× magnification).

3. Results
3.1. Anatomical Model Design

The preparation of the anatomical model of the nasal septum implant started with
a segmentation process using 3D Slicer. The obtained nasal septum model is presented in
Figure 1. The model was then exported to STL format and measured in Autodesk Inventor
Professional software. Based on the measurements, a sketch was prepared (Figure 2a) and
then extruded (Figure 3a). The model was modified to prepare the implant for bending
testing by adding the supports (Figure 2b). The comparison between human nasal septum
and the proposed implant is presented in Figure 3b. The proposed implant is around
10% smaller in comparison to the septum to allow easy placement and anchorage to the
tissue by the doctors. If needed, the implant could be cropped by the surgeons. The
proposed procedure for implant preparation is time-efficient and does not require specialist
training, thus it can be easily implemented for the preparation of patient-specific implants.

3.2. Stress Analysis

The results of the stress analysis of the prepared models with the properties of human
septum cartilage in Autodesk Inventor Professional 2023 are presented in Table 4. The
graphical interpretation of the simulation is presented in Figure 4. The results were linear
in both cases, and the warning messages about scalability of the study were displayed
at the force of 7 N (for bending) and 90 N (for compression). The obtained modulus in
compression simulation was 2.28 MPa, which is similar to the results of human nasal
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cartilage reported in the literature [20], thus it can be concluded that the stress analysis
results are valid for further comparison with tested filaments.
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Figure 3. Three-dimensional model of nasal septum implant obtained in Autodesk Inventor Pro-
fessional 2023: (a) general view of septum implant in Autodesk Inventor 2023; (b) comparison in
PrusaSlicer of prepared implant model (green) to STL model of septum (orange) obtained from 3D
Slicer program. The visible grid size is 10 × 10 mm.

Table 4. Stress analysis results in the form of maximal displacement observed under specified load
obtained from simulation in Autodesk Inventor 2023.

Bending Compression

Force (N) Max. Displacement (mm) Force (N) Max. Displacement (mm)

1 0.6886 10 0.1753
2 1.377 20 0.3506
3 2.066 30 0.526
4 2.754 40 0.7013
5 3.443 50 0.8766
6 4.131 60 1.052

7 * 4.82 70 1.227
8 * 5.509 80 1.403
9 * 6.197 90 * 1.578

10 * 6.886 100 * 1.753
110 * 1.929
120 * 2.104
130 * 2.279
140 * 2.454

* The analysis finished with a warning: “The deformation is large compared to the model size. Verify that load
and constraint settings are appropriately scaled”.
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3.3. Fourier Transform Infrared Spectroscopy (FTIR)

The FTIR spectra of studied filaments are presented in Figure 5 and the descriptions
of characteristic bands for the studied filaments are summarized in Table 5. In the spectra
of all studied filaments, medium signals between 3000 cm−1 and 2800 cm−1 could be
attributed to symmetric and asymmetric stretching vibrations of C-H bonds from methy-
lene and methyl groups. In the case of TPU, PLA, and PCL, strong signals between
1750 cm−1 and 1725 cm−1 could be attributed to C=O stretching vibrations of ester groups
and strong signals at around 1160 cm−1 could be attributed to stretching vibrations of
C-O bonds [25,26]. TPU and Bioflex filaments also exhibited strong signals at around
1690 cm−1 and 1220 cm−1, characteristic of vibrations of C=O and C-N bonds from ure-
thane groups [27,28]. Additionally, Bioflex showed a very small signal and TPU filament
showed a medium signal at around 3300 cm−1, which could be attributed to stretching
vibrations of N-H bonds. In the case of Bioflex, a signal at around 1100 cm−1 could be
attributed to stretching vibrations of C-O ether groups [29]. Based on these findings, it
could be said that the TPU filament was based on polyester polyurethane and Bioflex was
based on polyether polyurethane. Based on the FTIR analysis MediFlex filament’s chemical
structure could not be revealed. Visible aromatic signals are present in the form of peaks
at around 1600, 1490, and 1450 cm−1, which could be assigned to stretching vibrations of
aromatic C=C bonds, and strong signals at 740 and 700 cm−1, which could be attributed
to out-of-plane C-H bending bond vibrations. There is also a tirade signal present at the
3100–3000 cm−1 range, which could be attributed to C-H stretching vibrations of aromatic
bonds and benzene fingers at the 2000–1500 cm−1 range [30]. It could be concluded that
MediFlex is mainly composed of aromatic-based hydrocarbon polymers, e.g., polystyrene.
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Table 5. Descriptions of characteristic bands observed during FTIR studies for the studied filaments.

