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Summary   1 

 

Summary 

Size effect is a fundamental phenomenon in concrete. It is characterised by decreasing strength and 

increasing brittleness of concrete with increasing size. The thesis includes experimental and 

theoretical elements. The main goal of the thesis were investigations of a size effect at the aggregate 

level by taking fracture into account with the discrete element method (DEM) for various failure 

modes. Comprehensive experiments on a size effect were carried out for a tensile splitting test. In 

experiments, the micro-computed tomography (micro-CT) and digital image correlation (DIC) 

technique were used. The concrete was simulated as a four-phase material composed of aggregate, 

cement matrix, macro-pores and interfacial transition zones (ITZs) between the aggregate and 

cement matrix. DEM for concrete was calibrated with the aid of simple uniaxial tests of uniaxial 

compression and uniaxial tension. In numerical calculations with the real internal concrete structure, 

the distribution and evolution of inter-particle contacts, inter-particle forces, force chains, rotations, 

broken contacts and energies was analyzed (depending on the specimen size) for various failure 

mechanisms: quasi-brittle, brittle and very brittle (snap-back). Experimental results were directly 

compared with experiments. Good agreement was achieved. In addition, comprehensive size effect 

experiments on reinforced concrete beams under bending without and with stirrups were carried out 

that were scaled along the height or length. 

 

Streszczenie po polsku 

Efekt skali jest fundamentalnym zjawiskiem w betonie. Charakteryzuje się spadkiem nośności 

i wzrostem kruchości betonu wraz ze wzrostem wielkości elementów. Rozprawa doktorska zawiera 

elementy doświadczalne i teoretyczne. Głównym celem pracy doktorskiej było zbadanie efektu 

skali w betonie na poziomie kruszywa z uwzględnieniem jego pękania przy zastosowaniu metody 

elementów dyskretnych (DEM) dla różnych mechanizmów zniszczenia. Wykonano obszerne 

badania doświadczalne efektu skali podczas testu rozłupywania betonu. W badaniach została 

wykorzystana mikro-tomografia komputerowa (micro-CT) oraz technika korelacji obrazów 

cyfrowych (DIC). Beton został modelowany na poziomie mezoskopowym jako materiał złożony 

z czterech faz: kruszywa, zaprawy cementowej, makro-porów i stref przejściowych między 

kruszywem i zaprawą. Metoda elementów dyskretnych została skalibrowana dla betonu na 

podstawie prostych testów doświadczalnych jednoosiowego ściskania i jednoosiowego rozciągania. 

W obliczeniach numerycznych z rzeczywistą wewnętrzną strukturą betonu został wyznaczony 

rozkład i rozwój kontaktów, sił między-kontaktowych, łańcuchów sił, obrotów, pękniętych 

kontaktów oraz energii dla 3 różnych mechanizmów zniszczenia (zależnych od wielkości badanego 
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2  Summary 

 

elementu): quasi-kruchego, kruchego i b. kruchego (snap-back). Wyniki badań doświadczalnych 

zostały bezpośrednio porównane z wynikami obliczeń DEM. Uzyskano dobra zgodność wyników 

między doświadczeniami a symulacjami. Dodatkowo wykonano obszerne doświadczenia nad 

efektem skali ze zginanymi żelbetowymi belkami bez i ze strzemionami, które były skalowane 

wzdłuż wysokości lub długości. 
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Fig.3.2 Five different stress-strain curves ζ=f(ε) from laboratory tests on concrete 
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Fig.3.5 Overview on the Table 1173 Skyscan X-ray micro-tomograph: A) X-ray source, B) 
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Fig.3.6 Mid-section of specimen with diameter  D=74 mm: a) original scan image, b) 

region of interest (ROI) for further analyses, c) aggregate visible after applying 

threshold (histogram at Fig.3.7a) and d) morphology analysis of aggregate 

(histogram at Fig.3.7b). 

 

Fig.3.7 Histograms of a) specimen density with applied threshold for aggregate analysis 
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to peak stress for ε=0.10% and ε=0.12%: a) general view (black spots - voids), b) 

marked aggregate in red and c) marked macro-voids in green and cracks in blue 

Fig.3.9 2D μCT-scans of cracked cubic concrete specimen '3' of Fig.3.3A for ε=0.12% 

(cracks are in red: continuous lines obtained on μCT-scans and dot lines by manual 

microscope , black spots denote voids), a) specimen face and b) vertical mid-depth 

section 

 

Fig.3.10 Crack bridging mechanism on concrete face surface during deformation: a) initial 

micro-cracks in ITZs of 2 neighbouring aggregate particles (marked in red) and b) 

developed macro-crack between 2 neighbouring aggregate particles (manual 

microscope, magnification factor 100) 

 

Fig.3.11 Crack propagation in concrete: a) through aggregate particle (da=2.5 mm) observed 

by 3D micro-CT system (red colour denotes aggregate, green/yellow – cement 

matrix, dark green – voids and blue/light green – crack) and b) branching around 

aggregate particle (da=3.0 mm) observed by manual digital microscope 

(magnification by factor 100, main crack is marked in red) 

 

Fig.3.12 Positioning of specimen in splitting tensile test according to ASTM standard 

(ASTM C 496/C 496M-04) 
 

Fig.3.13 The specimen in splitting tensile test according to ASTM standard (ASTM  

C 496/C 496M-04) 
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specimen loaded through steel cylinders and b) specimen loaded through plywood 

boards 
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displacement curves versus v/D in splitting tensile test for various specimen length: 

a) L=100 mm and b) L=300 mm 
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vertical displacement v for 2 different loading systems: a) through steel cylinder and 
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loading/supporting systems: a) through steel cylinder and b) through plywood board 
 

Fig.3.18 Images of ITZs between aggregate and cement matrix in concrete specimen using 

SEM: A) view on arbitrary aggregate particle (continuous lines indicate no clear 

ITZs and dashed lines denote clear ITZs), B) view on aggregate particle of diameter 
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Fig.3.19 Results of μCT for concrete cylinder specimen with diameter of D=50 mm a) 

general view, b) voids and aggregate particles in specimen (blue colour denotes 

aggregate and green voids) and c) volume of pores p with different diameter dp (blue 

colour denotes micro-voids (dp<1 mm) and red colour denotes  macro-voids (dp>1 

mm), dp - void equivalent diameter) 

 

Fig.3.20 3D μCT scan of concrete cylinder specimen with diameter of D=150 mm: A) view 

on specimen and phases (a) original scan, b) aggregate, c) cement matrix, d) voids 

and crack), B) 3D view on macro-crack (a) front view b) side view and c) top view 

(colours denote crack width wc; wc>200 μm (red colour), 50 μm≤wc≤200 μm (green 

colour) and wc<50 μm (blue colour))), C) vertical cross-sections (a) front surface, b) 

mid-length surface and c) rear surface) and D) horizontal cross-sections (a) mid-

height, b) bottom and c) top) 

 

Fig.3.21 3D μCT scan of concrete specimen (D=150 mm) with propagating macro-crack: 

a) specimen front surface and b) zoom on macro-crack crossing aggregate particles 

(blue – aggregate, yellow – cement matrix and green - voids and crack) 

 

Fig.3.22 Crack bridging mechanism on concrete front surface during laboratory test: a) initial 

micro-cracks in ITZs of 2 neighbouring aggregate particles (marked in red) and b) 

developed discrete macro-crack between 2 neighbouring aggregate particles (using 

manual microscope, magnification factor 100) 

 

Fig.3.23 Evolution of horizontal strain maps of εxx based on Digital Image Correlation (DIC) 

technique in concrete specimen mid-height during increasing vertical force P: a) 

50% of Pmax, b) 90% of Pmax and c) before peak (98% of Pmax) for concrete 

specimen with plywood loading board (colours indicate strain magnitude, x - 

horizontal coordinate, y - vertical coordinate) 

 

Fig.3.24 Relationship between maximum tensile stress ζ=2Pmax/(πDL) and specimen 

diameter D (in logarithmic scale) in splitting tensile tests on plain concrete from 

laboratory experiments: a) Bažant et al. (Bažant 1987), b) Hasegawa et al. 

(Hasegawa 1985), c) Carmona et al. (Carmona 1998), d) Kadlecek et al. (Kadlecek 

2002) and e) and f) Torrent (Torrent 1977) (continuous lines are trend lines) (P - 

vertical splitting force, D - specimen diameter, L - cylindrical specimen length) 

 

Fig.3.25 The specimens with plywood strips scaled proportionally with specimens diameter 

(b/D=const.) 
 

Fig.3.26 Relationship between crack opening CMOD and time t in experiments  

Fig.3.27 Tensile stress ζ versus CMOD in splitting tensile tests with various specimen  

diameter D 
 

Fig.3.28 Tensile stress ζ versus v/D in splitting tensile tests for different specimen diameter  

Fig.3.29 The crack patterns for specimens diameters A) D=74mm, B) D=100 mm,  
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C) D=150 mm, D) D=192 mm and E) D=250 mm for each tested specimen 

Fig.3.30 3D image of specimens D=74 mm before test: a) original image and visible phases, 

b) aggregate, c) cement matrix and d) voids 
 

Fig.3.31 3D image of crack for specimens: a) D=74 mm, b) D=150 mm and c) D=250 mm 

after test 
 

Fig.3.32 3D images of crack for specimens: a) D=74 mm, b) D=150 mm and c) D=250 mm 

after test (the colours represent crack width: red w>0.2 mm, green 0.2 mm > w > 0.1 

mm and blue 0.1 mm > w > 0.05 mm) 

 

Fig.3.33 Experimental results of tensile strength ζ against specimen diameter D (dots) and 

mean value trend (dashed line) 
 

Fig.3.34 Softening parameter α versus specimen diameter D (dots) and mean value trend 

(dashed line) 
 

Fig.3.35 Comparison between experiments and SEL type I by Bažant (1987):  tensile 

strength ζ versus specimen diameter D 
 

Fig.4.1 Typical simulations‟ loop (each step begins with “bodies” and  continues clockwise 

with time increment update) (Smilauer et al. 2015) 
 

Fig.4.2 Simple elastic interaction with normal and tangential contact stiffness  

Fig.4.3 Constitutive models for concrete a) bilinear and b) tri-linear (Kosteski et al. 2010)  

Fig.4.4 Normal contact force law by Tran et al. (2010)  

Fig.4.5 Normal contact law by Cho et al. (2007)  

Fig.4.6 Mechanical response of DEM: a) tangential contact model, b) normal contact 

model, c) loading and unloading path in tangential contact model and d) modified 

Mohr-Coulomb model (Nitka and Tejchman 2015) 

 

Fig.4.7 Shapes created in DEM with mathematical description (RockDEM 2018)  

Fig.4.8 Shapes created by assembling clusters of spheres (clumps) to describe sand grains 

(Kozicki et al. 2012) 
 

Fig.5.1 Concrete 2D specimens (dcm
min

=0.25 mm) during: a) uniaxial compression and 

b) uniaxial tension (white colour - macro-voids, green colour - aggregate with da≤ 2  

mm and ITZs, blue colour - cement matrix with 1 mm ≤ dcm<2 mm and grey colour 

- cement matrix with 0.25 mm ≤ dcm<1 mm) 

 

Fig.5.2 Stress-strain curves ζ=f(ε) for uniaxial tension from 2D DEM (ζ - vertical normal 

stress and ε - vertical normal strain): effect of: A) minimum sphere diameter 

including ITZs (a) experiment, b) da(ITZ)
min

 >2 mm, c) da(ITZ)
min

 >1 mm, d) da(ITZ)
min

 

>1.6 mm, (e) da(ITZ)
min

 >1.2 mm, f) da(ITZ)
min

 >0.8 mm, g) da(ITZ)
min

 >0.4 mm, B) ratio 

CITZ/Ccm (a) experiment, (b) CITZ/Ccm =0.3, (c) CITZ/Ccm =0.4, (d) CITZ/Ccm =0.5, (e)  

CITZ/Ccm =0.6, (f)  CITZ/Ccm =0.7, C) minimum sphere diameter in cement matrix (a) 

experiment, b) dcm
min

 =0.75 mm, c) dcm
min

 =0.5 mm and d) dcm
min

=0.25 mm (red 
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colour - experiments by van Vliet and van Mier 2000 

Fig.5.3 Cracked concrete specimens for uniaxial tension from 2D DEM with displacements 

magnified by factor 20 (ε=0.04%): A) minimum sphere diameter with ITZs a) 

da(ITZ)
min

>2 mm, b)  da(ITZ)
min

>1 mm, c) da(ITZ)
min

>1.6 mm, B) ratio CITZ/Ccm a) 

CITZ/Ccm=0.7, b) CITZ/Ccm=0.6, c) CITZ/Ccm=0.5, C) minimum sphere diameter in 

cement matrix a) dcm
min

=0.75 mm, b) dcm
min

=0.5 mm, c) dcm
min

=0.25 mm 

 

Fig.5.4 Stress-strain curves ζ=f(ε) for uniaxial compression from 2D DEM (ζ - vertical 

normal stress and ε - vertical normal strain): effect of: A) minimum sphere diameter 

with ITZs (a) experiment, b) da(ITZ)
min

>4 mm, c) da(ITZ)
min

>2 mm, d) da(ITZ)
min

 >1.6 

mm, e) da(ITZ)
min

 >1.2 mm, f) da(ITZ)
min

 >0.8 mm, g) da(ITZ)
min

 >0.4 mm, B) ratio 

CITZ/Ccm (a) experiment, b) CITZ/Ccm=0.3, c) CITZ/Ccm=0.4, d) CITZ/Ccm=0.5, e) 

CITZ/Ccm=0.6, f) CITZ/Ccm=0.7 and C) minimum sphere diameter in cement matrix (a) 

experiment, b) dcm
min

 =0.75 mm, c) dcm
min

 =0.5 mm, d) dcm
min

 =0.25 mm (red colour - 

experiments by van Vliet and van Mier 2000) 

 

Fig.5.5 Cracked concrete specimens for uniaxial tension from 2D DEM with displacements 

magnified by factor 20 (ε=0.25%): A) minimum sphere diameter with ITZs (a) 

da(ITZ)
min

>2 mm, b) da(ITZ)
min

>1.6 mm, c) da(ITZ)
min

>1 mm), B) ratio CITZ/Ccm a) 

CITZ/Ccm=0.8, b) CITZ/Ccm=0.6, c) CITZ/Ccm=0.4 and C) minimum sphere diameter in 

cement matrix a) dcm
min

 =0.75 mm, b) dcm
min

=0.5 mm and c) dcm
min

 =0.25 mm 

 

Fig.5.6 2D micro-structure of concrete vertical-sections of 50×50 mm 2 (front side (A) and 

mid-depth section (B): a) experiments (μCT image, specimen „3‟) and DEM with 

aggregate modelled as: b) clusters of spheres and c) spheres with equivalent cross-

sectional area and position (green colour - aggregate  da(ITZ)
min

 >2 mm with ITZs, 

grey colour - cement matrix and black colour - macro-voids) 

 

Fig.5.7 2D DEM results: A) calculated stress-strain curves ζ=f(ε) ('d'-'g') as compared to 

experiments (curves 'a', „b‟ and „c‟ of Fig.1) and B) relative change of contact 

number with respect to initial state (d) curve for real aggregate (clusters of spheres) 

on specimen front side, e) curve for real aggregate (clusters of spheres) in specimen 

mid-depth section, f) curve for real aggregate (spheres) on specimen front side and 

g) curve for real aggregate (spheres) on specimen mid-depth section 

 

Fig.5.8 3D DEM results for spheres at random position in concrete specimen: A) stress-

strain curves ζ=f(ε) (a-c) experiments for specimens '1'-„3‟ and d-e) calculations) 

and B) porosity change p=f(ε) and C) relative change of contact number with 

respect to initial state n=f(ε) 

 

Fig.5.9 2D cracked specimen (ε=0.12%): a) experiment (micro-CT image for specimen „3‟), 

b) DEM for real aggregate (clusters of spheres) and c) DEM for real aggregate 

(spheres) (red colour – cracks, black colour – voids, dark grey colour - aggregate, 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


List of Figures   9 

 

light grey colour - cement matrix) (A – specimen front side and B – specimen mid-

depth section) 

Fig.5.10 Crack pattern evolution (marked by red colour) on specimen „3‟ front side from 

DEM with clusters of spheres: a) ε=0.03%, b) ε=0.06%, c) ε=0.12% and d) ε=0.20% 

(dark grey colour -aggregate, light grey colour - cement matrix, black colour – 

voids) and zoomed crack evolution in area marked with black rectangle (e) ε=0.06% 

and f) ε=0.2%) 

 

Fig.5.11 2D evolution of compressive and tensile normal contact forces during deformation 

in DEM for clusters of spheres (specimen „1‟, front side): a) ε=0.03%, b) ε=0.06%, 

c) ε=0.12% and d) ε=0.20% (red lines - compressive forces, blue lines - tensile 

forces) and zoomed normal forces evolution in area marked with black rectangle (e) 

ε=0.06% and f) ε=0.2%) 

 

Fig.5.12 DEM calculation results of contact forces between particles (clusters of spheres): I) 

cracked specimen front surface with marked zoomed region (black rectangle), II) 

evolution of: A) tensile, B) compressive and C) tangential contact forces between 

particles at crack in zoomed region for normal strain ε: a) ε=0.06% and b) ε=0.12% 

(A) tensile forces in blue, B) compressive normal forces in red, C) tangential forces 

in green) (white arrows indicate crack position, grey spheres indicate aggregate) 

 

Fig.5.13 Crack displacements w and δ versus global vertical normal strain ε from DEM 

analyses with clusters of spheres (w - normal crack displacement and δ - tangential 

crack displacement) for a) central vertical crack of Fig.5.2.1.3Aa and b) left inclined 

crack at right bottom corner of Fig.5.2.1.3Aa. 

 

Fig.5.14 2D DEM results: change of broken normal contact number k for real aggregate 

(clusters of spheres) on specimen front side against global vertical normal strain ε: 

a) normal contacts in ITZs, b) normal contacts in cement matrix and c) all normal 

contacts 

 

Fig.5.15 Crack patterns in vertical-sections at depth of 0.5 cm (A), 1.5 cm (B) and 3.5 cm 

obtained by 3D DEM with aggregate as spheres located at random (ε=0.12%) 

(spheres with broken normal contacts are in red, dark grey colour denotes aggregate 

with ITZ) 

 

Fig.5.16 Stress-strain ζ=f(ε) evolution for 2D uniaxial compression test on square specimen 

15×15 cm
2
 from DEM with view on specimen before and after failure 

 

Fig.5.17 Front side of concrete specimens: A) specimen with steel cylinder and B) specimen 

with plywood, a) experiments, b) DEM (entire specimens) and c) DEM (upper 

region of specimen) (grey colour denotes cement matrix da<2 mm, green spheres 

denote aggregates with ITZ (2 mm <da< 12 mm), white spots -  macro-voids, blue 

colour - steel loading cylinder, violet colour - plywood loading plate and red areas 
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are regions for CMOD measurements at specimen mid-height) 

Fig.5.18 Calculated DEM results against experimental ones: A) vertical normal stress ζ 

against CMOD, B) vertical normal stress ζ against top vertical displacement v 

(curves „a‟ and „b‟ - experiments, curves „c‟ and „d‟ - DEM, red lines - steel loading 

cylinder, green lines - plywood loading/supporting boards) and C) relationship 

between CMOD and loading time in experiment (a) and DEM (b) (continuous lines 

- experiments, dashed lines - DEM) 

 

Fig.5.19 Evolution of vertical normal stress ζ versus CMOD from DEM results for steel 

loading cylinder with different ratio of TITZ/Tcm (A) and CITZ/Ccm (B) (b) 

TITZ/Tcm=CITZ/Ccm=0.9, c) TITZ/Tcm=CITZ/Ccm=0.8, d) TITZ/Tcm=CITZ/Ccm=0.7, e) TITZ/Tcm 

CITZ/Ccm=0.6 and f) TITZ/Tcm=CITZ/Ccm=0.5), different intergranular friction angle μ in 

ITZs (C) (b) μ =8°, c) μ =18°, d) μ =30°) and different minimum diameter of cement 

sphere dmin (b) dmin=1.0 mm, c) dmin=0.35 mm and d) dmin=0.25 mm) as compared to 

experimental curve „a‟ 

 

Fig.5.20 Experimental and calculated fractured specimens at residual state for CMOD>150 

μm: a) experimental cracks and b) and c) calculated cracks by DEM (red colour 

corresponds to broken contacts) for A) steel loading/supporting cylinders and B) 

plywood loading/supporting boards 

 

Fig.5.21 Calculated evolution of cracking in concrete specimen versus CMOD for plywood 

loading/supporting boards: a) CMOD=10 μm, b) CMOD=20 μm, c) CMOD=30 μm 

and d) CMOD=150 μm (black colour indicates aggregates, grey colour represents 

cement matrix and white colour is opened macro-crack  (displacements were 

magnified by factor 200) 

 

Fig.5.22 Mechanism of macro-crack creation in concrete specimen by bridging interfacial 

zones for plywood loading board: a) CMOD=10 μm, b) CMOD=15 μm and c) 

CMOD=20 μm (spheres in red indicate broken contacts, dark grey corresponds to 

aggregate) 

 

Fig.5.23 Calculated horizontal displacement profile at specimens mid-height for 

CMOD=25 μm (with plywood loading strip) versus horizontal coordinate x across 

localized zone from DEM (points „a‟ correspond to DEM results and solid line „b‟ 

corresponds to error function ERR) 

 

Fig.5.24 Inter-particle tensile (blue lines) and compressive (red lines) normal contact forces 

in DEM calculations for concrete specimen with plywood boards versus CMOD: a) 

CMOD=10 μm, b) CMOD=20 μm, c) CMOD=30 μm and d) CMOD=150 μm 

(green colour denotes small values of internal forces) 

 

Fig.5.25 DEM results: A) evolution of broken normal contacts n against CMOD in concrete 

specimen with plywood loading/supporting boards (continuous lines) and steel 
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loading/supporting cylinders (dashed lines): a) and d) in ITZs, b) and e) in cement 

matrix and c) and f) in concrete specimen and B) evolution of coordination number 

N versus CMOD (a) plywood loading board and b) steel loading cylinder) 

Fig.5.26 Distribution of horizontal normal stress ζxx in concrete specimen along height 

h=D=0.15 m for CMOD=18 μm: a) DEM (steel loading/supporting cylinders), b) 

DEM (plywood loading/supporting boards, c) measurements by Ferrara (Ferrara 

and Gettu 2001) and d) analytical solution by (Timoshenko 1977) 

 