Band Wavelength (cm−1) Assignment

ν(N-H) 3300 N-H stretching vibration of urethane groups
ν(C-H) 3100–3000 C-H stretching vibrations of aromatic bonds

ν(C-H) 3000–2800 C-H symmetric and asymmetric stretching
vibrations of methylene and methyl groups

ν(C=O) 1750–1725 C=O stretching vibration of ester groups
ν(C=O) 1690 C=O stretching vibration of urethane groups
ν(C=C) 1600, 1490, 1450 C=C stretching vibration of aromatic groups
ν(C-N) 1220 C-N stretching vibration of urethane groups
ν(C-O) 1160 C-O stretching vibration of ester groups
ν(C-O) 1100 C-O stretching vibrations of ether groups

3.4. Differential Scanning Calorimetry (DSC)

The DSC curves are presented in Figure 6 and the observed transition peaks are
described in Table 6. The results correspond to findings from the FTIR study. The Bioflex
filament showed a very broad peak between 105 and 140 ◦C, characteristic of polyether-based
polyurethanes [31]. The TPU filament showed the melting of hard segments at the range
of 205–225 ◦C, characteristic of poly(ester-urethane) based on aromatic diisocyanates [32].
MediFlex exhibited very small transition energy at the 92–99 ◦C range, which is characteristic
of polystyrene [33]. The PCL filament showed a strong peak at the 55–64 ◦C range, which is
typical of PCL polymers. The second transition temperature at 75–91 ◦C could be present
due to some impurities, e.g., PVC [34]. The PVC impurity could also be confirmed with FTIR
spectra (Figure 5) with a signal around 640 cm−1, which could be assigned to stretching
vibrations of the C-Cl bond [35]. PLA thermogram shows typical behavior of a PLA polymer:
glass transition in the range of 59–62 ◦C, broad cold crystallization area in the range of
109–139 ◦C, and melting transition at 146–156 ◦C [36]. It is worth mentioning that all
observed transitions were lower than the recommended printing temperatures, with the
exception of TPU, where the supplier recommends a printing temperature of 210 ◦C. Higher
printing temperatures are probably recommended to increase the flow rate of polymers.
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Table 6. DSC peaks description obtained by Proteus80 software.

Filament Peak No. Temperature Range (◦C) Energy (J/g*K)

Bioflex I 104.6–138.8 24.59

TPU I 205.9–225.1 15.20

MediFlex - 92.3–99.4 0.7287

PCL
I 54.5–63.7 43.57
II 75.4–91.3 2.61

PLA
I 58.6–62.3 0.61
II 108.9–139.2 −14.42
III 146.2–156.4 17.17

3.5. Melt Flow Rate (MFR) and Melt Volume Rate (MVR)

The summary of MFR and MVR is presented in Figure 7 and Table 7. At the tempera-
ture of printing, the highest flow was observed for polyurethane-based filaments: Bioflex
and TPU (70.20 ± 0.67, 51.11 ± 0.93 g/10 min and 52.57 ± 0.50, 47.3 ± 1.1 cm3/10 min,
respectively). The PCL filament also flowed well (37.13 ± 0.81 g/10 min and
34.2 ± 1.3 cm3/10 min). The lowest flow rates were observed for PLA and MediFlex
(16.59 ± 0.36, 10.25 ± 0.31 g/10 min and 15.01 ± 0.31, 11.67 ± 0.3 cm3/10 min, respectively).
For 3D printing, application flow rates should not be too high, to maintain dimensional
stability and prevent uncontrolled material leaks, but also not too low, to allow quick
plasticization and the appropriate amount of extruded material with decent printing
speeds [37,38]. Usually, an MFR of around 10 g/10 min is considered the lowest applicable
in 3D printing [39], and all proposed filaments exhibited higher values.
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Table 7. Summary of filaments’ MFR and MVR analysis.

Filament MFR (g/10 min) MVR (cm3/10 min)

Bioflex 70.20 ± 0.67 52.57 ± 0.50
TPU 51.11 ± 0.93 47.3 ± 1.1

MediFlex 10.25 ± 0.31 11.67 ± 0.30
PCL 37.13 ± 0.81 34.2 ± 1.3
PLA 16.59 ± 0.36 15.01 ± 0.31

3.6. Contact Angle

The results of the contact angle study are presented in Figure 8. Only two materials
exhibited hydrophilic behavior, namely Bioflex and PLA (61.5 ± 2.2 and 75.52 ± 0.97◦

at start). Other materials had contact angles over 90◦. Generally, a contact angle in the
range of 50 to 70◦ coupled with high surface energies enhances the adsorption of cells and
proteins, thus having a beneficial effect on integration between implants and tissues [40–42].
Higher hydrophilicity (lower contact angle) can disturb the interactions between cells sown
on the implant surface, and a higher contact angle (higher hydrophobicity) can result in
lowered cell adhesion to the printout, reducing biocompatibility as a result. Adhesion
of the cells to the implant surface is mediated by the adhesion of the proteins [43]. It
is known that different proteins react in distinct ways depending on the wettability of
the surface [44,45]. Recent studies suggest that hydrophilic surfaces could benefit anti-
inflammatory cytokine production, while hydrophobic surfaces promote pro-inflammatory
cytokine generation [46,47]. The presented findings indicate that PLA and Bioflex could
be considered as materials for producing implants due to their hydrophilic behavior with
moderate wettability.
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3.7. Compression and Flexural Strength/Mechanical Properties

The results of mechanical testing are presented in Table 8 and Figures 9–11. All
prepared samples exhibited higher mechanical properties compared to simulated nasal
septum cartilage properties. In all tests, the closest properties to native tissue were ex-
hibited by samples prepared from Bioflex material, especially in low-strain regions (up
to 10% in compression test and up to 1 mm in bending test). Another material with close
properties was TPU. The implant’s mechanical properties should be as close as possible
to native tissue to ensure uniform distribution of stress at the implant and good stress
transfer from the attached implant to the tissue, which results in smaller movements at the
implant–tissue interface, thus reducing healing times [48,49]. What is worth mentioning is
that the infill direction has an impact on the compression behavior of samples. Samples
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with the infill printed longitudinally to the stress direction had higher (TPU, PCL, and
PLA) moduli, which increases the stiffness at lower strains. On the other hand, samples
with the infill printed transversally to the stress direction showed higher stiffness at larger
strains, resulting in 38 to 91% higher stresses at 60% of deformation in comparison to
longitudinally printed samples. Comparing to reported results in the literature on clin-
ically applied PCL nasal septum implants, Bioflex offers similar bending strength (PCL
24.10 ± 1.06 MPa, 28.9 ± 1.3 N [50]), which makes it a possible alternative to PCL-based
implants in this regard.

Table 8. Summary of mechanical testing results: Young modulus (E) and maximal stress (σ) of tested
filaments in compression testing, both longitudinal (l) and transversal (t) to infill, and maximal force
(Fmax) observed in bending test.

Filament Eyl (GPa) σml (MPa) Eyt (GPa) σmt (MPa) Fmax (N)

Bioflex 0.495 ± 0.052 17.60 ± 0.80 0.541 ± 0.021 26.46 ± 0.45 28.3 ± 6.5
TPU 0.468 ± 0.012 33.36 ± 0.92 0.332 ± 0.035 45.9 ± 2.3 55.3 ± 4.1

MediFlex 0.770 ± 0.056 17.88 ± 0.36 0.74 ± 0.16 25.5 ± 1.4 58.8 ± 7.5
PCL 0.801 ± 0.081 17.2 ± 1.2 0.392 ± 0.058 32.87 ± 0.62 37.9 ± 9.3
PLA 3.67 ± 0.45 74.2 ± 1.8 3.24 ± 0.52 120.1 ± 2.3 145 ± 17
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tural), the behavior will be different. In the case of supporting implants attached to the 
septum, even 10 to 20% of mass loss can result in detachment of the implant and expul-
sion from the body. In the case of structural implants, higher degrees of mass loss will 
result in material disappearance. The degradation pattern of the material selected for use 
as an implant should allow for the full recovery of tissue functions during implant ser-
vice. If an implant degrades too fast, the restored tissue could be misshapen or hollow. 
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3.8. Degradation Studies

A summary of the in vitro degradation studies is presented in Figure 12. High con-
centrations of acidic and alkaline solutions allowed the time of examination to be reduced
in comparison to traditional studies in saline [51,52]. The only material which exhibited
substantial mass losses in all three mediums was BioFlex. The mass loss on average was
the highest in 5 M NaOH, but in the range of the measuring error of 2 M HCl (31.5 ± 8.7%
and 21.2 ± 6.0% of remaining mass after 56 days in 2 M HCl and 5 M NaOH, respectively).
The mass loss in 0.01 M PBS solution was low, but noticeable (92.7 ± 5.2% remaining mass
after 56 days). The results are comparable to previous studies on this material [37]. The
TPU material showed degradation in both HCl and NaOH (14 ± 8.3% and 58.50 ± 0.50%
remaining mass after 56 days, respectively). The susceptibility of TPU to acidic degrada-
tion is reported in the literature [53]. It is worth mentioning that until the 28th day, the
degradation rate in HCl and NaOH was similar, then it accelerated in HCl, while in NaOH
the mass loss was linear. In the case of MediFlex, no degradation was observed. PCL was
also susceptible to degradation in NaOH (complete degradation after 49 days) and in HCl
(55.0 ± 2.9% remaining mass after 56 days), which is known in the literature [51,54]. PLA
showed complete degradation in NaOH after just 2 days, while being intact in other media.
Such behavior was expected, as PLA is known for being susceptible to hydrolytic degrada-
tion [55]. Discussing the degradation patterns, it is essential to underline that depending
on the place in the body and the type of implant (support or structural), the behavior will
be different. In the case of supporting implants attached to the septum, even 10 to 20% of
mass loss can result in detachment of the implant and expulsion from the body. In the case
of structural implants, higher degrees of mass loss will result in material disappearance.
The degradation pattern of the material selected for use as an implant should allow for the
full recovery of tissue functions during implant service. If an implant degrades too fast, the
restored tissue could be misshapen or hollow. On the other hand, if an implant stays in
place for too long, it can hinder the healing process or lead to tissue overgrowths.
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(c) 0.01 M PBS.