Fig.5.27 DEM results (plywood boards): A) evolution of crack displacement versus CMOD 

in central macro-crack (a) normal direction w and b) shear displacement δ) and B) 

distribution of particles rotations for CMOD=150 μm (a) red circles indicate 

clockwise and b) blue circles show counter-clockwise rotation, circle diameter is 

proportional to particles rotation) 

 

Fig.5.28 Numerical construction of smaller 2D concrete specimen from larger specimen for 

DEM calculations (a) D=0.15 m and b) D=0.05 m) 
 

Fig.5.29 DEM results: evolution of nominal tensile splitting stress 2P DL) against 

normalized vertical piston displacement v/D for two different specimen diameters D 

and minimum particle diameters dcm
min

: a) D=0.05 m with dcm
min

=0.35 mm, b) 

D=0.05 m with dcm
min

=0.10 mm and c) D=0.15 m with dcm
min

=0.35 mm 

 

Fig.5.30 Calculated fracture in concrete specimen for residual splitting tensile stress of ζ=1.5 

MPa for 2 different specimen diameters: a) D=0.15 m and B) D=0.05 m (black 

colour indicates aggregates, grey colour represents cement matrix, white colour 

shows macro-pores, cyan colour denotes area with broken contacts and blue colour 

shows supports (displacements were magnified by factor 100) 

 

Fig.5.31 2D DEM results: evolution of broken normal contacts n against normalized vertical 

displacement v/D in: a) ITZs, b) cement matrix and c) concrete specimen (A) 

D=0.05 m, B) D=0.15 m) 

 

Fig.5.32 DEM results: A) evolution of broken normal contacts up to peak and between peak 

load and failure for two different specimen diameters D: A) D=0.05 m, B) D=0.15 

m (blue marks - broken contacts up to the peak, red colour - broken contacts up to 

failure, specimen are not properly scaled) 

 

Fig.5.33 2D DEM results: evolution of coordination number N versus normalized vertical 

displacement v/D for two different specimen diameters: a) D=0.05 m and  

b) D=0.15 m 

 

Fig.5.34 2D DEM results: distribution of inter-particle normal contact forces  two different 

specimen diameters D: I) compressive forces, II) tensile forces, A) D=0.05 m, B) 

D=0.15 m, a) forces up to the peak load for v/D=0.36%/0.30%, b) contacts after the 

peak load for v/D=0.40%/0.25% (red and blue colour - forces above mean value, 
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black colour - forces below  mean value) 

Fig.5.35 DEM results: evolution of crack displacement versus normalized vertical 

displacement v/D in macro-crack in central specimen region (a) normal 

displacement w and b) shear displacement δ) for two different specimen diameters: 

A) D=0.05 m and B) D=0.15 m 

 

Fig.5.36 Evolution of normalized energy E/(0.25D
2
) in 2D concrete specimen versus 

normalized vertical piston displacement v/D for 2 different specimen diameters D: 

A) D=0.05 m and B) D=0.15 m based on DEM (dcm
min

=0.35 mm): a) external work, 

b) total internal work, c) normal elastic energy, d) tangential elastic energy, e) 

plastic dissipation, f) kinetic energy, g) numerical damping and h) energy of 

removed cohesive contacts 

 

Fig.5.37 Evolution of normalized energy E/(0.25D
2
) in concrete specimen with D=0.05 m 

versus normalized vertical piston displacement v/D using DEM: (A) fractured 

region, B) remaining unloaded region and C) total elastic energy (a) total internal 

work, b) normal elastic energy, c) tangential elastic energy, d) plastic dissipation, e) 

kinetic energy, f) numerical damping, g) energy of removed cohesive contacts) 

 

Fig.5.38 Evolution of normalized energy E/(0.25D
2
) in concrete specimen with D=0.15 m 

versus normalized vertical piston displacement v/D using DEM: A) fractured region, 

B) remaining unloaded region and C) total elastic energy (a) total internal work, b) 

normal elastic energy, c) tangential elastic energy, d) plastic dissipation, e) kinetic 

energy, f) numerical damping, g) energy of removed cohesive contacts) 

 

Fig.5.39 Cross-sections of concrete specimens in tests by Carmona with diameter: a) 

D=74 mm, b) D=100 mm, c) D=150 mm and d) D=290 mm for DEM calculations 

(grey colour denotes cement matrix da<2 mm, green spheres denote aggregates with 

ITZ (2 mm<da< 12 mm), blue clusters of spheres describe loading plates, red points 

are points for CMOD measurement at specimen mid-height) 

 

Fig.5.40 Vertical force P against crack mouth opening displacement (CMOD) from 

experiments by Carmona et al. (Carmona 1998) (red lines): a) D=74 mm, b) D=100 

mm, c) D=150 mm, d) D=290 mm and from DEM (black lines): e) D=74 mm, f) 

D=100 mm, g) D=150 mm and h) D=290 mm 

 

Fig.5.41 Size effect in concrete by DEM (a) versus splitting tensile experiments (b): A) 

splitting tensile stress ζ versus specimen diameter D and B) softening curve 

inclination to horizontal α versus specimen diameter D 

 

Fig.5.42 Crack patterns from DEM in deformed concrete specimens: a) D=74 mm, b) 

D=100 mm, c) D=150 mm and d) D=290 mm for CMOD=50 μm (displacements 

were magnified by factor 40) 

 

Fig.5.43 Broken contacts (in red) in concrete specimens from DEM: D=74 mm (a), D=100  
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mm (b), D=150 mm (c) and D=290 mm (d) for CMOD=50 μm 

Fig.5.44 Evolution of contact normal forces (specimen diameter D=150 mm) for crack 

mouth opening displacement CMOD: a) 10 μm, b) CMOD=20 μm and c) 

CMOD=50 μm (red lines indicate compressive normal forces and blue lines tensile 

normal forces, line thickness denotes force magnitude) 

 

Fig.5.45 Concrete specimens a) view on front surface and b) DEM model for 3 different 

specimen diameters D: A) D=74 mm, B) D=150 mm and C) D=250 mm (green 

particles represent aggregate, grey particles stand for cement matrix and white spots 

are empty zones representing macro-pores, red squares indicate area for 

measurement of average CMOD and blue particles are loading strips , note that 

specimens are not proportionally scaled) 

 

Fig.5.46 Stress-strain curves ζ-ε curves in  uniaxial compression test: a)-c) experimental 

curves and d) DEM result 
 

Fig.5.47 Tensile stress ζ versus normalized displacement v/D for splitting tension: a) DEM 

and b)-c) experiments for different specimen diameters (A) D=74 mm, B) D=150 

mm and C) D=250 mm) 

 

Fig.5.48 Tensile stress ζ versus normalized displacement v/D curves for splitting in DEM for 

specimen diameters D: a) D=74 mm, b) D=150 mm and c) D=250 mm 
 

Fig.5.49 Number of broken contacts n against normalized displacement v/D for splitting in 

DEM: a) ITZ, b) cement matrix, c) all particles for different specimen diameters D 

(A) D=74 mm, B) D=150 mm, C) D=250 mm) 

 

Fig.5.50 Coordination number N versus normalized displacement v/D curves for splitting 

tension test calculated with DEM in specimens with different diameter D (a) D=74 

mm, b) D=150 mm and c) D=250 mm) 

 

Fig.5.51 Crack geometry: a) micro-CT images, b) deformed specimens in DEM and c) 

images of broken contacts (particles with broken contacts were marked with red 

colour) in DEM for different specimen diameters D (A) D=74 mm, B) D=150 mm 

and C) D=250 mm) 

 

Fig.5.52 Comparison of experimental and numerical results of tensile strength ft against 

specimen diameter D for: a) each specimen (dots), b) mean value trend (continuous 

line) and c) DEM result (dashed line) 

 

Fig.5.53 Softening parameter α versus specimen diameter D for each specimen in experiment 

(dots), b) mean value trend (continuous line) and c) DEM result (dashed line) 
 

Fig.A1.1 Experimental reinforced concrete beams under four-point bending: A) loading 

scheme for series „1‟ (leff=2700 mm, a=1080 mm, b=540 mm) with varying D, B) 

loading scheme for series „2‟ (D=360 mm, b=540 mm) with varying a and leff. (D - 

effective beam height, leff - distance between beam supports, l - total beam length, V 
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- vertical concentrated force applied, a - shear zone span, b - bending zone span, 

dimensions are in [mm]) 

Fig.A1.2 Experimental cross-section of: a) beam S1D18a108 (D=180 mm), b) beams: 

S1D36a108, S2D36a36, S2D36a72, S2D36a108 (D=360 mm) and c) beam 

S1D72a108 (D=720 mm) (dimensions are in [mm]) 

 

Fig.A1.3 Calculation method of crack opening and sliding displacements based on grid of 

equilateral triangles on concrete surface (ABC - initial triangle location, AB'C' - - 

displaced triangle location) (Sato et al. 2004) 

 

Fig.A1.4 Experimental force - deflection diagrams P=f(u) for RC beams (series „1‟ with 

leff=1080 mm and b=540 mm): a) S1D18a108 (D=180 mm, ηa=6), b) S1D36a108 

(D=360 mm, ηa=3) and c) S1D72a108 (D=720 mm, ηa=1.5, P=2V) 

 

 

Fig.A1.5 Experimental vertical force - deflection diagrams P=f(u) for RC beams (series „2‟ 

with D=360 mm and b=540 mm): a) S2D36a108 (ηa=6), b) S2D36a72 (ηa=3) and c) 

S2D36a36 (ηa=1) (P=2V) 

 

Fig.A1.6 Experimental results presenting evolution of shear strength: A) for varying length 

parameter l=l/D and shear span parameter ηa=a/D, B) for varying bending span 

parameter ηb=b/D (a) series „1‟ with varying effective depth D and bending span b 

at constant shear span a and b) series „2‟ for varying a  with constant effective 

depth D and bending span b) and C) as compared with experiments by Slowik and 

Smarzewski (Słowik&Smarzewski 2012) for different a (a) our experiments and b) 

experiments in (Słowik&Smarzewski 2012) (note that beams for a =6 failed in 

flexural mechanism) 

 

Fig.A1.7 Typical crack pattern evolution for different failure modes in RC beams: A) beam 

mechanism with reinforcement yielding (S1D18a108, a=6), B) shear failure in 

concrete with dominant normal diagonal crack displacement (S1D36a108, a=3) 

and C) shear failure in concrete with dominant tangential diagonal crack 

displacement (S1D72a108, a=1.5) for increasing vertical force P (a) 25%, b) 50%, 

c) 70% and d) 100% of failure force Pmax) 

 

Fig.A1.8 Crack pattern at failure typical for each beam geometry depending upon ratio a/D 

for different failure mode: a) reinforcement yielding (S1D18a108, a=6), b) shear 

failure in concrete with dominant normal diagonal crack displacement (S1D36a108, 

a=3), c) shear failure in concrete with dominant tangential diagonal crack 

displacement (S1D72a108, a=1.5), d) shear failure in concrete with dominant 

normal diagonal crack displacement (S2D36a72_1, a=2), e) shear failure in 

concrete with dominant tangential diagonal crack displacement (S2D36a72_2, 
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a=2) and f) shear failure in concrete with dominant tangential diagonal crack 

displacement (S2D36a36, a=1) (critical diagonal crack is marked in red, beams are 

not proportionally scaled). 

Fig.A1.9 Diagonal failure crack inclination to horizontal θ in RC beams for experiment series 

„1‟ (S1, triangular markers) and „2‟ (S2, diamond markers) versus ratio a=a/D=1-3 

(a - shear domain span, D - effective height) 

 

Fig.A1.10 Experimental normalized mean height of compressive zone hc/h in RC beams for 

series „1‟ (S1; marked with dots) and „2‟ (S2, marked with triangles) in shear zone 

(a) and bending zone (b) versus a=a/D (a - shear span, D - effective height) 

 

Fig.A1.11 Horizontal normal strain maps εxx for beam S1D18a108_2 failed in bending 

(a=a/D=6) (vertical and horizontal axes denote coordinates in [mm] and colour 

scale strain intensity) for increasing vertical force P: a) 2%, b) 3.75%, c) 5%, d) 

6.5%, e) 8.2%, f) 11.3% of failure force Pmax (strains are shown for mid-span, 3 cm 

above beam bottom) 

 

Fig.A1.12 Macro-crack on beam surface S1D18a108-2, image taken by microscope DG-3X 

with magnification 1000× for 15 kN at same height as DIC image of Fig.A1.11 

(crack width wc≈0.009 mm) 

 

Fig.A1.13 Horizontal normal strain maps εxx for beam S2D36a36_1 (a=1) for increasing 

vertical force: a) 5%, b) 6.8%, c) 13%, d) 17% of failure force Pmax (strains are 

shown in mid-span - 10 cm above beam bottom), e) evolution of cumulative 

horizontal displacement dx along image frame width d for different force levels - 10 

mm above beam bottom (vertical and horizontal axes denote coordinates in [mm] 

and colour scale strain intensity) 

 

Fig.A1.14 Location of triangles for DEMEC measurements in RC beams: A) series „1‟: a) 

S1D18a108 (D=180 mm, a=6), b) S1D36a108 (D=360 mm, a=3), c) S1D72a108 

(D=720 mm, a=1.5) and B) series „2‟: a) S2D36a108 (a=1080 mm, a=3) b) 

S2D36a72 (a=720 mm, a/D=2), c) S2D36a36 (a=360 mm, a=1) (main cracks are 

marked by thick solid lines) 

 

Fig.A1.15 Experimental force – normal and tangential crack displacements in RC beams 

(series „1‟): A) S1D18a108 (D=180 mm, a=6) (Fig.A1.14Aa), B) S1D36a108 

(D=360 mm, a=3) (Fig.A1.14Ab) and C) S1D72a108 (D=720 mm, a=1.5) 

(Fig.A1.14Ac) for: a) bottom triangle in reinforcement anchorage zone and b) in 

compression-shear zone (continuous blue lines denote tangential displacement δ and 

dashed green lines denote normal displacement ω, sections are shown in Fig.A1.14) 

 

Fig.A1.16 Experimental force – normal and tangential crack displacements in RC beams 

(series „2‟): A) S2D36a108 (a=1080 mm, a=3) (Fig.A1.14Ba), B) S2D36a72 
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(a=720 mm, a=2) (Fig.A1.14Bb) and C) S2D36a36 (a=360 mm, a=1) 

(Fig.A1.14Bc) for: a) bottom triangle in reinforcement anchorage zone and b) in 

compression-shear zone (continuous blue lines denote tangential displacement δ and 

dashed green lines denote normal displacement ω, sections are shown in Fig.A1.14) 

Fig.A1.17 Strut-and-tie model for deep beams under 4-point bending (s - strut inclination 

angle to horizontal, ws – width of diagonal strut (ws=lccoss  + lbsins, la=100 mm – 

width of loading plate, lb=100 mm - width of supporting plate, lc=ld=2c
’
, tanθs=dc/a, 

dc=h-c
‟
-0.5ld,=(D-c)/a, c

’
=h-D) (Zhang&Tan 2007) 

 

Fig.A1.18 Shear strength c=Vmax/(tD) (Vmax=0.5Pmax) for varying shear span parameter ηa=a/D 

in experiments (a) and in analytical solutions: A) codes ((b) ACI (Eqs.A1.7-A1.9), 

c) STM  (c) (Eqs.A1.10 and A1.11) and d) EC2 (Eqs.A1.5 and A1.6)) and B) 

alternative formulae (b) alternative ACI (Eq.A1.14), c) alternative STM (Eq.A1.16) 

and alternative STM (Eq.A1.17) (note that beams for a =6 failed in flexural 

mechanism) 

 

Fig.A1.19 Experimental (circles) and analytical flexural crack widths w by EC2 (triangles) and 

ACI (diamonds) versus a=a/D for Pmax in RC beams: a) series „1‟ (S1) and b) 

series „2‟ (S2) 

 

Fig.A1.20 Experimental (circles) and analytical flexural crack spacing ls by EC2 (triangles) 

and ACI (diamonds) versus a=a/D for Pmax in RC beams: a) series „1‟ (S1) and b) 

series „2‟ (S2) 

 

Fig.A1.21 Beam deflections u in experiments (circles) and calculated according to EC2 

(triangles) and ACI (diamonds) (without creep) versus a=a/D for Pmax: a) series „1‟ 

(S1) and b) series „2‟ (S2) 

 

Fig.A1 Experimental force – normal and tangential crack displacements in RC beams 

(series „2‟): A) S2D36a108 (a=1080 mm, a=3) (Fig.A1.14Ba), B) S2D36a72 

(a=720 mm, a=2) (Fig.A1.14Bb) and C) S2D36a36 (a=360 mm, a=1) 

(Fig.A1.14Bc) for: a) bottom triangle in reinforcement anchorage zone and b) in 

compression-shear zone (continuous blue lines denote tangential displacement δ and 

dashed green lines denote normal displacement ω, sections are shown in Fig.A1.14) 

 

Fig.A2.1 Experimental reinforced concrete beams under four-point bending: A) loading 

scheme for series „3‟ (D=360 mm, b=540 mm) with varying a and leff with varying a 

and leff, B) loading scheme for series „4‟ (leff=2700 mm, a=1080 mm, b=540 mm) 

with varying D (D - effective beam height, leff - distance between beam supports, l - 

total beam length, V - vertical concentrated force applied, a - shear zone span, b - 

bending zone span, dimensions are in [mm]) 

 

Fig.A2.2 Experimental normalized vertical force-deflection P=f(u) curves of RC beams with  
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stirrups (series „3‟) of Fig.A2.1: A) S3D36A216 with ηa=6.0, B) S3D36A108) with 

ηa=3.0 and C) S3D36A54 with ηa=1.5 (* - beams made of weaker concrete) 

Fig.A2.3 Experimental normalized vertical force-deflection P=f(u) curves of RC beams with 

stirrups (series „4‟) of Fig.A2.1: A) S4D22A108 with ηa=6.0, B) S4D43A108 with 

ηa=3.0 and C) S4D72A108 with ηa=1.5 

 

Fig.A2.4 Experimental normalized ultimate shear stress c/fc in series „3‟ and „4‟ for varying 

parameters a=a/D (a) and b=b/D (b) (fc - uniaxial compression strength of 

concrete) 

 

Fig.A2.5 Average ultimate shear stress in beams with shear reinforcement (series „3‟ and 

series „4‟) and without shear reinforcement (series „1‟ and series „2‟) with varying 

parameter a=a/D (D - effective depth and a - shear span) 

 

Fig.A2.6 Sketches of failure modes of RC beams with/without stirrups of varying geometry 

and reinforcement ratio (Y - reinforcement yielding, DT - diagonal tension, SC - 

shear-compression, CC - concrete crushing and N –support zone crushing) 

 

Fig.A2.7 Crack pattern evolution in RC beam S3D36A216_3 failing due to concrete crushing 

in constant bending moment zone 
 

Fig.A2.8 Crack pattern evolution in RC beam S3D36A108_1 during shear-compression 

failure (critical diagonal crack is in red) 
 

Fig.A2.9 Crack pattern evolution in RC beam S3D36A54_1 during shear-compression failure 

(critical diagonal crack is in red) 
 

Fig.A2.10 Crack pattern at failure in RC beams of series „3‟: a) concrete crushing in beam 

S3D36A216_1 with a=6, b) shear-compression failure in beam S3D36A108_1 

with a=6 and c) shear-compression strut failure in beam S3D36A54 with a=1.5 

(critical diagonal crack is in red) 

 

Fig.A2.11 Crack pattern at failure in RC beams (series „4‟): a) concrete crushing in beam 

S4D22A108_1 for a=5, b) shear-compression failure in beam S4D43A108_2 for 

a=2.5 and c) shear-compression failure in beam S4D72A108_2 with pilasters for 

a=1.5 (critical diagonal crack is in red) 

 

Fig.A2.12 Average normalized compressive zone height hc/D in RC beams with A) constant 

depth D and varying shear zone a (series „3‟) and B) varying depth D and constant 

shear zone a (series „4‟) 

 

Fig.A2.13 Horizontal normal strain maps εxx for beam S3D36A108_2 failed in bending 

(a=a/D=6) (colour scale denotes strain intensity) for increasing vertical force P: a) 

3%, b) 4%, c) 5%, d) 6%, e) 7%, f) 8% and g) 9% of failure force Pmax (strains are 

shown for beam mid-span) 

 

Fig.A2.14 DIC measurements: evolution of horizontal strain εxx for different load levels   
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(10 mm above beam bottom) 

Fig.A2.15 Location of triangles for DEMEC measurements in RC beams in series „3‟ (A): a) 

S3D36A216 (a=216 mm, a=6), b) S3D36A108 (a=108 mm, a=3), c) S3D36A54 

(a=54 mm, a=1.5) and in series „4‟ (B): a) S4D22A108 (D=220 mm, a=6), b) 

S4D43A108 (D=430 mm, a=3), c) S4D72A108 (D=720 mm, a=1.5) (main cracks 

are marked by thick solid lines) 

 

Fig.A2.16 Experimental relationships between normal/tangential crack displacements and 

vertical force P in RC beams (series „3‟): A) S3D36A216 (a=216 mm, a=6) 

(Fig.A2.15Aa), B) S3D36A108 (a=108 mm, a=3) (Fig.A2.15Ab) and C) 

S3D36A54 (a=54 mm, a=1.5) (Fig.A2.15Ac) for: a) shear zone mid-height and b) 

compression-shear zone top (continuous red lines with dots denote normal 

displacement ω and dashed green lines with diamonds denote tangential 

displacement δ, sections are shown in Fig.A2.15) 

 

Fig.A2.17 Horizontal normal displacements along RC beam length measured 5 cm below 

beam top directly before failure for various load level: a) beam S3D36a108_2 

(failed by concrete crushing) and b) beam S3D36a108_3 (failed in shear) 

 

Fig.A2.18 Experimental relationships between normal/tangential crack displacements and 

vertical force in RC beams (series „4‟): A) S4D22A108 (D=180 mm, a=6) 

(Fig.A2.15Ba), B) S4D43A108 (D=360 mm, a=3) (Fig.A2.15Bb) and C) 

S4D72A108 (D=720 mm, a=1.5) (Fig.A2.15Bc) for: a) shear zone mid-height and 

b) compression-shear zone top (continuous red lines with dots denote normal 

displacement ω and dashed green lines with diamonds denote tangential 

displacement δ) 

 

Fig.A2.19 Strut with diagonal cracks at CCC node (Chen et al. 2018)  

Fig.A2.20 Average experimental ultimate shear stress =Vmax/(tD) in series „3‟ (a) and series 