3.9. Cytotoxicity Studies

Based on previous studies, the Bioflex filament was chosen for cytotoxicity studies,
as it had the best mechanical fit to nasal septum cartilage, the lowest contact angle, and
appropriate degradation behavior for a long-term implant. The results of these studies
are shown as the cell viability following the extract treatment compared to the control,
cultured in medium without extract (Figure 13). Additionally, pictures presenting the
morphology of L-929 cells are shown in Figure 14. The positive result of that in vitro test
could indicate the possible biocompatibility in vivo. Such a relation could be seen for 80
kDa PCL, which tested positively for MTT [56,57] and then was successfully tested on a 3D
porcine nasal septal cartilage in vitro model [58] and in vivo as nasal dorsum augmentation
in minipigs [59].
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Figure 13. Cell viability of L-929 cells following treatment with different extract concentrations.
Viability higher than 80% corresponds to no cytotoxicity, 60–80% to mild cytotoxicity, 40–60% to mod-
erate cytotoxicity and lower than 40% to severe cytotoxicity. *, **, ***—significant differences between
the means at the 0.05 level (Tukey test) in comparison to control after 24, 48, and 72 h, respectively.
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According to ISO 10993-5 standards, the reduction in cell viability by more than
30% is considered a cytotoxic effect. After 24 h of incubation, 100% extract exhibited
moderate cytotoxicity, while lower concentrations did not. After 48 and 72 h, only 12.5%
of the extract was considered biocompatible, with cell viability of around 80%. In turn,
25 and 50% extracts could be described as moderately cytotoxic following 48 and 72 h
of incubation. The morphological examination of L-929 cells incubated with the studied
extracts confirmed the cytotoxicity results. Cells treated with 12.5% extract for 24, 48, and
72 h presented unchanged morphology compared to the control, untreated cells. In contrast,
treatment with 100% extract for 48 and 72 h resulted in morphological changes. Cells were
smaller, shrunken, and they detached from the culture plate, which may indicate that these
cells have died. Haryńska et al. report the full biocompatibility of the Bioflex filament
in the same extract concentrations after 24 h [37] using CCl 163 cells. The main reasons
for the discrepancy between the presented results and the literature could be the higher
material contact surface or different cells used. In this study, gyroidal infill of 20% was
used, whereas Haryńska et al. used 85% triangular infill, thus the samples used here had
a higher contact area, which could result in higher cytotoxicity. Additionally, the volume
of extract was not disclosed, which could have an effect on the overall cytotoxicity result.
Based on the study results, the Bioflex filament used standalone is not suitable for usage
as an implant; however, the biocompatibility of the proposed implant could be improved,
e.g., by applying a functional hydrogel coating, deposition of biological molecules, or wet
surface modification with active substances [60]. It is also possible to use Bioflex as a base
for blends with more biocompatible materials, such as the previously mentioned PCL.
Proper biological interactions are fundamental for a regenerative effect and the prevention
of inflammatory reactions. High biocompatibility is essential for admission to clinical trials,
thus, despite the overall suitable properties of the proposed implant, the cell viability has
to first be improved.

4. Conclusions

Based on mechanical, degradation, and contact angle studies, among the tested materi-
als, the best for the proposed nasal septum cartilage implant was Bioflex. It had the closest
mechanical properties to native tissue, especially in low-strain regions, a stable degradation
rate, and a low contact angle. Cytotoxicity studies showed that this material maintained
biocompatibility only at a low concentration (12.5%) and after a short incubation time
(24 h). Following a longer incubation time (48–72 h), Bioflex was cytotoxic, especially at
100% concentration. For the proposed nasal septum implant, other elastic materials with
similar properties, but higher biocompatibility, have to be tested. There are not many other
commercially available elastic filaments with medical certification. Thus, it could be neces-
sary to synthesize a new material with tunable properties to fill the requirements of nasal
septum implants. Alternatively, Bioflex could be used after improvement of its biocompati-
bility, e.g., by surface modifications or by blending it with other cytocompatible materials.
Although the paper focuses on nasal septum implants, the presented results may be useful
in the preparation of other nasal cartilage implants, such as alar or lateral implants.
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