„4‟ (b) as compared to analytical solutions based on: c) STM (Eq.A2.5), d) MSTM 

(Eqs.A2.8), e) CSTM (Eqs.A2.12), f) EC2 (Eqs.A2.2 and A2.3) and g) equilibrium 

condition in vertical cross-section (Eq.A2.13) 

 

Fig.A2.21 Experimental (circles) and analytical flexural crack widths w by EC2 [23] 

(triangles) and ACI [34] (diamonds) versus a for Pmax in RC beams: a) series „3‟ 

(S3) and b) series „4‟ (S4) 

 

Fig.A2.22 Experimental (circles) and analytical flexural crack spacing ls by EC2 [23] 

(triangles) and ACI [34] (diamonds) versus a=a/D for Pmax: a) series „3‟ (S3) and 

b) series „4‟ (S4) 

 

Fig.A2.23 Beam deflections u in experiments (circles) and according to EC2 [23] (triangles) 

and ACI [35] (diamonds) versus a for Pmax in RC beams: a) series „3‟ (S3) and b) 
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series „4‟ (S4) 

Fig.A2 Figures show the relationship between the force and the normal/tangential crack 

displacements in RC beams: S3D36A108 (a/D=3), S3D36A54 (a/D=1.5), 

S4D44A108 (a/D=3), and S4D72A108 (a/D=1.5) (continuous red lines with dots 

denote normal displacement ω and dashed green lines with diamonds denote 

tangential displacement δ, sections are shown in Fig.A2.15) 
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Tab.3.1 Concrete mixture receipt for 1 m
3
  

Tab.A1.1 Dimensions of RC beams in test series „1‟ 

 
 

Tab.A1.2 Dimensions of RC beams in test series „2‟ 

 
 

Tab.A1.3 Concrete mixture recipe  

Tab.A1.4 Experimental results providing  failure load Pmax and shear failure stress 

ηc=Vmax/(tD) for two failure modes with RC beams of series „1‟ and series „2‟ (Y – 

flexural mechanism with reinforcement yielding, T – shear-tension failure in 

concrete with dominant normal diagonal crack opening displacements, C – shear-

compression failure in concrete with combined significant tangential and normal  

crack displacements, t=0.25 m) 

 

Tab.A1.5 Shear strengths c=Vmax/(tD) (Vmax=0.5Pmax) for RC beams according to EC2 

(Eqs.A1.5 and A1.6), ACI 318 (Eqs.A1.7-A1.9), STM (Eqs.A1.13 and A1.14), 

alternative ACI (Eq.A1.12), alternative STM (Eq.A1.16), alternative STM 

(Eq.A1.17) and Eq.A1.18 as compared to experimental values (Y - reinforcement 

yielding, T – diagonal shear-tension failure with dominant normal diagonal crack 

displacements, C – diagonal shear-compression failure with significant both 

tangential and normal diagonal crack displacements, (*) - calculated for beams with 

one reinforcement layer if a=1.5). Note values for a>2 (Eqs.A1.12, A1.16 and 

A1.17) were calculated for inclination angles  greater than limit angle for ACI and 

STM 
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Tab.A2.4 Experimental and theoretical shear strengths/ultimate stresses according to various 

analytical models of Section 4 (C
Exp

 – experimental average shear stress of beams 

failing due to concrete crushing, SC
Exp

 – experimental average shear strength of 

beams failing due to shear-compression) 

 

Tab.A2.5 Experimental and theoretical shear strengths/ultimate stresses according to various 

analytical models of Section 4 (C
Exp

 – experimental average shear stress of beams 

failing due to concrete crushing, SC
Exp

 – experimental average shear strength of 

beams failing due to shear-compression) 

 

Tab.A2.6 Experimental inclined crack spacing sI
EXP

 and critical shear crack inclination S
EXP 

compared to theoretical strut width ws and strut inclination angle s following STM 

by ACI (ACI 318-14), MSTM by Zhang and Tan (Zhang&Tan 2007)  and CSTM 
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Chapter 1 

Introduction 

1.1 Phenomenon and problem 

The size effect is a fundamental phenomenon in concrete materials. It denotes that both the: 

1) nominal structural strength (corresponding to the maximum load value reached in the loading 

process) and 2) material ductility (ratio between the energy consumed during the loading process 

before and after the load-deflection peak) always decrease with increasing element size. These two 

deformation process parameters are of major importance for the assessment of the element safety 

and its interaction with adjacent structural elements. Concrete elements exhibit a transition from the 

snap-through response in the post-critical phase for small size elements to the snap-back response 

(a catastrophic drop in strength related to a positive slope in a load-deflection softening branch) for 

large size elements. Usually the size effect has been specified for geometrically similar elements, 

differing only by the value of the size factor. The physical understanding of size effects is of major 

importance for civil engineers who try to extrapolate experimental outcomes at laboratory scale to 

actual structures of practical size range. Since large structures are strongly beyond the range of 

testing in laboratories, their design has to rely on a realistic extrapolation of testing results with 

smaller element sizes 

 

Two mechanical size effects are of major importance in concrete under loading: energetic (or 

deterministic) and statistical (or stochastic) one. The deterministic size effect is caused by the 

formation of a region of intense strain localization with a certain volume (micro-crack region – 

called also fracture process zone (FPZ)) that always precedes discrete macro-cracks. The strain 

localization zone size is not negligible relative to the cross-section dimensions and is large enough 

to cause significant stress redistribution in the structure, related to energy absorption in localization 

failure zones and energy release in remaining unloading regions. The energy absorption in localized 

failure zones is similar but the energy release grows with increasing element size (both normalized 

by the specimen size) that causes the decrease of nominal strength for larger elements. Thus the 

nominal structural strength, which is sensitive to the ratio between the size of strain localization 

zones and the specimen size, cannot be appropriately estimated in laboratory tests since it is 

different for various specimen sizes (the size of localized zones cannot be experimentally scaled). 

A statistical (stochastic) effect is caused by the spatial variability/randomness of the local material 

strength and occurs in concrete structures of a positive geometry. The larger size of the concrete 

member is, the more weak elements occur. For structures of a practical size, the size effect follows 
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neither the plastic limit load theory nor linear elastic fracture mechanics. The deterministic size 

effect is important for moderate size structures. The Weibull statistical size effect is usually smaller 

and significantly increases as an asymptotic limit for very large size structures. In spite of the ample 

experimental evidence, the physically based size effect is not taken into account in practical design 

rules of engineering structures, assuring a specified safety factor with respect to the failure load. 

Instead, a purely empirical approach is sometimes considered in building codes which is doomed to 

yield an incorrect formula since physical foundations are lacking. The understanding of a size effect 

is of major importance to ensure the safety of the structure and to optimize the material behaviour. 

 

Fracture (that is responsible for a deterministic size effect) is a very complex phenomenon, 

consisting of main macro-cracks with various branches, secondary macro-cracks and micro-cracks. 

During fracture, micro-cracks first arise in a hardening region on the stress–strain curve which 

change gradually during material softening into dominant distinct macroscopic cracks up to 

damage. The fracture process strongly depends upon a heterogeneous structure of materials over 

many different length scales, changing e.g. in concrete from the few nanometres (hydrated cement) 

to the millimetres (aggregate particles). In order to properly describe fracture/size effect in detail, 

the material meso-structure has to be taken into account since it affects in a pronounced way the 

global results with respect to both the strength and brittleness/ductility.  

 

Commonly, the deterministic size effect investigations in concrete have been performed at the 

macro-level by using different enhanced constitutive models for concrete, equipped with a 

characteristic material length (e.g. integral-type non-local models), crack band and cohesive crack 

approaches. Note that in contrast to DEM, continuum mechanics solutions do not consider cracking 

from the beginning of deformation, the damage rules have usually a priori assumed sigmoid shape 

and they are switched on in the softening regime only. Moreover, the heterogeneity of material 

properties (like stiffness, strength, fracture energy) is reflected in a homogenized sense only. The 

only link to the meso-structure is the presence of a characteristic length in enhanced continuum 

laws with softening. The characteristic length is usually chosen as a too large value as compared to 

experimental results (to speed up the calculations). The realistic curved cracks cannot be obtained 

without taking the material meso-structure into account.  

 

1.2 Aims 

The main objective of the thesis is the description of a size effect in concrete based on experimental 

and theoretical investigations, by taking different failure modes into account. Two types of 
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laboratory experiments were performed to study a size effect and related failure modes. The tests 

were carried out with: a) concrete cylinders of five different diameters that were subjected to 

splitting tension and b) 33 non-geometrically similar reinforced concrete beams under bending with 

and without stirrups that varied along the length or height and Theoretically, the size effect was 

investigated at the meso-scale level using the discrete element method (DEM) by taking the real 

concrete meso-structure into account. In meso-scale calculations of concrete during uniaxial 

compression, uniaxial tension, and splitting tension was considered as a 4-phase material 

conmposed of aggregate, cement matrix, macro-voids and interfacial transition zones (ITZs) 

between the aggregate and cement matrix. The assumed meso-structure was based on x-ray µCT 

scans of real concrete specimens. The 2D and 3D DEM calculations were carried out. The different 

meso-structural events at the aggregate level were studied in detail in the context of a size effect. 

The numerical results of the size effect in splitting were directly compared with the coresponding 

experimental outcomes. 

 

1.3 Thesis structure 

The thesis consists of 6 Chapters and 2 Appendices. Chapter 1 introduces the phenomenon, 

problems and aims. In Chapter 2, an overview of the literature concerning a size effect is presented. 

The experimental studies on the size effect during tensile splitting tests (using the x-ray micro-

tomography, scanning electron microscope and digital image correlation (DIC) technique) are 

described in Chapter 3. Chapter 4 includes the basic formulations of the discrete element method 

(DEM) for concretes. Chapter 5 presents results of DEM simulations of experimental laboratory 

tests concerning uniaxial compression, uniaxial tension and splitting tension. In Chapter 6, the most 

important conclusions and future research directions are offered. The results of experimental tests 

on the size effect in large reinforced concrete beams (with and without stirrups) are described in two 

Appendices. 

 

1.4 Innovative elements 

The innovative elements of the doctoral thesis are: 

 

1) Application of the discrete element method to concrete with the real internal structure, based on 

3D x-ray μCT images using the very advanced micro-tomography system Skyscan 1173. Concrete 

iwas decsribed as a 4-phase material composed of aggregate, cement matrix, interfacial transitional 

zones (ITZs) and macro-voids. 
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2) Investigations of different meso-structural phenomena at the aggregate level in the context of the 

size effect for different failure modes. 

 

3) Meso-scale analyses of all energy components at a different stress-displacement stage with the 

dissipated and released portions, referred to the fracture process zone and the remaining unloading 

specimen region during quasi-brittle and very brittle failure. 

 

4) Comphensive laboratory size effect tests on concrete under splitting tension with different 

specimen diameters, boundaries conditions at loading/supporting regions and failure modes.  

 

5) Comprehensive aboratory experiments on a size effect in large reinforced concrete (RC) beams 

(33 beams) under bending that were scaled along the height or length (with and without stirrups). 

 

The experimental and theoretical results described in the thesis were already published in four JCR 

journals from „Web of Science‟: „Engineering Structures‟ (2018), „International Journal of Damage 

Mechanics‟ (2018), „Theoretical and Applied Mechanics‟ (2018) and „Granular Matter‟ (2018). The 

fifth paper is now under review („Engineering Structures‟ (2019)).  

 

The research works were carried out within the project "Experimental and numerical analysis of 

coupled deterministic-statistical size effect in brittle materials" (years 2015-2017) financed by the 

Polish National Science Centre NCN (UMO-2013/09/B/ST8/03598). 
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Chapter 2 

State of Art 

Size effect laws 

First empirical observations of a size effect were made by Galileo Galilei based on a study of 

animal bones. Galileo observed that bones of larger species were relatively weaker than the smaller 

ones. Weibull (1939) formulated a statistical size effect theory, called the weakest-link theory that 

postulated that the structure was as strong as its weakest point, i.e. structure failed when the lowest 

local strength was exceeded. The material‟s strength decreased for very large elements with respect 

to a statistical law by Weibull (1939) with an asymptote calculated within linear elastic fracture 

mechanics (LEFM) 

 

1
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  
    
    ,     (2) 

 

where m is the shape parameter (called the Weibull modulus) connected with the Weibull 

distribution probability density factor, 0 is the positive scale parameter and F denotes the 

cumulative distribution function. The shape parameter is calibrated based on experimental mean 

values and variation as follows: 

 

  0

1
1E

m
  

 
    

  ,     (3) 

   2 2

0 1 2Var      
,     (4) 

 

where ( )  is the gamma function, E[ζ] denotes the mean value and Var[ζ] is the coefficient of 

variation. The shape parameter m depends on a probability distribution of experimental data. The 

specific case of the Weibull‟s law is the LEFM solution where the exponential parameter is equal to 

n/m=½ (Fig.2.1). 
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Fig.2.1: Statistical size effect law of Weibull (1939): relationship between nominal strength and 

element characteristic size (LEFM  - linear elastic fracture mechanics) 

 

The size effect law for concrete by Duan and Hu (2004, 2008, 2010) (called also the boundary 

effect model (BEM)) connects the size effect on the tensile strength to the interaction between a 

fracture process zone and the nearest specimen boundary. BEM assumes that the change of the FPZ 

width is due to the crack length variation. The nominal strength is related to a crack length 

(Fig.2.2a) (Eq.6). 

 

a)      b) 
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Fig.2.2: Boundary effect model (BEM) by Duan and Hu (2008) a) stress distribution ahead of crack 

and b) relationship between strength and crack length a 

 

Considering plastic and elastic fracture of a large metal plate with a pre-existing crack under plane 

strain conditions (Hu and Wittman 2000), the intersection point of the plastic and elastic solution 

was found as 

 

                                                        2

2

1
( )

( / )

IC

Y

K
a

Y a W 

  .               (5) 

 

As the plastic failure is governed with plastic yield strength ζY and the elastic strength criterion is 

described with fracture toughness KIC. W is the specimen size and a denotes the initial crack length 

and Y is the geometry factor equal to 1.12. Therefore the transition from a plastic to perfectly elastic 

solution was described with the simplest possible asymptotic function depending on the initial crack 

length a and the tensile strength ft’. The strength in BEM was described with the following 

expression: 

 

*

'

1 /

t
N

f

a a







,      (6) 

 

where 
* 2/1.12cha l    and 

2( / ')ch IC tl K f - the Irwin‟s characteristic length (Fig.2.2b), KIC is the 

stress intensity factor and ft’ stands for the tensile strength. The size effect law for concrete was 

described as: 

 

1

t
N

ch

f

a

l











,      (7) 

 

where α is the parameter dependent on loading conditions and β is the parameter dependent on the 

specimen geometry (β contains the geometry factor Y(a/W) and is constant for geometrically similar 

elements). BEM is capable also to capture size effect on the fracture toughness when a failure mode 

changes from plastic to brittle. Fracture toughness is usually described in LEFM as 
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C NK Y a   
.      (8) 

 

In BEM, the size effect on fracture toughness may be expressed by putting Eq.7 to Eq.8 as 

1

11

C

IC

K W

K W








 
,      (9) 

 

where KIC denotes the true size-independent fracture toughness and is calculated as 
IC FK E G   

and β1 is the dimensionless parameter that represents the specimen geometry and loading type, 

calibrated from the curve fitting. BEM successfully described the size effect on strength and 

fracture toughness for bending, tension and coupled bending with tension (Fig.2.3.) 

 

 

a)       b) 

 

 

c) 

 

Fig. 2.3: Comparison of fracture energy GF in function of specimen size remaining ligament b for 

Boundary Effect Model (BEM) with simple tests on concrete a) wedge splitting test (Wittman et al. 
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1990), b) three-point bending (Elices et al. 1992) and c) uniaxial tension (Carpintieri et al. 1995) 

(Hu and Wittman 2000) 

 

BEM includes some incorrect assumptions (the FPZ-boundary interactions, neglecting the energy 

balance condition and no mathematical basis for asymptotic matching) though it fits the 

experimental data for fracture mode I (Yu et al. 2010). Moreover, beyond some certain ranges of the 

ligament and specimen size, the BEM results for GF and KIC indicate huge errors. Nevertheless, 

BEM is still under continuous development (Wang 2016, Hu 2017). 

 

The size effect law for concretes proposed by Carpintieri et al. (1989, 1994, 1995) (called the multi-

fractal scaling law (MFSL)) postulated that the size effect was due to a fractal nature of both 

concrete micro-structure and crack surface. The theory was based on scaling the fracture energy Gf 

with a disorder level (Fig.2.4) 

 

 N

B
D A

D
  

,      (10) 

 

where D is the characteristic structural size, A is the constant with physical dimensions of the square 

of stresses (
2 2[[ ][ ] ]A F L  ) and B is the constant with physical dimensions of the square of the 

stress intensity factor (
3/2 2[[ ][ ] ]B F L  ), where [F] is the force unit and [L] stands for length unit. 
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Fig.2.4: Multifractal scalling law by Carpintieri (1989): decrease of nominal strength N with 

increasing characteristic size D 

 

Both the constants A and B are determined from experiments with the least-squares method 

(Marquard 1963). The fractal approach has some physical requirements (restrictions): 
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d
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A A
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,     (11) 
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The analytical expression takes a form of: 

 

1
( ) log( )

2 10x

B
Y X A 

.     (13) 

 

While the asymptotes are expressed by the flowing formulas for a horizontal line (homogeneous 

regime - large structures) and vertical line (fractal regime – microscopic dimension X tending to 

zero): 

 

1( ) logH X A
,      (14) 

2

1
( ) log

2
H X X B  

.     (15) 

 

Therefore the limit load may be obtained in MFSL only for homogeneous structures. MFSL does 

not have physical foundations (Bažant and Yavary 2007). Some of them are the following: the 

fractal nature of fracture surface after failure cannot matter as 99% of energy is dissipated far before 

the final fracture by micro-cracking and frictional slips in the entire FPZ volume (also away from 

the fracture surface), and there is no dependence of MFSL coefficients on the structural geometry. 

Moreover, the same MFSL formulae may be derived from the non-fractal LEFM (Bažant and Yavari 

2005). 

 

The most physical and accurate theoretical description of a size effect for geometrically similar 

concrete structures was given by Bažant (1984). The size effect law (SEL) type I is valid for 
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unnotched plain concrete or weakly reinforced massive concrete elements (where crack appears 

suddenly and localisation develops at the moment of crack imitation) and refers to a Weibull‟s 

statistical theory. The formulation for SEL type I applies to elements of a positive geometry without 

an initial notch or a crack, failing at the crack initiation: 

 

 

Fig.2.5: Comparison between multi-fractal scalling law (MFSL) by Carpinitieri (1989) and size 

effect law (SEL) by Bažant (1984) and experiments by: a) Ferro (1994), b) Hasegawa et al. (1985), 

c) Shioya et al. (1989) and d) Dempsey et al. (1999) 

 

 
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where r denotes the positive constant parameter (close to 1), 
rf
 is the strength limit for very large 

elements, Db is the height of the boundary layer of cracking and lp is the empirical material 

parameter. The graphical representation of the Bažant‟s size effect law for geometrically similar 

elements is shown in Fig.2.6a. 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


32  Chapter 2  - State of Art 

 

 

a)       b) 

 

Fig.2.6: Size effect law by Bažant (1984) for geometrically similar elements of a) type I for 

unnotched elements and b) type II for elements with notches or RC members 

 

The size effect (SEL) type II is applicable to notched concrete specimens or reinforced concrete (all 

cases with propagating crack) 
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where 0 0 /a D  is the normalized crack length, ft is the tensile strength and cf is the effective 

length of FPZ. The function defining the dimensionless energy release function 

2

0( ) ( / )Ig D bK P  (b – the specimen thickness and P – the applied load) merges the specimen 

geometry and fracture energy Gf. The ratio D/D0 corresponds to the brittleness number β. When 

β=0, the response is plastic as the solution tends to a plastic limit (limit state) and when β→∞ the 

material response is perfectly brittle and the LEFM solution is reached (Fig.2.6b). Both the SELs 

have a plastic yield limit for small members and a LEFM limit for very large members.  
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Bažant (2004, 2007) postulated later that due to material heterogeneity, the solution of SEL type I 

has to approach a Weibull statistical size effect instead of LEFM. Therefore an extended formula 

combining both deterministic and statistical size effect is as follows 

 

 

1
rn r
m

s b
N r

s p

L rD
D f

L D D l
 

 
        
  ,    (19) 

where Ls is the characteristic length of micro-structure (that may be determined from experiments 

and is connected with the concrete micro-structure). The generalised formulation for a combined 

deterministic-statistic size effect (so-called the universal size effect law) is: 
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          ,  (20) 

 

where r, γ and s are the empirical parameters and lf is the parameter dependent on the initial crack 

length. SEL compared to experiments and MFSL is shown in Fig.2.5. Both the theoretical results 

are in agreement with experiments solely at the laboratory scale. 

 

Experiments 

The size effect was widely investigated in experiments on plain and reinforced concrete. The 

experiments on a deterministic size effect during uniaxial tension were performed among others by 

van Vliet and van Mier (2000). The concrete specimens had a dog-bone shape to drop failure at 

boundaries (Fig.2.6). A clear size effect on strength was obtained (Fig.2.7). The size effect was also 

investigated during 3-point bending (Petersson 1981, Bažant&Pfeifer (1987a), Le Bellego et 

al.(2003), Skarżyński et al. (2011)) (Fig.2.7). In all experiments, the nominal strength and ductility 

significantly decreased with increasing specimen size. The size effect was stronger during bending 

since the stress state was more non-uniform. 

 

The studies on a statistical size effect were performed on plain concrete beams of a different length 

during 4-point bending by Koide et al. (1999) wherein a constant momentum zone (bending span) 

was scaled only (Fig.2.9e). The experiments exhibited a constant strength loss with increasing beam 

length in spite of the same height. 
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Fig.2.7: Dog-bone shaped concrete specimens tested by VanVliet&van Mier (2000) 

 

 

a)       b) 

 

Fig.2.8: Strength ζN versus specimen size D in uniaxial tension for concrete: a) individual values 

and b) mean values with coefficient of variation obtained (vanVliet 2000) 

 

A strong size effect was experimentally observed in geometrically similar over-reinforced concrete 

beams without shear reinforcement wherein diagonal shear-tensile failure mode took place in 

concrete (Petersson 1981, Korol et al. 2014, Walraven&Lehwalter 1994, Kim et al. 1994, 
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Podgorniak-Stanik 1998, Tan&Lu 1999, Yoshida 2000) (Fig.2.9). The diagonal cracks at failure had 

in experiments essentially similar paths and relative lengths at the maximum load. The size effect 

was also observed in reinforced concrete beams with shear reinforcement (Walraven 1994, 

Zhang&Tan 2007b, Belgin&Sener 2008). In these experiments a diagonal shear-tensile fracture 

(Zhang&Tan 2007b, Korol 2014) or crushing of a compressive zone (Belgin&Sener 2008) took 

place in concrete. The experimental results of shear strength were published by Karl - Heinz 

Reineck et al. (2003). Less than 5% out of about 800 beams tested in shear have the depth greater 

than D>600 cm. Therefore engineers still lack statistically confirmed results of size effect for large 

and very large scale structures. SEL compared to experiments and MFSL is shown in Fig.2.10. The 

theoretical results were again in agreement with experiments solely at the laboratory scale. 

 

Calculations 

The size effect in concrete was modelled with the finite element method (Bobiński et al. 2009, 

Korol et al. 2014b), molecular dynamics (Laubie et al. 2017a,), lattice-particle model 

(Grassl&Bažant 2009, Laubie et al. 2017b, 2017c) and discrete element method (Suchorzewski et 

al. 2018b). When using FEM, a deterministic size effect was modelled among others with the 

second-gradient elasto-plastic model (Pamin&deBorst 1998, Pamin 2004), second-gradient damage 

model (Simo&Ju 2003) and elasto-plastic model and damage model with non-local softening 

(Bobiński et al. 2009). The coupled deterministic-statistic size effect was modelled with the 

nonlocal damage model by Carmeliet&Hens (1994), Frantziskonis (1998), Gutierrez&de Borst 

(1998), gradient-enhanced model Gutierrez (2006), microplane material model combined with the 

crack-band model Vorechovsky (2007), Bažant et al. (2007b), Baghini et al. (2007) cohesive crack 

model Yang and Xu (2008), Grassl and Bažant (2009), elasto-plastic with non-local softening 

(Bobiński et al. (2009) and Korol et al. (2013)). Vorechovsky (2007) performed a theoretical study 

on dog-bone specimens (Fig.2.11) tested experimentally by van Vliet (Figs.2.7 and 2.8). He showed 

that many specimens whose strength was obtained by random sampling was stronger than a 

deterministic value. With increasing size, the difference between the deterministic and mean 

statistical strength increased. The deterministic results approached a horizontal asymptote while the 

statistical one followed the Weibull‟s weakest link model with the modulus m=7.91. The weakened 

boundary due to evaporation effects strongly decreased the strength of very small specimens. 

Depending on the width of the weakened boundary zone, the mean predicted strength decreased and 

the results‟ scatter increased. 
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Korol et al. (2013) performed FEM simulations of 3-point bending test with stochastic elasto-

plasticity and non-local softening using random fields describing fluctuations of tensile strength for 

both plain and reinforced concrete beams. A size effect was obtained on strength and ductility 

(Figs.2.12-2.14). 
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Fig.2.9 Size effect in experiments on plain and reinforced concrete by: a) Petersson (1981), 

b) Skarżyński et al. (2011), c) van Vliet (2000), d) Korol et al. (2014), e) Koide et al. (1999) and f) 

Podgorniak-Stanik (1998) 

 

 

 

 

Fig.2.10: Fits of Size Effect Law (SEL) by Bažant et al. (1984) and Multi Fractal Scaling Law 

(MFSL) by Carpinteri et al. (1994) to experimental data for reinforced concrete beams failing by 

shear (Bažant and Yavari 2007) 

 

 

a)       b) 
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Fig.2.11: Size effect calculations by Vorechovsky (2007): a) computational model with boundary 

weakened layer as compared to experimental data by van Vliet and van Mier (1998) b) results of 

numerical simulation with various width of weak layers due to shrinkage micro-cracking 

 

A) 

 

B) 

 

Fig.2.12: Deterministic normalized vertical force-deflection curves with constant values of tensile 

strength for 4 different concrete beam heights: small D=8 cm (dashed line „a‟), medium D=16 cm 
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(dotted-dashed line „b‟), large D=32 cm (dotted line „c‟), very large D=192 cm (solid line „d‟) (A) 

notched beams and B) beams without notch (Korol et al. 2013) 

 

 

 

 

Fig.2.13: Calculated nominal strength (N (N=1.5FL/(ftD2t)) versus beam height D for unnotched 

concrete beams from deterministic (red circles) and stochastic (blue triangles) and for notched 

concrete beams from deterministic (green squares) and stochastic (green diamonds) FE calculations 

compared with deterministic size effect law by Bažant (red solid line), deterministic-statistical size 

effect law by Bažant (blue dashed line) and deterministic size effect law by Bažant (green dotted-

dashed line) (Korol et al. 2013) 

 

Grassl and Bažant (2009) and Laubie et al. (2017b, 2017c) performed simulations with a random 

lattice-particle model. If the interactions between randomly packed particles had the same strength, 

a statistical size effect was not obtained. However, it was realistically reproduced when a stochastic 

distribution of interaction strengths was assumed. Kozicki performed beam lattice model 

simulations on notched cubic three-phase concrete specimens (Fig.2.15a) under uniaxial tension 

(Kozicki 2007). The specimen 20×20 cm
2
 had the strength lower by 20% and was more brittle in 

the post-peak range than the small specimen 10×10 cm
2
 (Fig.2.15b). 
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Fig.2.14: FE results of nominal shear strength  against effective beam depth D from deterministic 

analyses for reinforced concrete beams without shear reinforcement as compared with experiments, 

size effect law and upper bound plastic theory results  

 

 

a)       b) 
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Fig.2.15: Beam lattice model simulation results of uniaxial tension for three-phase concrete material 

a) fractured specimens and b) solutions variability for small (10×10 cm
2
) and large specimen  

(20×20 cm
2
) (Kozicki 2007) 

 

The deterministic size effect was also simulated in compression tests by Cusatis (Cusatis et al. 

2006). Prismatic specimens in four different sizes were modelled with the confinement-shear lattice 

model in two versions (with a v-shaped notch and without it). For unnotched specimens, the size 

effect in compression was nearly negligible as the nominal strength was reduced only by 7% 

between specimens with the size of D=50 mm and D=400 mm due to an almost uniform vertical 

stress distribution. In contrast, for notched specimens, the size effect was very strong and decreased 

the nominal strength by 23% (Fig.2.16). The authors stated, that compression strength size effect 

had a crack-initiation type (SEL type I). Moreover, the size effect was very strong in the post-peak 

region as the brittleness decreased for both notched and unnotched specimens when their size 

increased. 

 

 

a)       b) 

 

Fig.2.16: Results of lattice model simulations of uniaxial compression with and without notch for 

three-phase concrete material (Cusatis 2006 et al.): a) notched specimens and b) nominal strength 

ζN against specimen size D

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


43 APPENDIX 1Laboratory experiments on concrete fracture 

 

Chapter 3 

Laboratory experiments on concrete fracture 

The experimental studies at the laboratory scale are always very important tools for numerical 

modelling results of concrete fracture at the aggregate level. Three experiments at the small scale 

were performed for: 

 

1) uniaxial compression (Suchorzewski et al. 2018a),  

2) splitting tension with different boundary conditions (Suchorzewski et al. 2018b) and  

3) splitting tension with different specimen diameters.  

 

The uniaxial compression test has been chosen since it is the most important experiment for 

concrete. The splitting tension test has been chosen since it is a very popular simple test to 

determine the tensile strength of concrete. 

 

3.1 Uniaxial compression 

Specimens and test procedure 

The uniaxial compression test is described by standards provision as a basic test of the compressive 

strength of concrete. Cubic specimens with the dimensions of 150×150×150 mm
3
 or cylindrical 

specimens with the diameter of 150 mm and height of 300 mm are used. The specimens used in the 

research work were however smaller (50×50×50 mm
3
) to obtain a better resolution of micro-CT 

images. The uniaxial compression test is strongly dependent on boundary conditions at ends. When 

high friction or binding occurs between a concrete specimen and loading plate, the cracks have 

mainly an x-shape and compressive strength is higher than in the case of free horizontal 

displacements (van Mier 1997). In the experiments, a very smooth steel loading plate was used and 

the specimen surface was polished to decrease the wall friction. 

 

The experiments were carried out with concrete including Baltex limestone aggregate (collected on 

the Baltic seabed) that was round and very smooth due to a long-termed sea activity. The concrete 

specimens were prepared in the weight proportion 3:1.6:7.1:12.6 (cement 32.5 R: water: sand: 

aggregate). The minimum aggregate diameter was da
min

=2 mm, maximum aggregate diameter 

da
max

=10 mm and mean particle diameter d50=5 mm. The sieve aggregate content was 10.2% 

(diameters 2-4 mm), 78.6% (diameters 4-8 mm) and 11.2% (diameters 8-10 mm). The total particle 
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(sand and aggregate) volumetric content was 75%. This aggregate was intentionally chosen since it 

had an oval-like shape that was easier to be simulated in DEM simulations. 

 

The load machine ZWICK Roller HB BPS-FB0250.20.12 was used. The quasi-static tests were 

performed with a controlled vertical displacement rate of 0.0005 mm/s. Two concrete specimens 

were scanned by the 3D x-ray micro-tomograph Skyscan 1173 (Skarżyński and Tejchman 2016, 

Skarżyński et al. 2019) in order to obtain the detailed 3D image of concrete meso-structure in a non-

damaged (initial state) and damaged state. 

 

ITZs 

Concrete is generally referred to as a heterogeneous and discontinuous material that may be 

considered at the meso-scale as a composite material wherein four germane phases (constituents) 

may be isolated: cement paste, aggregate, macro-voids and interfacial transition zones (ITZs) 

between aggregates and cement paste. ITZs reveal pronounced compositional differences as 

compared to the cement paste which are the most significant in the vicinity of the aggregates‟ 

surface and gradually diminish away from aggregates to become insignificant at a certain distance 

(15-100 μm) (Scrivener et al. 2004). ITZs differ from the cement paste in porosity, pore size and 

also in the complementary anhydrous cement and C-S-H (calcium silicate hydrate) contents. In 

general, ITZs contain more and larger pores, smaller particles and higher porosity, less anhydrous 

cement and (calcium silicate hydrate, C-S-H) gel, resulting in higher transport properties (i.e., 

permeability, diffusivity and conductivity) in contrast to the cement paste. ITZs stem from the wall 

effect of packing of cement grains against the relatively flat aggregate surface which disrupts the 

packing of cement grains and is responsible for the features of ITZs, particularly for their higher 

porosity. Another origin of ITZs is a micro-bleeding effect where ITZs accumulate free water 

around aggregates, especially under large aggregates, and increases the local porosity (Wang et al.  

2009). The ITZ-thickness is usually around 20-50 μm and depends strongly on the water to cement 

ratio, aggregate type,  size and age of micro-structure (Elsharief et al. 2003). 

 

It is very difficult to perform experimental tests on ITZs due to their very small size. Therefore ITZs 

are mainly investigated based on scanning electron microscope (SEM) images. The quantitative 

data are usually obtained by image post-processing with different techniques. The porosity of ITZ 

was estimated as 15% at the aggregate edge using the mercury intrusion porosimetry (MIP). It 

decreased non-linearly down to 5% at the distance of 35 μm from aggregates (Ollivier et al. 1995). 

The Wood‟s metal was used at the University of Berkeley to analyse the three-dimensional structure 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Chapter 3 - Laboratory experiments on concrete fracture 45 

 

of ITZs (Srivener&Nemati 1996). The liquefied metal was intruded at the concrete specimen 

surface under pressure and saturated micro-pores and fractures. Then the images were taken by the 

backscatter scanning microscope (BSE) in regions surrounding aggregate grains. The width of 

zones with fractures and micro-pores varied between 30-100 μm, however, the pores interconnected 

in 3D were located not further than 20 μm from the aggregate edge. The most recent studies of ITZ 

properties are based on nanoidentation tests and atomic force microscopy. Nanoindentation is a 

simple mechanical test of pressing a very hard tip (usually made of diamond) with three-sided 

geometry into a specimen. At the applied force, the displacement is measured. Based on those data, 

the hardness and modulus of elasticity may be determined. The atomic force microscopy may be 

used for a surface roughness inspection and together with nanoindentation for analyses of cracking 

in quasi-brittle materials to determine the stress intensity factors. The ITZ-modulus of elasticity was 

measured with nanoindentation and was equal to 80% of the cement matrix (Xiao et al. 2013). ITZs 

were also observed in fibre reinforced concrete around steel fibres and had the thickness of 10-30 

μm (Wang et al. 2009). Unfortunately, none of the mentioned methods is able to provide the 

information on the ITZ-strength. The experimental study of the aggregate-cement interface was 

performed with a specimen of limestone aggregate with 2 mm layer of the cement paste on it. The 

specimens were tested in direct tension and shear (Jebli et al. 2017). The strength and stiffness of 

this composite and pure cement were compared in various hydration times. The composite cohesion 

was smaller by 25% than for pure cement. Some theoretical studies were also performed to 

investigate the mechanical properties of ITZs like strength and modulus of elasticity. The multiscale 

approach of calibration of ITZ properties was realized by Koniegsberger et al. (2014, 2018) based 

on a thermo-mechanical analysis. The stress state was downscaled from the cement paste level in 

the aggregate neighbourhood down to the “hydrate needle phases”, where the Druker-Prager like 

criterion was solved for stress peaks at the hydrates level. Afterwards, the stresses were upscaled 

back to the cement paste level. The necessity of including ITZs at the meso-level was noted with 

different possible ITZs failure modes (debonding from aggregate, ITZ failure and cement ITZ 

interface breakage). It is very popular to handle ITZs as layers with different properties with the 

finite element method (FEM. Grondin&Matallah (2014) stated that TIZ might have high or low 

density depending on the aggregate type and that concrete macroscopic strength might be 

reproduced with ITZ properties almost identical as cement paste while the lower ITZ-strength gives 

results similar to the experimental microscopic phenomenon. ITZs act as “the weak link in the chain 

when compared to the bulk cement paste and aggregates  
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In order to measure the width of ITZs in non-damaged specimens, the scanning electron microscope 

(SEM) HITACHI TM3030 with the maximum magnification factor 30'000 was used. The small 

specimens cut out from the initial concrete block with a size 40×40×1.5 mm
3
 were used. The 

specimen surface was polished with a grinding stone. ITZs around particles were characterised by 

an extremely thin and porous structure. Due to a very smooth aggregate surface, their width was 

merely 2-3 μm, i.e. significantly smaller than in usual concretes (30-50 μm) (Skarżyński et al. 2015) 

ITZs appeared mainly around aggregate (Fig.3.1A) but they were also visible around some large 

cement matrix particles (Fig.3.1B). The width of ITZs was not dependent upon the aggregate 

diameter.  

 

A) 

 

B) 

a)      b) 

 

Fig.3.1: Images of ITZs between aggregate and cement matrix in concrete specimen '1' using 

scanning electron microscope: A) around aggregate particle of diameter da=3 mm and B) around 

sand particle of diameter dcm=0.4 mm (a) magnification factor 200 and  

b) magnification factor 1000) 
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Stress-strain curves 

The typical experimental stress-strain curves for 4 concrete specimens are shown in Figure 3.2 (for 

the specimens '1' -'4'). The tests for the specimens '3' and '4' were stopped (=0.12% and =0.08%) 

for scanning by micro-CT. The mean concrete strength in compression was about 32 MPa for the 

specimens '1'-'3' and the mean modulus of elasticity was 32 GPa. The behaviour of the specimen '1' 

was brittle and '2' was quasi-brittle in the post-peak regime. The different stress-strain responses 

were probably due to a specific aggregate shape and smoothness. 

 

 

Fig.3.2: Five different stress-strain curves ζ=f(ε) from laboratory tests on concrete specimens under 

uniaxial compression: a) specimen '1', b) specimen '2', c) specimen '3', d) specimen '4' and 

e) specimen '5' under uniaxial compression (ζ - vertical normal stress and ε - vertical normal strain) 

 

The concrete specimen '3' before the test and after the peak stress (=0.12%) is presented in Fig.3.3. 

After compression, the failure surface was very non-uniform (Fig.3.3b). The edges were separated 

from the specimen core. 
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a)       b) 

Fig.3.3 View on face side of specimen '1' a) before test and b) after failure 

 

Micro-CT scans of fracture 

The x-ray micro-tomography (called briefly micro-CT) is a 3D imaging technique which uses x-

rays to create cross-sections of a physical object that is used to recreate a virtual model (3D model) 

without destroying the original object (Proudhon 2010, Skarzynski and Tejchman 2016). The micro-

CT consists of x-ray emission gun, rotating stage and flat panel sensitive to x-ray emission detecting 

the x-ray magnitude. The analysed specimen is being rotated around vertical axis with small 

rotation step. At each step, a 2D black-white image of a specimen with the density map (based on 

the x-ray absorption) is saved in the computer‟s memory. To create 3D image of specimens internal 

structure, a total rotation of 180° is necessary. For specimens with a higher density (large x-ray 

absorption), the rotation of 360° is used. After that, the 2D image is reconstructed in every 

horizontal section from individual 2D scans. the reconstructed specimen images may be then 

rendered and analysed both qualitatively and quantitatively in 3D. The x-ray micro-tomograph 

Skyscan 1173 in our department represents a new generation in high-resolution desktop X-ray 

micro-tomography systems (Skarzynski and Tejchman 2016, Skarzynski et al. 2019). The scans 

were completed up to ten times faster with the same resolution and image quality as compared to 

previous micro-CTs with a fixed source-detector design. The scanner was equipped with the newly 

developed 130 keV microfocus x-ray source with a very stable focal spot position and flat panel 

sensor of a large format (5 Mpx) with special protection by a lead-glass fibre-optic window. As 

compared to usual X-ray micro-tomographs, this scanner has two basic advantages: a) large 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/X-ray
http://en.wikipedia.org/wiki/3D_modeling
https://www.microphotonics.com/micro-ct-scanners
http://mostwiedzy.pl


Chapter 3 - Laboratory experiments on concrete fracture 49 

 

specimens up to 200 mm in diameter may be scanned and b) the specimens are scanned with higher 

precision (2-3 microns). Note that a continuous investigation of the entire fracture process under 

deformation with the X-ray micro-tomograph (without breaks for scanning) was not possible for 

technical reasons yet. Now it is possible to shoot continuous scans during deformation. 

 

 

Fig.3.4: The working scheme of micro- CT (Proudhon 2010) 

 

 

 

Fig.3.5 Overview on X-ray micro-tomograph Skyscan 1173: A) X-ray source, B) flat panel 

(detector) and C)  precision object manipulator (positioning stage)  

(Skarżyński and Tejchman 2016, Skarżyński et al. 2019) 
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The basic outcome of CT scans is a greyscale image (Fig.3.6a) representing the objects densities 

(the whiter is the object, the higher is its density). In the first step, the region of interest has to be 

chosen to pick the area for further analyses (Fig.3.6b). Then to distinguish the desired phase 

(aggregate, cement matrix, pores or crack), a suitable threshold has to be applied, based on density 

histograms (Fig.3.6a). Choosing high densities, aggregate may be analysed (Fig.3.6c). Finally, 

aggregate morphology may be quantitatively measured (Fig.3.6d). The parameters as each object 

surface, volume (Fig.3.7b), porosity (opened and closed pores), centre of gravity, orientation in 3D, 

major diameter, sphericity, moments of inertia and many others may be extracted from the micro-

CT scans. 

 

All concrete specimens were scanned with the same parameter setting. The X-ray source voltage of 

the micro-CT scanner was set to 130 keV, the current was 61 µA and exposure time was equal 

2000 ms. The pixel size of the micro-CT was 39,68 µm. The X-ray projections were recorded with 

the rotation increment of 0,2
o
 within 180

o
. To reduce the noise in the captures X-ray projections, the 

frame averaging option was set to be 4 and random movement option was 10. The scanning time 

was approximately 6 hours. 

 

Figure 3.8 demonstrates the 3D micro-CT-images of the 2 cracked cubical concrete specimens „3‟ 

and „4‟ in the region of the peak stress (=0.12% and =0.08%). The cracked vertical cross-sections 

of the concrete specimen „3‟ for the vertical deformation ε=0.12% are shown in Figure 3.8. All 

cracks were strongly curved mainly due to a random presence of aggregate grains (Figure 3.8 and 

Figure 3.9). The first crack occurred at the bottom right edge of the specimen on the front side 

(Figure 3.9a). It propagated through a weak aggregate and then along the left edge of the large 

aggregate particle. Next it branched into two cracks surrounding two aggregate particles above. 

Next a central crack was created on the front side (Fig.3.9a) which was not visible on µCT scans as 

it closed due to unloading. However it was observed during deformation with the aid of the manual 

digital microscope. In the case of the vertical section at the specimen mid-depth, more vertical 

cracks were created (Fig.3.9b). They appeared in each specimen region. 

 

The maximum crack width on the specimen front side was w=0.18 mm (measured by the manual 

digital microscope). The cracks were slightly narrower on micro-CT-scans (w=0.13 mm) due to the 

specimen unloading during scanning. Initially, the volume of closed voids (voids that are not 

connected with the specimen edges) in the specimen „3‟ was 2.04% and of open voids (voids that 
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are connected with specimen edges) was 2.43%. After cracking (=0.12%), the volume of closed 

voids was 0.8%  and open voids 4.05%. The volume reduction of closed voids was caused by a 

crack propagation through them that turned them into open voids. 

 

 

  

a)       b) 

  

c)       d) 

Fig.3.6: Mid-section of specimen with diameter  D=74 mm: a) original scan image, b) region of 

interest (ROI) for further analyses, c) aggregate visible after applying threshold (histogram at 

Fig.3.7a) and d) morphology analysis of aggregate (histogram at Fig.3.7b). 
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a) 

 

b) 

 

Fig.3.7 Histograms of a) specimen density with applied threshold for aggregate analysis (120 – 

255), and b) morphology analysis of aggregates size (horizontal axis presents aggregate size and 

vertical axis presents frequency) 
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A) 

 B) 

C) 

a)       b) 
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Fig.3.8: 3D micro-CT-scans of 2 cracked cubic concrete specimens '3' (A) and '4' (B) close to peak 

stress for ε=0.10% and ε=0.12%: a) general view (black spots - voids), b) marked aggregate in red 

and c) marked macro-voids in green and cracks in blue 

 

a)        b) 

 

Fig.3.9: 2D μCT-scans of cracked cubic concrete specimen '3' of Fig.3.3A for ε=0.12% (cracks are 

in red: continuous lines obtained on μCT-scans and dot lines by manual microscope , black spots 

denote voids), a) specimen face and b) vertical mid-depth section 

 

Initially, the volume of closed voids in the specimen „3‟ was 2.04% and of open voids was 2.43%. 

After cracking (=0.12%), the volume of closed voids was 0.8%  and open voids 4.05%. The 

volume reduction of closed voids was caused by a crack propagation through them that turned them 

into open voids. 

 

All cracks mainly propagated through ITZs along aggregate particles since they were the weakest 

phase in concrete. Thus micro-cracking occurred first in ITZs. When two interfacial cracks occurred 

around adjacent aggregates, a crack inside the cement matrix initiated to bridge the interfacial 

cracks so that a connected crack path was formed (Fig.3.10). The cracks propagated very rarely 

through weak aggregate particles and macro-voids (Fig.3.11a). As it was earlier mentioned, a crack 

branching was also observed (Fig.3.11b). The maximum crack width on the specimen front side was 

w=0.18 mm (measured by the manual digital microscope). The cracks were slightly narrower on 

micro-CT-scans (w=0.13 mm) due to the specimen unloading during scanning. 
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a)    b) 

Fig.3.10: Crack bridging mechanism on concrete face surface during deformation: a) initial micro-

cracks in ITZs of 2 neighbouring aggregate particles (marked in red) and b) developed macro-crack 

between 2 neighbouring aggregate particles (manual microscope, magnification factor 100) 
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Fig.3.11: Crack propagation in concrete: a) through aggregate particle (da=2.5 mm) observed by 3D 

micro-CT system (red colour denotes aggregate, green/yellow – cement matrix, dark green – voids 

and blue/light green – crack) and b) branching around aggregate particle (da=3.0 mm) observed by 

manual digital microscope (magnification by factor 100, main crack is marked in red) 

 

3.2 Tensile splitting tests with different boundary conditions 

Specimens and test procedure 

The tensile splitting test (Brazilian splitting) is the most popular experimental method of 

determination of concrete tensile strength due to the simplicity of the load application as 

compression and standardized the same specimen geometry as in compression strength test and 
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determination of modulus of elasticity. However, the test is very sensitive to boundary conditions 

(Rocco et al. 1995, 1999, 2001) and to the positioning of the specimen. Figure 3.12 presents the 

positioning the apparatus recommended by ASTM to set a cylinder axis perfectly parallel to the 

loading plate. All standards recommend plywood or hardboard strips for a uniform distribution of 

compressive stresses under the loading point (ASTM and EN). Moreover, the test is subjected to a 

size effect since the stress distribution is non-uniform.  

 

 

Fig.3.12: Positioning of specimen in splitting tensile test according to ASTM standard (ASTM C 

496/C 496M-04) 

 

This test consists of applying a distributed compressive force along the length of a concrete 

cylinder, which induces a primarily tensile stress perpendicular to the loading plane of the 

specimen‟s cross-section with a sharp compressive stress near the load points. The splitting tensile 

strength is greater than the direct tensile strength and lower than the flexural strength. The 

recommended standard cylindrical specimen sizes are: diameter D=0.15 m and length L=0.3 m. The 

tests by Carmona (Carmona et al. 1998) and Lamond (Lamond 2006) showed the specimen length 

did not influence fracture in splitting tensile tests if the specimen length was equal or larger than 5 

times the maximum aggregate diameter. The tests are however sensitive to boundary conditions 

related to the width (Rocco et al. 1995, 1999, 2001), shape (Kuorkoulis et al. 2013a, 2013b, Salami 

et al. 2015) and stiffness (Miguel et al. 2016) of the loading strip. With growing loading strip width 
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b, the concrete strength increased (Rocco 1995, 1999, 2001). The shape‟s change of the loading 

strip from a rectangular strip to a curved one made the specimen strength higher by increasing the 

contact surface (Kuorkoulis et al. 2013a, 2013b, Salami 2015). The loading strip stiffness turned out 

to be significant for b/D<0.25 (very stiff loading strip increased the strength in experiments by 

Miguel et al. (Miguel et al. 2016)). The effect of boundary conditions on the initial global stiffness 

and post-peak behaviour of concrete specimens (strength-displacement curve, fracture) has not been 

investigated yet. 

 

The fracture process in the splitting test with standard loading strips consists of two main stages: 

1) a main macro-crack formation in the central vertical zone and 2) secondary cracks connecting the 

main vertical crack with edges of loading plates (Miguel et al. 2016, Ruiz et al. 2009). In addition, 

the test outcomes are subjected to a size effect, expressed by a decrease of both the nominal strength 

and ductility with increasing specimen diameter (Carmona et al. 1998, Bažant et al. 1991, 

Hasegawa et al. 1985, Kadlecek et al. 2002, Torrent 1977). The European standard (EN12390-6: 

2000) defines loading strips as made of a hardboard of the density of 900 kg/m
3
 and dimensions: 

width b=10 mm and thickness t=4 mm whereas the standard (ASTM C 496/C 496M-04) (Fig.3.13) 

proposes loading strips of plywood: b=25 mm wide and t=3.2 mm thick. 

 

 

 

Fig.3.13 The specimen in splitting tensile test according to ASTM standard (ASTM  

C 496/C 496M-04) 
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The experimental and theoretical research works were aimed now at understanding the concrete 

behaviour at the meso-scale during different failure modes in quasi-static splitting tension, 

depending upon the specimen diameter. Based on preliminary experiments, a quasi-brittle concrete 

behaviour took place with small specimen diameters (D=5 cm). For larger diameters (D=10 cm), a 

brittle concrete behaviour occurred. Finally, for very large diameters (D>15 cm), a snap-back 

instability was observed (that is described by a positive slope in a stress-strain softening branch) 

(Bažant et al. 1987b, Biolzi et al. 1989, Tanabe et al. 2004, Korol et al. 2013). This instability is 

typical for large and slender concrete structures, low fracture toughness and high tensile strength 

(Biolzi et al. 1989, Tanabe et al. 2004, Korol et al. 2013, Carpintieri et al. 2010). In these cases, the 

energy absorption in failure zones is smaller than the energy release in remaining unloading regions 

under decreasing load (Tanabe et al. 2004). 

 

Initially, the cylinders with one diameter of D=0.15 m were experimentally and theoretically 

investigated. During laboratory tests, a snap-back instability occurred. Therefore the test had to be 

performed under CMOD-control conditions. The vertical load was transferred to concrete 

specimens through: 1) a plywood board (in the form of surface contact) according to ASTM (ASTM 

C 496/C 496M-04) and 2) a steel cylinder (in the form of a line contact) to eliminate the effect of 

boundary conditions. Fracture was monitored using a high resolution and non-destructive technique 

in the form of the 3D x-ray micro-computed tomography (using Skyscan 1173 (Skarżyński 2016, 

Suchorzewski 2017b). In addition, the manual 2D digital microscope 'Scalar' was used. The main 

goal of those preliminary research works was twofold: 1) to check the effect of different boundary 

conditions on the strength and fracture (expressed by the different loading and supporting strip type) 

and 2) to investigate in detail the concrete behaviour during quasi-static splitting tension at the 

meso-scale level. 

 

The splitting tensile experiments were performed in the static loading machine ZWICK Roaller 

Z400 (Fig.3.14). The machine was equipped with a crack opening extensometer (Sandner  

EXR10-2x) within the measurement range of 2 mm with the maximum error of 2%. The 

extensometer base was equal to 40 mm. The extensometer was located at the mid-height of the 

concrete specimen and glued to the specimen front side (Fig.3.2.3). The quasi-static tests were 

performed under the CMOD-control (CMOD - crack mouth opening displacement) with the 

displacement rate of 0.00001 (1×10
-5

) mm/s. Two types of loading/supporting strips were used: 

deformable plywood boards with the thickness of t=3 mm and width of b=25 mm (Fig.3.2.3b) and 
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rigid steel loading/supporting cylinders with the diameter of 20 mm (Fig.3.2.3a). The first 

loading/supporting strip is recommended by ASTM (ASTM C 496/C 496M-04). In the second case, 

the effect of boundary conditions was eliminated. Thus, the vertical load was respectively 

transferred to specimen through a surface contact or line contact.  

 

a)      b) 

 

Fig.3.14: View on loading machine Zwick Z400 with cylindrical concrete specimen of diameter 

D=150 mm and length L=60 mm for quasi-static splitting tensile tests: a) specimen loaded through 

steel cylinders and b) specimen loaded through plywood boards 

 

Concrete was prepared in the weight proportion 3:1.6:7.1:12.6 (cement 32.5R, water, sand, 

aggregate). The minimum aggregate diameter was da
min

=2 mm, maximum aggregate diameter was 

da
max

=12 mm and mean aggregate diameter d
a

50=5 mm. The volumetric aggregate sieve content was 

31.2% (diameter 2-8 mm), and 16.6% (diameter 8-12 mm). Thus, the aggregate volumetric content 

was 47.8%. The total particle volumetric content (sand and aggregate) in concrete was 75%. The 

concrete specimens with the diameter of D=150 mm were used. Based on experiments by Carmona 

et al. (Carmona et al. 1998) and Lamond (Lamond 2011), the minimum specimen length was 
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assumed L=60 mm (=5×da
max

). The mean standard compressive strength of concrete tested on 3 

cubic specimens 150×150×150 mm
3
 was equal to fc,cube=49.6 MPa and mean standard modulus of 

elasticity tested on 3 cylindrical specimens D=150 mm and length L=300 mm was Ec=33.1 GPa. 

Some papers (Lamond 2006, Carmona et al. 1998, Wu et al. 2018) report, the length of the cylinder 

does not influence the test results if the length is not shorter than 5 times the maximum diameter of 

aggregate 5xdmax. Nevertheless, the influence of cylinders length was checked experimentally on 

two specimens with the diameter D=150 mm (Fig.3.15A). Figure 3.15B presents two representative 

curves of specimens length a) L=100 mm and b) L=300 mm. The length of the cylinder neither 

influenced the strength nor the softening curve (as in the literature). 

 

A) 

B) 

a)       b) 
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Fig.3.15: The specimens view A) and B) tensile stress ζ versus a) normalised vertical displacement 

curves versus v/D in splitting tensile test for various specimen length: a) L=100 mm and  

b) L=300 mm 

 

Stress-strain curves 

Several splitting tests on concrete were carried out: 6 with plywood boards and 5 with steel 

cylinders. The splitting tensile strength was calculated as =2Pmax/DL (Pmax - the maximum 

vertical piston force). The maximum and minimum splitting tensile strengths were 3.44 MPa and 

3.68 MPa with the standard deviation of 0.22 MPa for plywood boards and 3.26 MPa and 3.54 MPa 

with the standard deviation of 0.30 MPa for steel cylinders. 

 

Figure 3.16A presents the experimental evolution of the representative splitting tensile stress versus 

the CMOD curve for concrete specimens using two types of the loading/supporting strip along the 

specimens (steel cylinders and plywood boards). The CMOD evolution during loading was 

perfectly linear in time. The splitting tensile strength varied between 3.26 MPa (Pmax=47.2 kN, 

v=0.45 mm, CMOD=18 μm) and ζ=3.64 MPa (Pmax=51.2 kN, v=1.15 mm, CMOD=22 μm) for the 

steel loading/supporting cylinders (line contacts) and plywood loading/supporting boards (surface 

contacts), respectively. Thus, the splitting tensile strength was higher by about 10% for the plywood 

boards. Looking at the curve of the stress ζ versus CMOD (Fig.3.16A), initially, concrete elastically 

behaved up to 70% of the maximum tensile stress ζ and later slightly non-linearly up to the peak 

load. After the peak, the pronounced material softening occurred up to the residual state to failure. 

The residual stress was reached for ζ=2.3 MPa (plywood boards) and ζ=1.9 MPa (steel cylinder) 

for CMOD=110 μm. When considering the experimental splitting tensile stress - vertical piston 

displacement diagram ζ=f(v) (Fig.3.16B), the clear snap-back mode of failure occurred for v=1.15 

mm (plywood boards) and v=0.45 mm (steel cylinders), expressed by a simultaneous reduction of 

the stress and displacement. Shortly before the test end, the displacement v slightly increased due to 

the specimen de-fragmentation. 

 

In all tests, the main vertical macro-crack first occurred at the mid-height of the specimen in the 

central vertical zone (Fig.3.17). Then it propagated towards both the specimen top and bottom. 

Later depending upon the loading and support strip type it reached the top and the bottom of the 

specimen (Fig.3.17a) or branched to form a wedge directly under the plywood boards (Fig.3.17b). 

At the failure, the concrete specimen was divided into two halves. 
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Interfacial transition zones (ITZs) 

ITZs around particles were characterized by a porous structure as compared to the cement matrix 

(Fig.3.1.3). Their width varied between 10 μm and 25 μm. They appeared around all aggregate 

grains (da2 mm) and usually covered about 80-90% of the aggregate circumference (Fig.3.18A) 

that was caused by a formation of water lenses beneath aggregate grains during mixing (Wang 

2009). The width of ITZs was not connected with the aggregate diameter (Figs.3.18B-C).  

 

A) 

B) 
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Fig.3.16: Experimental curves for concrete specimens with diameter D=0.15 m): A) splitting tensile 

stress ζ=2P/(πDL) versus CMOD and B) splitting tensile stress ζ versus top vertical displacement v 

for 2 different loading systems: a) through steel cylinder and b) through plywood board (P - vertical 

force, L - specimen length) 

 

 

a)       b) 

 

Fig.3.17 Final crack pattern in concrete specimens after splitting tensile test with 2 different 

loading/supporting systems: a) through steel cylinder and b) through plywood board 

 

Micro-CT scans of fracture 

In order to measure more precisely the concrete porosity, a smaller concrete specimen (D=50 mm 

and L=60 mm) was cut out from the same concrete block and scanned by means of the 3D X-ray 

micro-tomograph Skyscan 1173 (Skarżyński et al. 2015) (Fig.3.19a). The particular phases of the 

concrete specimen (macro-voids, aggregate and cement matrix) are shown in Fig.3.19b 

(undamaged) and Fig.3.20A (damaged). The measured total volume of voids was p=3.2% and the 

measured volume of voids with the equivalent diameter dp<1 mm was p=1.6% (Fig.3.19c). 

 

The macro-crack images by means of the 3D x-ray micro-tomograph Skyscan 1173 are depicted in 

Fig.3.20 for the damaged specimen after the test (D=0.15 m, L=0.06 m). In order to obtain better 

accuracy in the X-ray micro-tomograph, the specimen width was diminished to 0.08 m after the test. 
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The particular phases are shown in Fig.3.20A. The macro-crack was curved along the vertical and 

horizontal plane due to a random presence of aggregate grains (Figs.3.20B-D). Sometimes it also 

propagated through macro-voids and aggregate. On the specimen front side, the macro-crack 

crossed e.g. 3 aggregate particles (Fig.3.21a). Please note that thus phenomenon occurred also under 

quasi-static conditions. The crack branching also occurred (Figs.3.22a b, specimen bottom). 

 

 A) 

a)     b) 

  B) 

a)     b) 
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 C) 

a)     b) 

 

Fig.3.18: Images of ITZs between aggregate and cement matrix in concrete specimen using SEM: 

A) view on arbitrary aggregate particle (continuous lines indicate no clear ITZs and dashed lines 

denote clear ITZs), B) view on aggregate particle of diameter da=2 mm and C) view on aggregate 

particle of diameter da=6 mm  (a) magnification factor 100x and b) magnification factor 1000x) 

The micro-cracks always initiated in ITZs along aggregate particles since they were the weakest 

phase in concrete (Fig.3.22a). When two interfacial cracks occurred around adjacent aggregates, a 

crack inside the cement matrix initiated to bridge the interfacial cracks so that a connected crack 

path was formed (Fig.3.22b). 

 

  

a)      b) 
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c) 

 

Fig.3.19: Results of μCT for concrete cylinder specimen with diameter of D=50 mm a) general 

view, b) voids and aggregate particles in specimen (blue colour denotes aggregate and green voids) 

and c) volume of pores p with different diameter dp (blue colour denotes micro-voids (dp<1 mm) 

and red colour denotes  macro-voids (dp>1 mm), dp - void equivalent diameter) 

 

A) 

a)   b)          c)           d) 
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B) 

         a)     b)       c) 

    C) 

a)     b)      c) 
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D) 

a)    b)    c) 

 

Fig.3.20: 3D μCT scan of concrete cylinder specimen with diameter of D=150 mm: A) view on 

specimen and phases (a) original scan, b) aggregate, c) cement matrix, d) voids and crack), B) 3D 

view on macro-crack (a) front view b) side view and c) top view (colours denote crack width wc; 

wc>200 μm (red colour), 50 μm≤wc≤200 μm (green colour) and wc<50 μm (blue colour))), C) 

vertical cross-sections (a) front surface, b) mid-length surface and c) rear surface) and D) horizontal 

cross-sections (a) mid-height, b) bottom and c) top) 
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a)      b) 

 

Fig.3.21: 3D μCT scan of concrete specimen (D=150 mm) with propagating macro-crack: 

a) specimen front surface and b) zoom on macro-crack crossing aggregate particles (blue – 

aggregate, yellow – cement matrix and green - voids and crack) 
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a)        b) 

Fig.3.22: Crack bridging mechanism on concrete front surface during laboratory test: a) initial 

micro-cracks in ITZs of 2 neighbouring aggregate particles (marked in red) and b) developed 

discrete macro-crack between 2 neighbouring aggregate particles (using manual microscope, 

magnification factor 100) 

 

The Digital Image Correlation (DIC) technique was applied to visualize a fracture process zone 

(FPZ) on the rear side of the concrete specimen. DIC is a well-known velocity measuring non-

invasive procedure, originally developed for fluid mechanics and used for the analysis of 

displacements in tests on soil and rock models (Rachenmacher&Finno 2004, Bhandari&Inoue 2005, 

Słomiński et al. 2007). It operates by tracking spatial variations of brightness within an image 

(divided into a mesh of patches) by comparing successive images so that displacement data can be 

extracted from sequences of images, and strains then calculated from gradients of measured 

displacements. The capability of DIC for measuring the shape and width of fracture process zones 

in concrete was confirmed in the experimental research results by Skarżyński et al. (Skarżyński et 

al. 2011, 2013a, 2013b). The digital camera Nikon D800 with the image resolution of 36 MPix was 

used. The images were taken every 2 seconds with the length resolution of 95 pixels/mm. The 

search patch of 15 pixels was used. FPZ appeared in the specimen mid-height at 80% of the peak-

force and increased vertically and horizontally almost up to the peak (Fig.3.23). Afterwards, a 

macro-crack started to form. In order to calculate the width of a localized zone wlz, the calculated 

particle displacements were fitted first by the error function ERF (Skarżyński et al. 2011): 
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2

0

2
( )

x

tERF x e dt
x

  .     (21) 

 

The halved error function evaluated at 
2s

x
 for the positive x-values gives the probability that the 

measurement under the influence of normally distributed errors with the standard deviation s has a 

distance smaller than x from the mean value. The fitting function parameter s in Eq.21 was used to 

determine the width of a localized zone wc. Based on experimental results regarding concrete beams 

(Skarżyński et al.  2011), the width wlz might be calculated from the equation wlz=4s. Thus, 95% of 

the values of the normal distribution function area were within the distance of 2s in the both 

directions from the mean value. The measured width of FPZ was about 3.41 mm (0.28×da
max

) just 

before the peak (later a macro-crack was created). 
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a)      b) 

 

 

c) 

 

Fig.3.23 Evolution of horizontal strain maps of εxx based on Digital Image Correlation (DIC) 

technique in concrete specimen mid-height during increasing vertical force P: a) 50% of Pmax, 

b) 90% of Pmax and c) before peak (98% of Pmax) for concrete specimen with plywood loading board 

(colours indicate strain magnitude, x - horizontal coordinate, y - vertical coordinate) 
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3.3 Tensile splitting tests with different specimen diameter 

Specimens and test procedure 

It was experimentally proven that a splitting tensile test is subjected to a size effect depending on 

the cylindrical specimen diameter (Fig.3.24) due to a non-uniform distribution of the tensile stress, 

caused by compression regions at the loading/supporting points. However, to the authors 

knowledge, no experimental data was published considering a brittleness increase with increasing 

diameter in Brazilian splitting test. Whereas, size effect is characterised by both the strength and 

ductility reduction with increasing specimen size. Therefore, the own experimental campaign was 

performed to measure the size effect both on strength and brittleness 

 

 

 

Fig.3.24: Relationship between maximum tensile stress ζ=2Pmax/(πDL) and specimen diameter D 

(in logarithmic scale) in splitting tensile tests on plain concrete from laboratory experiments: a) 

Bažant et al. (Bažant 1987), b) Hasegawa et al. (Hasegawa 1985), c) Carmona et al. (Carmona 

1998), d) Kadlecek et al. (Kadlecek 2002) and e) and f) Torrent (Torrent 1977) (continuous lines are 

trend lines) (P - vertical splitting force, D - specimen diameter, L - cylindrical specimen length) 

 

The experimental programme on splitting tensile with specimens of the diameter D=74, 100, 150, 

192 and 250 mm under the CMOD control were carried out (Fig.3.25). Two plywood board as 

loading strip were used and scaled proportionally with the specimen diameter. The strength and 
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ductility decreased with increasing specimen diameter. For large specimens D>100 mm, a clear 

snap-back occurred. The strain maps were obtained with digital image correlation DIC for various 

specimen sizes. During the test, a micro-cracking process was observed with the digital microscope. 

The interfacial transitional zones (ITZs) were investigated by scanning electron microscope. The 

specimens were sawed out from one concrete block with the dimension 200×200×20 cm
3
 after 28 

days from casting to obtain results independent of drying and shrinkage (Vorechovsky 2007). The 

concrete receipt was presented in Tab.3.1. The maximum aggregate diameter was 16 mm. The w/c 

ratio was equal to 0.77 and the sand point was 43.7%. 

 

Tab.3.1 Concrete mixture receipt for 1 m
3
 

 

Concrete mixture for 1 m
3
 

Ingredient Type Amount [%] Mass [kg] 

cement CEM III 42.5 N   230 

water mixing   176 

aggregate sand 0-2 45 817 

 
gravel 2-8 25 454 

  gravel 8-16 30 545 

admixtures MasterPolyheed219 0,7 1,61 

ash EDF     70 
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Fig.3.25: The specimens with plywood strips scaled proportionally with specimens diameter 

(b/D=const.) 

 

The specimens were loaded with loading/supporting strip according to europen codes []. The 

hardboard with the dimensions: b=10 mm and t=4 mm for D=150 mm (according to the European 

provisions) was used. For other diameters, the strips width b was proportionally scaled with the 

diameter (b/D=const.) to drop the influence of boundary conditions (Rocco 1999). 

 

The specimens were loaded with static loading machine ZWICK Roaller Z400. The CMOD 

measurements and test parameters were the same as in Section 3.2. The test was performed with 

CMOD-control to obtain the snap-back behaviour for large specimens. The CMOD-time 

relationship was perfectly linear in all tests (Fig.3.26). The CMOD rate was not scaled with the 

specimen diameter since the loading had a static character. 
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Fig.3.26: Relationship between crack opening CMOD and time t in experiments 

 

Results 

The tensile stress versus the normalised crack opening is presented in Fig.3.27. The clear decrease 

of strength with increasing diameter was observed. Also the large specimens were more brittle after 

the peak. The specimen of the diameter D=74 mm reached the average tensile strength of ζ=4.35 

MPa, for D=100 m - ζ=3.55 MPa, for the standard diameter D=150 mm - ζ=3.22 MP and for the 

largest diameter D=192 mm = ζ= 2.8 MPa. 

 

Figure 3.28 presents the evolution of the tensile stress ζ versus the normalized vertical displacement 

v/D for the different specimen diameter. The results‟ scatter decreased with increasing specimen 

diameter D. Apart from the decreasing strength, the brittleness increased significantly after the peak 

load was obtained. For the specimens D=74 mm and D=100 mm, it was characterised by the 

increasing displacement after the peak while for D=150 mm, D=196 mm and D=250 mm, by the 

decreasing displacement after the peak. 
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Fig.3.27: Tensile stress ζ versus CMOD in splitting tensile tests with various specimen  

diameter D 

 

The crack patterns are shown in Figure 3.29 for all tested specimens diameters. For the specimen 

D=74 mm with a higher peak load, the crack had two branches dividing a central part of the 

specimen from the other two halves (Fig.3.29Aa). For the second specimen with the same diameter, 

no wedges were observed under supports, however, a secondary crack occurred at the right top of 

the specimen at the circumference (Fig.3.29Ab). For the rest of the specimens, a single crack 

occurred with characteristic wedges under loading/supporting strips. The larger specimen diameter 

was, the less crack was curved. 
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Fig.3.28: Tensile stress ζ versus v/D in splitting tensile tests for different specimen diameter 

 

Micro-CT scans of fracture 

One specimen of each diameter was scanned with micro-CT before loading. Then the specimen was 

loaded until CMOD=200 μm and scanned again. The mid-sections of the specimen D=74 mm were 

carefully analysed and compared with the undamaged state.  

 

The basic three phases of concrete were determined from 3D micro-CT images (Fig.3.30a): 

aggregate (Fig.3.30b), cement matrix (Fig.3.30c) and voids (Fig.30d). Moreover, the aggregate size 

distribution and pores structure were analysed. The segmentation was performed with the CTAn 

1.17.7.2 software delivered by the firm SkyScan Bruker (the producer of the micro-tomograph). 

The bottom and top threshold used for each phase was: 0-63 (pores and cracks), 63-112 (cement 

matrix) and 112-255 (aggregate). After thresholding, fine particle “despeckle” was used to remove 

the objects finer than 10 voxels (in volume) except pores. 
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A) 

B) 
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C) 

D) 
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E) 

 

Fig.3.29: The crack patterns for specimens diameters A) D=74mm, B) D=100 mm, C) D=150 mm, 

D) D=192 mm and E) D=250 mm for each tested specimen 

 

 

  

a)      b) 
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c)      d) 

 

Fig.3.30: 3D image of small specimen with dimater of  D=74 mm before test: a) original image and 

visible phases, b) aggregate, c) cement matrix and d) voids 

 

The crack surfaces of all specimens were segmented and the cracks‟ volume was determined. Some 

cracks were connected with inner pores during fracture what increased the cracks‟ volume. For the 

specimen D=74 mm, the main crack was the most curved (Fig.3.31a). The crack did not crush 

aggregate particles. The total crack volume was V=117.10 mm
3
 and the average crack width was 

w=0.19 mm. The crack in the specimens D=150 mm and D=250 mm was less curved and exhibited 

typical wedges oat the specimens top and bottom under the loading/bearing strips (Fig.3.3.1b-c). 

The crack volumes were V=103.53 mm
3
 and V=78.74 mm

3
 and the average crack widths 

w=0.086 mm and w=0.039 mm for the specimens D=150 mm and D=250 mm. Moreover, in the 

specimen D=250 mm, the crack had a few fine branches in the zones ahead of wedges (Fig.3.31c). 

The crack volume and average crack width decreased with increasing specimen diameter. In the 

specimens with D>74 mm, the crack intersected 6 (D=150 mm) and 11 aggregate particles 

(D=250 mm). 
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a)     b)    c) 

 

Fig.3.31: 3D image of crack for specimens: a) D=74 mm, b) D=150 mm and c) D=250 mm 

 after test 

 

The cracks are also presented in Fig.3.32 with the marked thickness. The image was segmented in 

CTAn and exported to CTvox in 4 files representing each structure thickness (red w>0.2 mm, green 

0.2 mm > w > 0.1 mm and blue 0.1 mm > w > 0.05 mm). It was extremely difficult to segment 

cracks finer than 0.05 mm (50 μm) since they were close to the used image resolution. The higher 

thickness of the crack for specimen D=74 mm was clearly visible as the red colour dominated over 

the others in the almost entire specimen (Fig.3.32a). The crack in the specimen D=150 mm was 

typical for splitting tension with the largest width in the specimen mid-height. Clear wedges both at 

the specimen top and bottom occurred (Fig.3.32b). In the specimen D=250 mm, the crack width 

was non-uniform with a high crack opening at the 3/4 height and wide opening on the front side 

(Fig.3.32c). 
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a)     b)     c) 

 

Fig.3.32: 3D images of crack for specimens: a) D=74 mm, b) D=150 mm and c) D=250 mm after 

test (the colours represent crack width: red w>0.2 mm, green 0.2 mm > w > 0.1 mm  

and blue 0.1 mm > w > 0.05 mm) 

 

Size effect 

During the experimental campaign, the clear size effect occurred with respect to strength (Fig.3.33) 

and brittleness (Fig.3.34). The strength decreased the most for small specimens from ζ=4.4 MPa 

(D=74 mm) to ζ=3.6 MPa (D=100 mm), so by 15%. The strength decreas was the smallest for 

largest specimens (by only 3% between D=192 mm and D=250 mm). The brittleness was defined 

the angle between horizontal axis and the stress-strain curve in a counter-clockwise direction. The 

relation of brittleness to the diameter was opposite with very similar trend (Fig.3.34), however the 

angle α change by 9% (between D=74 mm and D=100 mm) and 5% (between D=192 mm and 

D=250 mm). 

 

The results of own experiments on splitting tension were compared with the size effect law by 

Bažant‟s (SEL type I for unnotched specimens). The parameters of the size effect were calibrated 
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with a regression at the point D=150 mm and corresponding mean strength of ft=3.13 MPa: B=5.40 

and D0=5.39 (Fig.3.35). The experimental results were in good agreement with theoretical solution 

except of the largest specimen D=250 mm, where the strength‟s reduction was smaller by 30% than 

the one predicted by SEL. 

 

 

 

Fig.3.33: Experimental results of tensile strength ζ against specimen diameter D (dots) and mean 

value trend (dashed line)  
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Fig.3.34: Softening parameter α versus specimen diameter D (dots) and  

mean value trend (dashed line) 

 

 

 

 

Fig.3.35: Comparison between experiments and SEL type I by Bažant (1987):  tensile strength ζ 

versus specimen diameter D  

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


88 Chapter 3 - 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


89 APPENDIX 1DEM model for concrete 

 

Chapter 4 

DEM model for concrete 

The discrete element method (DEM) was chosen due to its evident advantages in studying a meso-

scale concrete behaviour at the aggregate level (Skarżyński et al. 2005). In general, DEM has the 

following advantages: 

 

1) DEM can directly simulate the materials‟ heterogeneous meso- or micro-structure by taking into 

account different material phases, their random properties and distributions. 

2) DEM is an effective tool for deep studies of fracture including initiation, growth and propagation 

of micro-cracks (strain localization) and discrete macro-cracks.  

3) DEM may be used for effective calibration of continuum models for concrete with respect to a 

characteristic length of micro-structure, crack opening width, instant formation of a discrete macro-

crack, effective elastic and inelastic parameters, damage evolution rule, fracture toughness and 

micro- and macro-cracking. 

 

The shortcomings of DEM are: 1) the enormous calculation times due to a huge number of discrete 

elements to properly reproduce the meso-structure of materials and 2) the difficulties with respect to 

calibration due to the lack of suitable meso-scale laboratory experiments. In this thesis, the 2D and 

3D material meso-structure was mainly obtained by very advanced micro-tomography system. 

 

DEM comes from molecular dynamics methods used in physics since the early 50. The original 

DEM was formulated by Cundall and Strack (1979). Next, it was successfully used in analyses of 

different particulate materials in the powder, mining, milling, pharmacy, ceramics and composite 

industry et ca. (Fleissner et al. 2007, Ketterhagen et al. 2009, Nosewicz et al. 2013, 2019). DEM 

considers a material as consisting of particles interacting with each other through a contact law and 

Newton‟s 2nd law via an explicit time-stepping scheme. Outstanding advantages of DEM include 

its ability to explicitly handle the modelling of particle-scale properties including size and shape 

which play an important role in the concrete fracture behaviour (Donze et al. 1999). DEM does not 

use a set of differential or integral equations for describing the problem (in contrast to FEM). The 

discrete calculations may generally use two types of particles: hard particles and soft particles. The 

hard-particle approach makes an assumption of the contact duration time equal to zero, perfectly 

corresponding to the kinetic theory of instantaneous contacts. This approach may fail numerically 

with the „inelastic collapse‟ (McNamara and Young 1994) when the time between particle collisions 
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is very small and the contacts density is very low (or contacts are constant). This assumption is true 

for gases, some fluids or sparse (non-dense) granular media wherein collisions are rare. For solids, 

it is rather incorrect as contacts take usually finite times and they are not discrete events. There are 

numerical methods of handling inelastic collapse problem, however, they always need to be 

validated with soft-particle DEM (Luding 2008). The hard-particle approach is very time-efficient 

as the integration time may be as large as the time between collisions by introducing the event-

driven scheme. The soft-particle approach is more commonly used and is not limited to short-

lasting contacts. Therefore, the soft-particle approach may be used in complex discrete systems with 

multiple long-lasting contacts. The rigid particles in this approach may deform during the contact 

existence. The deformation is usually realised as a particles‟ overlap and rarely as particles‟ 

deformation. The forces are calculated for each contact based on a force-displacement relationship 

that defines the contact stiffness. The disadvantage of soft-particle approach is a very small time 

step necessary to correctly integrate numerically the equations of motion, resulting in a huge 

calculation cost (Ketterhagen et al. 2009). 

 

The motion equations of DEM are: 

 

* ,i n i j

i i i i x i x xm x c x f m g F                                                    (22) 

* ,i n i j

i i i i y i y ym y c y f m g F   
    (23) 

2 ,0.5 i n i j

i i i i i A AmR d f M    
    (24) 

 

where mi is the particle mass, ci is translation and di rolling damping coefficient, gx and gy stand for 

gravity acceleration, f are the external translation (fx, fy) and angular (fA
i
 ) forces acting on the 

sphere, x  and x  are the normal acceleration and velocity and  and   stand for the angular 

acceleration and velocity. Fx and Fy are the internal forces acting on the sphere and MA is the 

internal momentum. 

 

The simplest discrete approach used for concrete modelling is a truss-model where every interaction 

connecting a pair of particles transmits translational degrees of freedom (Kosteski and Iturrioz 

2013). The rods are removed when cracking occurs. To better reproduce the material softening, 

beams instead of rods have to be used that include also rotational degrees of freedom (Schlangen 

and Garboczi 1997, Kozicki and Tejchman 2008, Tran  et al. 2007, 2011). The introduction of 

different phases with various strengths supports a non-linear behaviour and provides more realistic 
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results with respect to the post-peak material behaviour (Kozicki 2007, Kozicki and Tejchman 

2008).  

 

4.1 Calculation procedure 

The calculation procedure of DEM is simple and correspond to explicit solutions in FEM. First, the 

bodies are defined with their position (x,y,z), shape (for spheres defined with one variable - radius 

R) and material parameters (like mass density m). After that, the initial forces existing in a discrete 

system from the previous step are reset. Then, based on the geometry, the particle interactions are 

found for every pair of overlapping particles. If new interactions appear, they are updated. 

According to the contact material law, the tangential and normal forces are computed. After that the 

additional forces like gravity or  connected with boundary conditions are added. The forces are 

generalised for each discrete particle. After that, through second Newton‟s law of motion, the 

acceleration a of each particle is calculated simply as a=F/m (where F is force vector). Then owing 

to the equations of motion integration, the velocities and displacements are calculated and applied 

for each particle. This loop (Fig.4.1) is being repeated with a small time increment up to the 

simulation end. 

 

 

 

Fig.4.1: Typical simulations‟ loop (each step begins with “bodies” and  continues clockwise with 

time increment update) (Smilauer et al. 2015) 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


92 Chapter 4 - DEM model for concrete 

 

 

The deformation of particles is assumed as very small as compared with the entire deformation 

system, therefore the particles move as rigid bodies and may overlap according to their size. For a 

simple contact of two discs (marked as particle „1‟ and „2‟) approaching to each other with a 

constant velocity v in time steps Δt, small enough that the discs cannot pass through each other and 

the overlap increment can be calculated as Δn=vΔt (Fig.4.2). Knowing the positions of both discs 

A1(x1,y1) and A1(x2,y2), the contact point may be calculated as the mid-point between the discs‟ 

positions. The relative displacement Δn is connected through a force-displacement law (Fig.4.2.2) 

with contact force with the following expression: 

 

                                                                
n nF k n   ,              (25) 

 

where kn represents the normal contact stiffness related to the contact Young modulus Ec, Poisso‟s 

ratio ν and disc radii R1 and R2 and ΔFn is the increment of the normal force. Assuming the positive 

direction of the force from the element „1‟ to the element „2‟, the forces acting on each particle are: 

 

                                                       
1x nF k n   and 

1y nF k n   .      (26) 

 

The forces in Eq.26 allow for determining the new accelerations using the second Newton‟s law as: 

 

1 (1) 1/xx F m
 and (2) 21 /y F m

,     (27) 

 

where 1x  and 
1
y  represent 2‟  the accelerations of the discs „1‟ in the direction of the applied 

velocity v and m1 and m2 stand for the particles masses. The accelerations calculated by those 

equations are assumed to be constant over the small time step Δt. By transformation and 

simplification (no gravity, no external forces, no moments) of the general DEM equations of motion 

(Eq.22-24) the accelerations may be integrated to compute the velocities 1[ ]x  and
1

[ ]y  as: 

 

                                
1 (1) 1[ ] [ / ]xx F m t 

and (1) 11[ ] [ / ]yy F m t 
.    (28) 
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Afterwards, the relative displacements increments 
( )in at the contact i=A, B and C may be 

calculated with another integration in time: 

 

( ) (1) 1( [ / ] )A xn v F m t t    
     (29) 

( ) (1) 1 (2) 2([ / ] [ / ])B x xn F m t F m t    
,   (30) 

( ) (2) 2([ / ] [ ])C xn F m t v t     
,     (31) 

 

where 
( )in  is taken as positive for compression. The cycle is repeated for a large assembly of 

particles in each existing contact until a final solution is obtained. 

 

 

Fig.4.2: Simple elastic interaction with normal and tangential contact stiffness 

 

The geometry and contact model are the most important parts of DEM simulation of the material 

response. The contact model may be the same or miscellaneous for normal, tangential (forces) and 

rotational degrees (angular moments) of freedom. For the same contact model, various material 

parameters may be used to simulate different materials. There are different approaches foe the 

contact treatment in DEM. The first one postulates that the contact area is proportional to the size of 

interacting spheres and is not dependent on the force transmitted. The second one is more realistic 

and takes into account the particles‟ deformation (Rojek et al. 2000). The contact surface is then 

proportional to the force acting between the particles. 

 

The DEM calculations in this thesis were performed with the three-dimensional spherical discrete 

element model YADE which was developed at the University of Grenoble (Kozicki et al. 2008, 

Kozicki 2009). The 3D spherical discrete element method takes advantage of the so-called soft-
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particle approach (i.e. the model allows for particle deformation that is modelled as an overlap of 

particles). During the simulations, particles may overlap that can be interpreted as a local contact 

deformation. The model was successfully used for describing the behaviour of granular materials by 

taking shear localization into account (Widuliński et al. 2011, Kozicki et al. 2012, 2013, 2014, 

Kozicki and Tejchman 2017, 2018). It demonstrated also its usefulness for fracture simulations in 

concrete (Skarżyński et al. 2015, Nitka and Tejchman 2018, Suchorzewski et al. 2018a, 2018b, 

2019). In our calculations of concrete, the contact moments were neglected. 

 

4.2 Contact law 

The material models used for concrete modelling in DEM are usually complex as they intend to 

describe a fracture process independently of the meso-structure of concrete. Thus, they homogenise 

the material properties that change with developing fracture (stiffness, strength, plasticity). Rocha et 

al. (1991) proposed a bilinear constitutive law for a truss-like DEM model. This constitutive law 

aims to capture irreversible effects of crack nucleation and propagation by accounting for the 

reduction in the element load carrying capacity (Kosteski et al. 2010). The integration under the F-ε 

curve OAB represents the energy density causing fracture in single elements and its surrounding. 

The energy under curve OPC is reversible elastic energy while AOP is the dissipated energy due to 

fracture (Fig.4.3a). The bilinear model was then developed to take into account elasto-plasticity, 

resulting in a tri-linear constitutive model (Fig.4.3b). The dissipated energy is associated not only 

with the fracture energy as in the bi-linear model but also with the energy dissipation due to the 

plastic deformation (Kosteski et al. 2010). 

 

 

a)      b) 

Fig.4.3: Constitutive models for concrete a) bilinear and b) tri-linear (Kosteski 2010) 
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Another approach for concrete constitutive model in DEM was introduced by Tran et al. (Tran 

2010) and Poinard et al. (Poinard 2011). It splits the constitutive relations into tensile and 

compressive components. The model introduces an additional softening parameter ζ in tension that 

decreases stiffness after the maximum tensile force is obtained (Fig.4.4). In compression, 

compaction of particles is taken into account, as this behaviour happens below the level of the used 

discretization. 

 

 

 

Fig.4.4: Normal contact force law by Tran et al. (2010) 

 

The other approach for concrete interaction was developed by ITASCA Consulting Group in the 

commercial Particle Flow Code (PFC). It uses simple force-displacement relationships and 

introduces additional springs (Fig.4.5). The single springs may be broken in different calculations 

steps what increases ductility with keeping the material law linear with a limit in tension and bi-

linear in shear. The particles in PFC may move in normal, tangential and angular directions. The 

rotations cause additional moments (Cho et al. 2007). 
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Fig.4.5: Normal contact law by Cho et al. (2007) 

 

The model used in this thesis is the simplest possible for concrete modelling. A linear normal 

contact model under compression was used. The interaction force vector representing the action 

between two spherical discrete elements in contact was decomposed into a normal and tangential 

vector, respectively. The normal forces acting on spheres were modelled by an elastic law with 

cohesion. The normal and tangential forces were linked to the displacements through the normal 

stiffness Kn and the tangential stiffness Ks (Fig.4.6a-c) (Kozicki&Donze 2008) 

 

                                                                          NUK=F nn


,                                                        (32) 

                                                                   
ssprevs,s XΔK+F=F


,                                                 (33) 

 

where U is the overlap between spheres,  denotes the normal vector at the contact point, X


  is 

the increment of the relative tangential displacement and prev,sF


 is the tangential force from the 

previous iteration. The stiffnesses Kn and Ks were computed as the functions of the modulus of 

elasticity of the grain contact Ec and two neighbouring grain radii RA and RB (to determine the 

normal stiffness Kn) and the modulus of elasticity Ec and Poisson‟s ratio υc of the grain contact and 

two neighbouring grain radii RA and RB (to determine the tangential stiffness Ks), respectively 

(Kozicki&Donze 2008) 

 

                       
BA

BA
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RR

RR
EK



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                       and                  
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

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 .                      (34) 
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If two grains in contact have the same size (RA=RB=R), the numerical stiffness parameters are equal 

to: Kn=EcR and Ks=υcEcR, respectively (thus Ks/Kn=υc). A simple linear elastic contact law was 

assumed in normal contacts. The contact forces sF


 and nF


 satisfied the cohesive-frictional Mohr-

Coulomb equation (Fig.4.6d) 

 

                                       
0 tanFFF n

s

maxs



           (before contact breakage)                   (35) 

and 

                                           
0tan  ns FF



           (after contact breakage),                         (36) 

 

where μ denotes the inter-particle friction angle and 
s

maxF  is the cohesive force between spheres. 

The normal force might be negative down to the minimum value of 
n

minF  (tension) if there was no 

a geometrical contact between elements. If this minimum normal force between spheres  was 

reached, the contact was broken. Moreover, if any contacts between grains re-appeared, cohesion 

between them was not taken into account. A crack was considered as open if cohesive forces 

between grains (Eqs.35 and 36) disappeared when a critical threshold was reached. The movement 

of fragments (mass-spring systems with cohesion) was similar to the rigid body movement. A 

choice of a very simple constitutive law was intended to capture on average various contact 

possibilities in real concrete. The cohesive force and tensile force were assumed as a function of the 

cohesive stress C (maximum shear stress at pressure equal to zero), tensile normal stress T and 

sphere radius R (Kozicki and Donze 2008) 

 

                                    
2RCF s

max                        and                           
2RTF n

min  .           (37) 

 

For two elements in contact, the smaller values of C, T and R were used. A local non-viscous 

damping scheme was applied in order to dissipate excessive kinetic energy in a discrete system. The 

damping parameter αd was introduced to reduce the forces acting on the spheres 

 

                                                         |F|)vsgn(FF kk

d

kk

damped


  ,                               (38) 

 

where kF


are the k
th

-components of the residual force and translational velocity, respectively. 

A positive damping coefficient αd was smaller than 1 (sgn(•) returns the sign of the k
th

 component of 

n

minF
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velocity). The equation could be separately applied to each k
th

 component of the 3D vector x, y and 

z. Note that material softening was not assumed in advance in the DEM model. 

 

The particles may have complex shapes in DEM calculations. The geometry definition may be 

realized by an analytical description (Fig.4.7) of the particle geometry or by connecting spheres in 

clusters (Fig.4.8). Thus, multiple shapes may be reproduced with DEM in order to faithfully 

reproduce the particles‟ shapes. In the thesis, the second approach was used to take the realistic 

geometry of aggregates and voids in concrete. The spheres were connected into the clusters of 

spheres as the rigid bodies. The radius of the clump was taken into account while calculating the 

contact stiffness and strength (cohesion forces between aggregate and cement matrix particles. 

 

a) b) 

c) d) 
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Fig.4.6: Mechanical response of DEM: a) tangential contact model, b) normal contact model, c) 

loading and unloading path in tangential contact model and d) modified Mohr-Coulomb model 

(Nitka and Tejchman 2015) 

 

 

Fig.4.7: Shapes created in DEM with mathematical description (RockDEM 2018) 
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Fig.4.8: Shapes created by assembling clusters of spheres (clumps) to describe sand grains  

(Kozicki et al. 2012) 
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101 APPENDIX 1DEM calculations 

 

Chapter 5 

DEM calculations 

The numerical simulations of own experiments on concrete (uniaxial compression and splitting 

tension) were performed with DEM. In addition, uniaxial tension was analyzed. The concrete 4-

phase meso-structure was mainly obtained by means of a X-ray micro-computed tomography 

system (Skarżyński and Tejchman 2016, Skarzyński et al. 2019). 

 

5.1 Uniaxial compression  

Preliminary calibration tests  

The first numerical simulations were performed for uniaxial compression (Suchorzewski et al. 

2018a). In order to study the effect of some DEM parameters on the concrete behaviour, some 

preliminary calculations on uniaxial compression and uniaxial tension tests under 2D conditions 

were carried out. Two physical parameters (the number of ITZs expressed by the minimum 

aggregate diameter with ITZs da(ITZ)
min

 and the strength of ITZs expressed by the ratio CITZ/Ccm) and 

one numerical parameter (minimum sphere diameter in the cement matrix dcm(min) were investigated. 

The strain-strain evolution results were compared with the corresponding tests by van Vliet and van 

Mier (2000) and van Mier et al. (1986). The 2D specimens were quadratic 100×100 mm
2
 

(compression) or had a dog-bone-shape 150×100 mm
2
 (tension). Only the spheres were used for 

simulation of the cement matrix and aggregate (Fig.5.1). The sphere minimum diameter was 

dmin=0.25-1.0 mm. The aggregate sieve curve was the same as in the experiment: da
max

=12 mm in 

compression and da
max

=8 in tension. The spheres with the da=0.4-2 mm were treated as the 

aggregate grains with ITZs and the spheres with dcm<0.4-2 mm as the cement matrix particles. The 

particle area was 75%. The cement matrix grains filled the concrete specimen in 95% (Nitka and 

Tejchman 2015). The macro-voids (d>0.5 mm) were assumed in a random way as the empty spaces 

(their volume/area was 2% of the specimen volume/area). The main DEM parameters were the 

same as those in Section 2. The ratio of TITZ/Tcm was always the same as the ratio of CITZ/Ccm (=0.5). 

The top and bottom boundaries were very smooth (i.e. horizontal displacements were free). Figs.5.2 

and 5.3 show the results for uniaxial tension and Figs.5.4 and 5.5 for uniaxial compression (stress-

strain curves and cracked specimens). 
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a)       b) 

 

Fig.5.1: Concrete 2D specimens (dcm
min

=0.25 mm) during: a) uniaxial compression and b) uniaxial 

tension (white colour - macro-voids, green colour - aggregate with da≤ 2  mm and ITZs, blue colour 

- cement matrix with 1 mm ≤ dcm<2 mm and grey colour - cement matrix with  

0.25 mm ≤ dcm<1 mm) 
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B) 

C) 

 

Fig.5.2: Stress-strain curves ζ=f(ε) for uniaxial tension from 2D DEM (ζ - vertical normal stress 

and ε - vertical normal strain): effect of: A) minimum sphere diameter including ITZs (a) 

experiment, b) da(ITZ)
min

 >2 mm, c) da(ITZ)
min

 >1 mm, d) da(ITZ)
min

 >1.6 mm, (e) da(ITZ)
min

 >1.2 mm, f) 

da(ITZ)
min

 >0.8 mm, g) da(ITZ)
min

 >0.4 mm, B) ratio CITZ/Ccm (a) experiment, (b) CITZ/Ccm =0.3, (c) 

CITZ/Ccm =0.4, (d) CITZ/Ccm =0.5, (e)  CITZ/Ccm =0.6, (f)  CITZ/Ccm =0.7, C) minimum sphere diameter 

in cement matrix (a) experiment, b) dcm
min

 =0.75 mm, c) dcm
min

 =0.5 mm and d) dcm
min

=0.25 mm (red 

colour - experiments by van Vliet and van Mier 2000 
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A) 

B) 

C) 

a)     b)     c) 
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Fig.5.3: Cracked concrete specimens for uniaxial tension from 2D DEM with displacements 

magnified by factor 20 (ε=0.04%): A) minimum sphere diameter with ITZs a) da(ITZ)
min

>2 mm, b)  

da(ITZ)
min

>1 mm, c) da(ITZ)
min

>1.6 mm, B) ratio CITZ/Ccm a) CITZ/Ccm=0.7, b) CITZ/Ccm=0.6, c) 

CITZ/Ccm=0.5, C) minimum sphere diameter in cement matrix a) dcm
min

=0.75 mm, b) dcm
min

=0.5 mm, 

c) dcm
min

=0.25 mm 

 

All calculated 2D stress-strain curves during tension were too brittle as compared to the 

experimental one. The reason was the lack of 3D calculations and the minimum cement particles 

dcm
min

 were too large (Nitka and Tejchman 2015). By increasing the minimum sphere diameter with 

ITZs from 0.4 mm up to 2 mm, the ratio CITZ/Ccm from 0.2 up to 0.6 and the minimum sphere 

diameter in the cement matrix from 0.25 mm up to 0.75 mm, the peak tensile stress increased from 

2.5 MPa up to 4 MPa (Fig.5.2A), from 1.6 MPa up to 4.5 MPa (Fig.5.2B) and from 3 MPa up to 4.5 

MPa (Fig.5.2C). The material ductility became larger mainly with decreasing ratio CITZ/Ccm. For the 

specimen with larger spheres including ITZs, the cracks were obviously less curved (Fig.5.3A) and 

the number of broken contacts decreased by 0.5%. A decrease of the ratio CITZ/Ccm increased the 

number of micro-cracks (Fig.5.3B); the number of broken contact increased by 1.4 %. When 

reducing the minimum sphere diameter of the cement matrix, more cracks appeared (Fig.5.3C) and 

the number of broken contacts increased by 2%.  
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A) 

B) 

C) 

 

Fig.5.4: Stress-strain curves ζ=f(ε) for uniaxial compression from 2D DEM (ζ - vertical normal 

stress and ε - vertical normal strain): effect of: A) minimum sphere diameter with ITZs (a) 

experiment, b) da(ITZ)
min

>4 mm, c) da(ITZ)
min

>2 mm, d) da(ITZ)
min

 >1.6 mm, e) da(ITZ)
min

 >1.2 mm, f) 

da(ITZ)
min

 >0.8 mm, g) da(ITZ)
min

 >0.4 mm, B) ratio CITZ/Ccm (a) experiment, b) CITZ/Ccm=0.3, c) 

CITZ/Ccm=0.4, d) CITZ/Ccm=0.5, e) CITZ/Ccm=0.6, f) CITZ/Ccm=0.7 and C) minimum sphere diameter in 

cement matrix (a) experiment, b) dcm
min

 =0.75 mm, c) dcm
min

 =0.5 mm, d) dcm
min

 =0.25 mm (red 

colour - experiments by van Vliet and van Mier 2000) 
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A) 

B) 

C) 

a)                                              b)                                          c) 

 

Fig.5.5: Cracked concrete specimens for uniaxial tension from 2D DEM with displacements 

magnified by factor 20 (ε=0.25%): A) minimum sphere diameter with ITZs (a) da(ITZ)
min

>2 mm,  

b) da(ITZ)
min

>1.6 mm, c) da(ITZ)
min

>1 mm), B) ratio CITZ/Ccm a) CITZ/Ccm=0.8, b) CITZ/Ccm=0.6,  

c) CITZ/Ccm=0.4 and C) minimum sphere diameter in cement matrix a) dcm
min

 =0.75 mm,  

b) dcm
min

=0.5 mm and c) dcm
min

 =0.25 mm 

 

During compression by increasing the minimum sphere diameter with ITZs from 1.4 mm up to 

3 mm, the ratio CITZ/Ccm from 0.2 up to 0.8 and the minimum sphere diameter in the cement matrix 

from 0.25 mm up to 0.75 mm, the peak stress increased from 30 MPa up to 45 MPa (Fig.5.1.4A), 

from 35 MPa up to 45 MPa (Fig.5.1.4B) and was about 42 MPa (Fig.5.1.4C). The material ductility 

increased when increasing minimum sphere diameter in the cement matrix dcm
min

 (Fig.5.1.4C). The 
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number and distribution of cracks did not change with varying minimum sphere diameter with ITZs 

(Fig.5.1.5A). The decrease of the ratio CITZ/Ccm  produced more cracks (that were mainly straight 

cracks) (Fig.5.1.5B). More inclined wide cracks occurred for the minimum sphere diameter of the 

cement matrix dcm
min

=0.75 mm and more straight cracks occurred for dcm
min

=0.25 mm (Fig.5.1.5C). 

The most contacts were obviously broken for dmin=0.25 mm. 

 

In summary, the investigated parameters (2 physical and 1 numerical) had a pronounced effect on 

the concrete behaviour (strength, brittleness, cracking). The most realistic DEM results were 

obtained for da(ITZ)
min
1.6 mm, CITZ/Ccm=0.5 and dcm

min
=0.25 mm during tension and 

da(ITZ)
min
2 mm, CITZ/Ccm=0.5 and dcm

min
=0.25 mm during for compression. 

 

2D calculations with real meso-structure 

Figures 5.6b and 5.6c present the vertical cross-sections of 50×50 mm
2
 of the concrete specimen 

(front side and mid-depth section) with the real aggregate distribution of Fig.5.6 modelled either by 

clusters of spheres and by spheres with the equivalent area based on the 3D micro-CT scans of 

Fig.5.6a. The minimum cement matrix particles was dcm
min

=0.1 mm. The calculated stress-strain 

curves are demonstrated in Fig.6.1.1.2A (Ec,cm=11 GPa, Ccm=140 MPa, Tcm=22.5 MPa, Ec,ITZ=8.8 

GPa, CITZ=70 MPa and TITZ=11.25 MPa, Section 3). The number of broken contacts imitating the 

crack propagation is described in Fig.5.7B. Figure 5.8 presents the cracked specimen with broken 

contacts marked in red. 
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B) 

a)     b)     c) 

 

Fig.5.6 2D micro-structure of concrete vertical-sections of 50×50 mm 2 (front side (A) and mid-

depth section (B): a) experiments (μCT image, specimen „3‟) and DEM with aggregate modelled as: 

b) clusters of spheres and c) spheres with equivalent cross-sectional area and position (green colour 

- aggregate  da(ITZ)
min

 >2 mm with ITZs, grey colour - cement matrix and  

black colour - macro-voids) 

 

The calculated curves are in satisfactory agreement with the experimental ones with respect to the 

modulus of elasticity and strength (Fig.5.7A). They are also close to the experimental curve „1‟ with 

respect to the specimen brittleness. As compared to the curve „2‟, they are too ductile. The strength 

was larger by 10% for spheres than for clusters of spheres due to stress concentrations for the real 

aggregate with sharp edges that contributed to the smaller strength and faster cracking. Initially, the 

number of broken contacts was higher for irregularly shaped aggregate particles and later for round 

particles (Fig.5.7 B). The stress evolution was thus connected to the number of broken contacts (the 

larger the peak stress, the smaller was the number of broken contacts). According to Kim and Abu 

Al-Rub (2011) using a meso-scale FE model, the aggregate shape had a weak effect on the ultimate 

strength of concrete and on the strain to damage-onset but significantly affected the crack initiation, 

propagation and distribution. The stress concentrations at sharp edges of polygonal particles caused 

that the ultimate tensile strength and strain at the damage onset were the highest for circular grains 

model. The same conclusions were derived by He et al. (2009) and He (2010) using a similar 

approach. Skarzynski and Tejchman (2013) indicated in FE analyses that the effect of the aggregate 

shape on the strength was strongly connected with the grain size distribution curve. 

 

3D calculations with random meso-structure 

The 3D DEM calculations were performed with aggregate particles simulated as spheres located in 

the specimen at completely random positions. In order to shorten the calculation time, the minimum 
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sphere diameter in the cement matrix was dcm
min

=0.75 mm (instead of dcm
min

=0.1 mm). The initial 

macro-void volume was 4.25%. The calculated stress-strain curve as compared to the experimental 

curve is shown in Fig.8A (Ec,cm=11 GPa, Ccm=140 MPa, Tcm=22.5 MPa, Ec,ITZ=8.8 GPa, CITZ=70 

MPa and TITZ=11.25 MPa, Section 5.1). Figure 5.8B shows the porosity change (defined as the ratio 

between the void space volume and the total specimen volume). The change of the broken contacts 

is depicted in Fig.5.8C. 

 

The calculated 3D strength was too high by 10% only (Fig.5.8A). The calculated strain 

corresponding to the peak stress was also too large (ε=0.02% against ε =0.015%) (Fig.5.8A). The 

calculated softening rate was similar as in the experiment for the specimen '2' and too weak as 

compared with the specimen '1'. The specimen after the initial compaction was subjected to 

dilatancy due to cracking (Fig..5.8B). The calculated porosity changed its volume from the initial 

value of p0=4.25% up to p=4.4% in the strain range up to the peak stress, ε =0-0.2% (in the 

experiment from p=4.47% up to p=4.85% for ε =0-0.12%) and up to p=6-7% in the range of ε =0-

0.4%. The number of broken contacts was significantly higher (by 40%) in 3D calculations 

(Fig.5.8C) than in 2D calculations (Fig.5B). 
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Fig.5.7: 2D DEM results: A) calculated stress-strain curves ζ=f(ε) ('d'-'g') as compared to 

experiments (curves 'a', „b‟ and „c‟ of Fig.1) and B) relative change of contact number with respect 

to initial state (d) curve for real aggregate (clusters of spheres) on specimen front side, e) curve for 

real aggregate (clusters of spheres) in specimen mid-depth section, f) curve for real aggregate 

(spheres) on specimen front side and g) curve for real aggregate (spheres)  

in specimen mid-depth section 
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B) 

C) 

Fig.5.8: 3D DEM results for spheres at random position in concrete specimen: A) stress-strain 

curves ζ=f(ε) (a-c) experiments for specimens '1'-„3‟ and d-e) calculations) and B) porosity change 

p=f(ε) and C) relative change of contact number with respect to initial state n=f(ε) 

 

Meso-scale phenomena 

The calculated crack pattern with clusters composed of spheres on the specimen front surface 

(Fig,5.9Ab) was approximately similar as in the experiment (Fig.5.9Aa). In DEM, both the main 

experimental cracks appeared in the same regions (right part and central part). The calculated crack 
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at the right edge side did not obviously propagate through a small aggregate grain. However, a 

further crack shape was realistically reproduced including branching around two grains at the 

specimen. The calculated central crack also occurred at the same position. The width of the 

calculated main crack on the right side of the specimen was w=0.22 mm (clusters of spheres) and 

w=0.20 mm (spheres) (in the experiment the width was w=0.18 mm). The calculated small cracks 

on the left side were not visible in micro-CT-scans since the specimen was subjected to unloading 

for scanning purposes. However, they were observed during deformation with the manual digital 

microscope. The calculated crack pattern with spheres was different (Fig.5.9Ac) than this with 

clusters of spheres. The cracks were more straight and their number was higher. 

 

For the specimen mid-depth section, the calculated crack pattern (Fig.9Bb) was in a worse 

agreement with the experiment (Fig.5.9Ba) due to the fact the real aggregate shape was not 

reproduced in the calculations. The main crack visible in micro-CT scans on the right specimen side 

appeared in DEM at the bottom aggregate particle but next then changed its direction to a macro-

void. The second crack on the right side was correctly reproduced and propagated to the void. In the 

central part, a top crack solely corresponded to micro-CT scans. The number of cracks was again 

higher for round aggregate particles (Fig.5.9Bc). 
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B) 

a)     b)     c) 

 

Fig.5.9: 2D cracked specimen (ε=0.12%): a) experiment (micro-CT image for specimen „3‟),  

b) DEM for real aggregate (clusters of spheres) and c) DEM for real aggregate (spheres) (red colour 

– cracks, black colour – voids, dark grey colour - aggregate, light grey colour - cement matrix) (A – 

specimen front side and B – specimen mid-depth section) 

 

The calculated evolution of cracks on the specimen front side is shown in Figs.5.10a-f. First, broken 

contacts occurred around aggregate particles, mainly at vertical edges where tensile forces were the 

largest. Then they developed along the aggregate edges. Afterwards they connected with each other 

in the cement matrix by bridging (similarly as in the experiment, Section 3.1). The crack branching 

also occurred in the aggregate surrounding (Fig.5.10f). 

 

 

a)       b) 
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c)       d) 

 

 

e)     f) 

 

Fig.5.10: Crack pattern evolution (marked by red colour) on specimen „3‟ front side from DEM 

with clusters of spheres: a) ε=0.03%, b) ε=0.06%, c) ε=0.12% and d) ε=0.20% (dark grey colour -

aggregate, light grey colour - cement matrix, black colour – voids) and zoomed crack evolution in 

area marked with black rectangle (e) ε=0.06% and f) ε=0.2%) 

 

Figure 5.11 demonstrates the evolution of the normal contact forces in the concrete specimen. The 

red lines in Fig.5.11  correspond to the compressive forces and the blue lines to the tensile forces. 

The thickness of the lines in Fig. 5.11  represents the magnitude of the normal contact force 
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between two particles. The external vertical load was transmitted via a network of vertical 

compressive normal contact forces which formed clear force chains. The tensile forces were 

horizontal. The compressive force chains carried the load majority and transmitted it on the entire 

system and were the predominant structure of internal forces at the meso-scale. Their distribution 

due to the grain re-arrangement during cracking became strongly non-uniform. The maximum 

compressive normal single force was about 320 N and maximum tensile normal single force  

was 19 N. 

 

 

a)       b) 

 

c)       d) 
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e)     f) 

Fig.5.11: 2D evolution of compressive and tensile normal contact forces during deformation in 

DEM for clusters of spheres (specimen „1‟, front side): a) ε=0.03%, b) ε=0.06%, c) ε=0.12% and d) 

ε=0.20% (red lines - compressive forces, blue lines - tensile forces) and zoomed normal forces 

evolution in area marked with black rectangle (e) ε=0.06% and f) ε=0.2%) 

 

I) 
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II) 

A) 

B) 
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C) 

 

Fig.5.12: DEM calculation results of contact forces between particles (clusters of spheres): I) 

cracked specimen front surface with marked zoomed region (black rectangle), II) evolution of:  

A) tensile, B) compressive and C) tangential contact forces between particles at crack in zoomed 

region for normal strain ε: a) ε=0.06% and b) ε=0.12% (A) tensile forces in blue, B) compressive 

normal forces in red, C) tangential forces in green) (white arrows indicate crack position, grey 

spheres indicate aggregate) 

 

The evolution of normal and tangential contact forces along a propagating crack in the concrete 

specimen „3‟ is described in Fig.5.13. The outcomes show that the tangential forces also occurred 

along the propagating crack due to interlocking caused by a non-regular rough crack (Fig.5.13B). 

 

The calculated 3D crack geometry in 3 different vertical cross-sections are presented in Fig.5.15. 

The occurrence mechanism of cracks (Fig.5.15) was the same as in 2D computations. The cracks in 

2D and 3D studies are different in shape due to the different dcm
min

. The calculation outcomes 

cannot be directly compared with experiments due to the assumption of round aggregate particles 

and their different location. 
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A) 

B) 

 

Fig.5.13: Crack displacements w and δ versus global vertical normal strain ε from DEM analyses 

with clusters of spheres (w - normal crack displacement and δ - tangential crack displacement) for 

a) central vertical crack of Fig.5.2.1.3Aa and b) left inclined crack at right bottom corner of 

Fig.5.2.1.3Aa. 
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Fig.5.14: 2D DEM results: change of broken normal contact number k for real aggregate (clusters 

of spheres) on specimen front side against global vertical normal strain ε: a) normal contacts in 

ITZs, b) normal contacts in cement matrix and c) all normal contacts 
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a)      b) 

 

c) 

 

Fig.5.15: Crack patterns in vertical-sections at depth of 0.5 cm (A), 1.5 cm (B) and 3.5 cm obtained 

by 3D DEM with aggregate as spheres located at random (ε=0.12%) (spheres with broken normal 

contacts are in red, dark grey colour denotes aggregate with ITZ) 

 

5.2 Splitting tension 

The DEM calculations were carried out for concrete splitting with different boundary conditions 

(Suchorzewski et al. 2018b). The following parameters of the cohesion and tensile strength were 

used in all DEM analyses of tensile splitting: cement matrix (Ec,cm=15 GPa, Ccm=140 MPa and 

Tcm=25 MPa) and ITZs (Ec,ITZ=12 GPa, CITZ=112 MPa and TITZ=20 MPa) based on earlier 
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calculations regarding bending and uniaxial compression. ITZs were obviously the weakest phase. 

The ratio Ec,ITZ/Ec,cm=0.8 was chosen based on the experiments by Xiao et al. (Xiao 2013). The 

remaining ratios were also assumed as 0.8: CITZ/Ccm=0.8 and TITZ/Tcm=0.8 (Section 4) due to the 

lack of experimental results. Note that there were no contacts between aggregate grains (da

The remaining parameters were constant for all phases and regions: υc=0.2 (Poisson‟s ratio of grain 

contact), μ=18
o
 (inter-particle friction angle), αd=0.08 (damping parameter) and ρ=2.6 kG/m

3
 (mass 

density). The prescribed damping parameter αd and velocity did not affect the results during 

bending (Skarżyński et al. 2016). In the case of αd<0.08, the too excessive kinetic energy was 

always created during fracture (the tensile numerical test could not be performed without numerical 

damping due to excessively high velocities of particles after fracture. In turn, the effect of the αd-

value on global results for αd≥0.08 became insignificant. The calculated mean nominal inertial 

number I for the maximum vertical load (that quantifies the significance of dynamic effects) was 

<10
-4

 that always corresponded to a quasi-static regime. The 2D concrete specimen (D=0.15 m) 

under tensile splitting included in total about 20,000 spheres. The detailed calibration procedure 

was described by (Nitka and Tejchman 2015) based on real preliminary laboratory uniaxial 

compression and tension tests of concrete specimens (Fig.5.16).  

 

 

Fig.5.16: Stress-strain ζ=f(ε) evolution for 2D uniaxial compression test on square specimen 15×15 

cm
2
 from DEM with view on specimen before and after failure 

 

Using these material parameters, a very good agreement was achieved between numerical and 

experimental results for D=0.15 m with respect to stress-displacement curve and fracture geometry 
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(Fig.5.17) (Nitka and Tejchman 2015). The rigid cylinder of steel at the top and bottom of the 

specimen was created by a single sphere of the diameter of 20 mm with the 10-times higher 

stiffness than concrete. The deformation was induced by prescribing the vertical top displacement in 

such a way that the changes of CMOD (crack mouth opening displacement) were approximately 

linear in time (as in experiments). CMOD was calculated as a horizontal displacement at the 

specimen mid-height between mid-points of two regions with the area of A=5×15 mm
2
. The mid-

points were at the distance of 40 mm as in the experiment. The time step was dt=10
-8

 s. 

 

 

Fig.5.17: Front side of concrete specimens: A) specimen with steel cylinder and B) specimen with 

plywood, a) experiments, b) DEM (entire specimens) and c) DEM (upper region of specimen) (grey 

colour denotes cement matrix da<2 mm, green spheres denote aggregates with ITZ  
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(2 mm da 12 mm), white spots -  macro-voids, blue colour - steel loading cylinder, violet colour - 

plywood loading plate and red areas are regions for CMOD measurements at specimen mid-height) 

 

Stress-strain curves and fracture process 

Figure 5.18 presents the DEM results of the strength compared to the experiments. The evolution of 

the vertical normal stress  versus CMOD and v was satisfactorily reproduced (Figs.5.18A and 

5.18B). The calculated maximum tensile stress was by 2% too low for the steel loading/supporting 

cylinders and by 10% too high for the plywood loading/supporting boards than in experiments. The 

calculated residual tensile stress was the same for the steel cylinders and by 30% too high for the 

plywood boards. The calculated rate of softening was similar for the steel cylinders and too small 

for the plywood boards. The differences between numerical and experimental results are probably 

caused by the different stiffness of plywood boards than in experiments and some slight deviations 

between the calculated and theoretical CMOD evolution (Fig.5.18C). 

 

Next, the calculations were carried out with the different ratio of TITZ/Tcm and CITZ/Ccm, different 

intergranular friction angle μ in ITZs and different minimum particle diameter dmin (see also Chapter 

5.1) in the cement matrix (Fig.5.2.1.4). By diminishing the ratio TITZ/Tcm from TITZ/Tcm=0.9 down to 

TITZ/Tcm=0.5, the splitting tensile strength decreased from ζ=3.20 MPa down to ζ =2.55 MPa. The 

specimen brittleness slightly decreased (Fig. 5.19A). However, a decrease of the ratio CITZ/Ccm from 

CTZ/Ccm=0.9 down to CITZ/Ccm=0.5 did not affect the results (Fig. 5.19B) since the tensile failure 

dominated during splitting tension. The change of μ (expressing the different aggregate roughness) 

did not also affect the results (Fig. 5.19C). By reducing the minimum particle diameter in the mortar 

from dmin=1.0 mm down to dmin=0.35 mm (Fig. 5.19D), the splitting tensile strength decreased from 

=3.70 MPa down to =3.05 MPa (reduction by 15%) and ductility increased. However, if dmin 

reduced from 0.35 mm down to 0.25 mm, the splitting tensile strength merely diminished by 5%. 

Therefore the value of dmin=0.35 mm was used in computations. Note that lower values of dmin 

strongly increase the computation time (for dmin=0.25 mm the computation time became longer by 

the factor 4 as compared to dmin=0.35 mm).  

 

The cracked concrete specimens are shown in Fig.5.19 for plywood boards and steel cylinders 

(DEM versus experiments). Figure 5.20 presents the calculated fracture evolution in the concrete 

specimen with the plywood boards. The main calculated mechanism of a crack propagation at the 

meso-level is depicted in Fig.5.22. 
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A) 

B) 
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C) 

 

Fig.5.18: Calculated DEM results against experimental ones: A) vertical normal stress ζ against 

CMOD, B) vertical normal stress ζ against top vertical displacement v (curves „a‟ and „b‟ - 

experiments, curves „c‟ and „d‟ - DEM, red lines - steel loading cylinder, green lines - plywood 

loading/supporting boards) and C) relationship between CMOD and loading time in experiment (a) 

and DEM (b) (continuous lines - experiments, dashed lines - DEM) 

 

The calculated crack patterns were very similar to the experimental ones (Fig.5.19). In DEM 

calculations with the plywood strip (Figs. 5.19Bb and 5.19Bc), the macro-crack followed exactly 

the same path as in experiments (Fig. 5.19Ba). It also branched into rigid wedges at the same height 

(25% of D from the top and bottom). However, the crack shape in the wedge often followed the 

other side of the aggregate particle. In DEM calculations with the steel cylinder (Figs. 5.19Ab and 

5.19Ac), the macro-crack was more curved than in experiments (Fig. 5.19Aa) and followed the 

opposite edges of aggregates in the lower specimen half. The large aggregate grain at the specimen 

bottom crushed in the experiment in contrast to DEM outcomes (the model has not included grain 

crushing yet). 
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A) B) 

C) D) 

 

Fig.5.19: Evolution of vertical normal stress ζ versus CMOD from DEM results for steel loading 

cylinder with different ratio of TITZ/Tcm (A) and CITZ/Ccm (B) (b) TITZ/Tcm=CITZ/Ccm=0.9, 

c) TITZ/Tcm=CITZ/Ccm=0.8, d) TITZ/Tcm=CITZ/Ccm=0.7, e) TITZ/Tcm CITZ/Ccm=0.6 and 

f) TITZ/Tcm=CITZ/Ccm=0.5), different intergranular friction angle  in ITZs (C) (b) =8°, c)  =18°, 

d)  =30°) and different minimum diameter of cement sphere dmin (b) dmin=1.0 mm,  

c) dmin=0.35 mm and d) dmin=0.25 mm) as compared to experimental curve „a‟ 

 

In DEM simulations, initially, several single micro-cracks occurred in the entire specimen 

(Fig.5.20a). The broken contacts first occurred always in ITZs at corners of aggregate particles 

wherein tensile forces were the largest. They developed next in ITZs along aggregate edges. Later 

the micro-cracks started to concentrate in the vertical central zone at the specimen mid-height 

(Fig.5.20b). Afterwards, they connected with each other in the cement matrix by bridging and 

created a discrete macro crack in the vertical central zone (similarly as in the experiment) 

(Fig.5.20c). The crack propagated towards the top and bottom of the specimen for CMOD=150 μm 

(Fig.5.20d). At the top and bottom, it branched by creating a clear wedge under the 
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loading/supporting plywood boards. At the test end (CMOD>150 μm), the specimen was almost 

symmetrically de-fragmented. 
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Fig.5.20: Experimental and calculated fractured specimens at residual state for CMOD>150 μm: 

a) experimental cracks and b) and c) calculated cracks by DEM (red colour corresponds to broken 

contacts) for A) steel loading/supporting cylinders and B) plywood loading/supporting boards 

 

a)      b) 

 

c)      d) 

 

Fig.5.21: Calculated evolution of cracking in concrete specimen versus CMOD for plywood 

loading/supporting boards: a) CMOD=10 μm, b) CMOD=20 μm, c) CMOD=30 μm and d) 

CMOD=150 μm (black colour indicates aggregates, grey colour represents cement matrix and white 

colour is opened macro-crack  (displacements were magnified by factor 200) 
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Meso-scale phenomena 

The macro-crack was always created by bridging interfacial micro-cracks (Fig.5.22).  

 

 

a)     b)     c) 

 

Fig.5.22: Mechanism of macro-crack creation in concrete specimen by bridging interfacial zones 

for plywood loading board using DEM: a) CMOD=10 μm, b) CMOD=15 μm and c) CMOD=20 μm 

(spheres in red indicate broken contacts, dark grey corresponds to aggregate) 

 

The calculated resultant particle displacements from the quadratic cell equal to 5d50×5d50 moved by 

2 mm (d50=2 mm - the mean particle diameter) across a localized zone (FPZ) are depicted in 

Fig.5.23. In order to realistically calculate the width of a localized zone wlz, the calculated particle 

displacements were again fitted first by the error function ERF (Section 3, Eq.21). The calculated 

width of a localized zone was wlz=3.9 mm based on the displacement jump shown in Fig.18 (i.e. 

0.33×da
max

 and 0.8×d
a

50). It was slightly larger than the experimental result obtained by means of 

DIC (wlz=3.4 mm, Fig.5.23). 
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Fig.5.23: Calculated horizontal displacement profile at specimens mid-height for CMOD=25 μm 

(with plywood loading strip) versus horizontal coordinate x across localized zone from DEM 

(points „a‟ correspond to DEM results and solid line „b‟ corresponds to error function ERR) 

 

Figure 5.24 presents the evolution of inter-particle normal contact forces. The blue lines indicate 

tensile and red lines compressive forces. The line thickness is proportional to the force magnitude. 

The external vertical splitting force was transmitted via a network of normal contact forces which 

formed force chains. They carried the majority of the loading and transmitted it on the entire system 

and were the predominant structure of internal forces at micro-scale. Initially, large vertical 

compressive normal contact forces were created in the almost entire specimen (Fig.5.24a). Tensile 

normal forces occurred in a perpendicular (horizontal) direction. In the boundary regions, 

compression obviously dominated over tension. Before the peak of the vertical force, the 

compression and tensile forces increased, however, some single tensile forces started to break due 

to the contact damage (Fig.5.24b). After the load peak, the horizontal tensile forces started to be 

smaller (Fig.5.24c). When a vertical macro-crack ocrossed the specimen, the compressive forces 

concentrated in the specimen mid-region and the tensile forces became located mainly along the 

specimen circumference due to the compression of two separated specimen halves (Fig.5.24d). The 

maximum single compressive force was 75 N and tensile one was 8 N. Some compressive forces 

appeared also along the non-uniform macro-crack edge due to aggregate inter-locking (Skarżyński 

et al. 2016, Elias et al. 2012, Scholtes&Donze 2013). 
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a)      b) 

 

c)      d) 

 

Fig.5.24 Inter-particle tensile (blue lines) and compressive (red lines) normal contact forces in 

DEM calculations for concrete specimen with plywood boards versus CMOD: a) CMOD=10 μm, 

b) CMOD=20 μm, c) CMOD=30 μm and d) CMOD=150 μm (green colour denotes small values of 

internal forces) 

 

The evolution of the number of broken normal contacts is demonstrated in Fig.5.25A. For the force 

line contact, the total number of broken normal contacts was always lower by about 10% than for 

the force surface contact. The total number of broken contacts was approximately 1750-2100 

(Figs.5.25Ac and 5.25Af). The number of broken normal contacts in ITZs (n=420-450) 

(Figs.5.25Aa and 5.25Ad) was 3.5-4 times smaller than in the cement matrix (n=1400-1750) 

(Figs.5.25Ab and 5.25Ae). Nearly 30-40% (cement matrix) and 90% (ITZs) of normal contacts 
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were damaged before the peak load due to micro-cracking. The rate of the normal contact breakage 

with increasing CMOD was always smaller in ITZs. At the deformation beginning, the mean 

coordination number (number of contacts per particle) was N=4.75-4.80 (Fig.5.25B). Up to the 

peak, the mean coordination number reduced to N=4.65-4.70 due to micro-cracking. Before the 

loading end,  it decreased further to the value of N=4.57-4.59 due to macro-cracking. 

 

A) 

B) 

Fig.5.25: DEM results: A) evolution of broken normal contacts n against CMOD in concrete 

specimen with plywood loading/supporting boards (continuous lines) and steel loading/supporting 

cylinders (dashed lines): a) and d) in ITZs, b) and e) in cement matrix and c) and f) in concrete 
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specimen and B) evolution of coordination number N versus CMOD (a) plywood loading board and 

b) steel loading cylinder) 

The calculated horizontal normal stress based on normal and tangential contact forces between 

particles along the vertical central line is demonstrated in Fig.5.26. The stress was determined from 

the formula (Love 1927): 

 

                                                                   ,                                                         (39) 

 

wherein xi
c
 - the i-th component of the branch vector connecting the centre of the particle mass of 

the particle p with the contact point c, fj
c
 - j-th component of the total force in that contact point and 

V
p 

- the particle volume (area in 2D). In order to avoid too strong stress fluctuations, the stresses 

were calculated from the cell 5d50×5d50 which was moved by d50. The calculated stress was 

compared with experimental measurements by Ferrara and Gettu (Ferrara 2001) (using a cardboard 

loading/supporting strip) and theoretical elastic solution by (Timoshenko 1977). The calculated 

stresses obviously indicated a certain fluctuation due to the presence of aggregate particles. The 

calculated maximum tensile normal stresses (curves „a and „b‟ in Fig.5.26) were very similar as the 

measured one (Ferrara&Gettu 2001) (curve „c‟ in Fig.5.26) and the theoretical one 

(Timoshenko1977) (curve „d‟ in Fig.5.26). In the case of the maximum compressive normal stress at 

horizontal boundaries, the theoretical value described by the curve „b‟ was higher by 30% than the 

measured one (curve „c‟). 

 

Figure 5.27A presents the evolution of the average normal and shear displacement along the main 

central macro-crack at the mid-height. In the elastic range, the shear crack displacement dominated 

over the normal crack displacement. However, the normal crack displacement was later dominant. 

After the peak load (CMOD>30 μm), the shear crack displacement reached an asymptote for δ=39 

μm, while the normal displacement linearly grew up. The failure had a clear tensile type. 

 

The distribution of particle rotations in the concrete specimen is demonstrated in Fig. 5.27B for 

CMOD=150 μm. The rotations obviously occurred only if cracks appeared after the bond breakage. 

The maximum particle rotations at the test end were about 0.7°. The number of particles rotating 

clockwise and counter-clockwise was similar. 
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Fig.5.26: Distribution of horizontal normal stress ζxx in concrete specimen along height h=D=0.15 

m for CMOD=18 μm: a) DEM (steel loading/supporting cylinders), b) DEM (plywood 

loading/supporting boards, c) measurements by Ferrara (Ferrara&Gettu 2001) and d) analytical 

solution by (Timoshenko 1977) 
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A) 

B) 

 

Fig.5.27: DEM results (plywood boards): A) evolution of crack displacement versus CMOD in 

central macro-crack (a) normal direction w and b) shear displacement δ) and B) distribution of 

particles rotations for CMOD=150 μm (a) red circles indicate clockwise and b) blue circles show 

counter-clockwise rotation, circle diameter is proportional to particles rotation) 
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5.3 Meso-scale size effect analyses 

The size effect on strength and brittleness was investigated on two concrete 2D specimens with the 

different diameter D (D=0.15 m and D=0.05 m) during a splitting test (Suchorzewski et al. 2019). 

 

Stress-strain curves and fracture process 

For size effect simulations, the concrete specimen with the 3 times smaller diameter (D=0.05 mm) 

was artificially constructed by cutting it out from the specimen D=0.15 m in order to eliminate the 

statistical effect in concrete (Fig.5.28). This specimen included totally 2 500 spheres. The 

deformation was induced by prescribing the vertical displacement at the specimen top. In addition, 

one simulation was performed with the cut-out specimen of the diameter of D=0.05 m with the 

reduced minimum sphere diameter in the cement matrix dcm
min

=0.10 mm (instead of 

dcm
min

=0.35 mm). 

 

 

a)        b) 

Fig.5.28: Numerical construction of smaller 2D concrete specimen from larger specimen for DEM 

calculations (a) D=0.15 m and b) D=0.05 m) 

 

Figure 5.29 presents the DEM results of the evolution of the tensile splitting stress ζ versus vertical 

piston displacement v for two different specimen diameters D: D=0.05 m and D=0.15 m. In contrast 

to calculations with D=0.15 m, the numerical test for D=0.05 m was carried out by prescribing the 

vertical displacement v. The results of Fig.5.3.1.1 indicate a clear size effect regarding both the 
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strength and brittleness. The calculated maximum tensile splitting stress was higher by about 17% 

(3.5 MPa against 3.0 MPa) and normalized vertical piston displacement v/D corresponding to 

maximum tensile splitting stress was higher by about 20% (v/D=0.36 against v/D=0.30) for the 

smaller specimen diameter D=0.05 m than for the larger specimen D=0.15 m. The specimen with 

the smaller diameter D indicated a quasi-brittle failure mode and the specimen with the higher 

diameter D indicated a very brittle failure mode with the snap-back instability. The smaller 

minimum sphere diameter, dcm
min

=0.1, mm did not affect the peak stress, however, it slightly 

increased the concrete ductility due to the relatively small number of particles in the entire 

specimen of D=0.05 m (Fig.5.29b). 

 

 

Fig.5.29: DEM results: evolution of nominal tensile splitting stress =2P/(DL) against normalized 

vertical piston displacement v/D for two different specimen diameters D and minimum particle 

diameters dcm
min

: a) D=0.05 m with dcm
min

=0.35 mm, b) D=0.05 m with dcm
min

=0.10 mm and 

c) D=0.15 m with dcm
min

=0.35 mm 

 

Figure 5.30 demonstrates the  fractured specimens. The width of the fracture region (marked in blue 

in Fig.5.29) was assumed to be about 4 mm and was equal to the width of FPZs in experimental 

measurements and previous DEM calculations (Suchorzewski et al. 2018a). 
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Initially, several single micro-cracks occurred in the entire specimen. Later micro-cracks started to 

concentrate in the vertical central zone at the specimen mid-height. Afterwards they connected with 

each other in the cement matrix by bridging in order to create a discrete macro-crack in the vertical 

central zone (similarly as in the experiment). The macro-crack propagation way was similar in both 

concrete specimens (Fig.5.30). 

 

  

                                                         a)                                                                      b) 

 

Fig.5.30: Calculated fracture in concrete specimen for residual splitting tensile stress of ζ=1.5 MPa 

for 2 different specimen diameters: a) D=0.15 m and B) D=0.05 m (black colour indicates 

aggregates, grey colour represents cement matrix, white colour shows macro-pores, cyan colour 

denotes area with broken contacts and blue colour shows supports (displacements were magnified 

by factor 100) 

 

Evolution of broken normal contacts 

The evolution of the number of broken normal contacts for two concrete specimens D=0.05 m and 

D=0.15 m during deformation is demonstrated in Figs.5.31. Figure 5.32 shows the distribution of 

broken normal contacts up to peak (Fig.5.32a) and between the peak load and failure (Fig.5.32b) for 

two different specimen diameters D. 
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The number of broken contacts obviously increased during deformation in particular after the peak 

load (Fig.5.31). The total number of broken contacts was n=350 (D=0.05 m) and n=1200 (D=0.15 

m) in the considered range of v/D. With respect to the specimen diameter, the total normalized 

number of broken contacts was n/D=350 and n/D=400, respectively. The relatively more contacts 

were broken before the peak load for D=0.15 m (850/1200=0.71) than for D=0.05 m 

(180/350=0.51) and after the peak load up to the failure for D=0.05 m (170/350=0.49) than for 

D=0.15 m (350/1200=0.29) (Figs. 5.31  and 5.32). Therefore the numerical damping and kinetic 

energy were higher for D=0.05 m after the peak. It is visible that the pronounced continuous 

cracking process started in D=0.05 m slightly before the peak load for v/D=0.33 (Fig.5.32A) and in 

the specimen of D=0.15 m clearly before the peak load v/D=0.25 (Fig.5.32B). During the snap-back 

behaviour (D=0.15 m) relatively less contacts were broken after the peak load than during the 

plastic behaviour in the specimen of D=0.05 m (Figs.5.32) that caused that the post-peak behaviour 

was also more ductile in the smaller specimen (ductility increases with a longer crack propagation 

way related to the growth of broken contact number (Nitka 2015, Suchorzewski 2018a). The 

number of broken normal contacts in ITZs (n=60/220) was about 5 times smaller than in the cement 

matrix (n=300/1000) (Fig.5.32). Nearly 50%/70% (cement matrix) and 50%/90% (ITZs) of normal 

contacts were damaged before the peak load for D=0.05 m and D=0.15 m due to micro-cracking. 

The rate of the normal contact breakage was always smaller in ITZs.  

 

Figure 5.33 confirms that for the smaller concrete specimen of D=0.05 m (Fig.5.33A) less contacts 

(relatively to the total cross-section area) were broken up to the peak (connected with the higher 

elastic energy) and relatively more contacts were broken in the softening region (connected with the 

smaller elastic energy) as compared to D=0.15 m (Fig.5.33B).  
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A) 

B) 

Fig.5.31: 2D DEM results: evolution of broken normal contacts n against normalized vertical 

displacement v/D in: a) ITZs, b) cement matrix and c) concrete specimen (A) D=0.05 m,  

B) D=0.15 m) 
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A) 

B) 

 

Fig.5.32: DEM results: A) evolution of broken normal contacts up to peak and between peak load 

and failure for two different specimen diameters D: A) D=0.05 m, B) D=0.15 m (blue marks - 

broken contacts up to the peak, red colour - broken contacts up to failure, specimen are not properly 

scaled) 
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Evolution of coordination number 

The evolution of the coordination number (average number of contacts per particle) N for two 

specimens D=0.05 m and D=0.15 m is demonstrated in Fig.5.33.  

 

The coordination number was slightly smaller for D=0.15 m due to a higher number of particles in 

the specimen  At the deformation beginning, the mean coordination number was N=4.8-4.9 in both 

the specimens. At the peak, the mean coordination number reduced to N=4.70-4.85 due to micro-

cracking (the reduction rate was higher for D=0.05 m). At the deformation end, it decreased to  

N=4.55-4.57 due to macro-cracking. The change of N was more pronounced after the peak load for 

the smaller specimen to a stronger fracture process (Fig.5.32). 

 

 

 

Fig.5.33: 2D DEM results: evolution of coordination number N versus normalized vertical 

displacement v/D for two different specimen diameters: a) D=0.05 m and b) D=0.15 m  

 

Evolution of inter-particle contact forces 

Figures 5.34 demonstrates the distribution of inter-particle normal contact forces Fn for two 

different specimen diameters D. The normal contact forces were split into the compressive 

(Fig.5.34I) and tensile forces (Fig.5.34II) and were shown for the peak load (Fig.5.34a) and at the 

failure (Fig.5.34b). The red/blue lines denote the forces higher than the average force in the 
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assembly (sum of all forces divided by their number) and the black lines denote the forces lower 

than the average force to separate strong and weak contacts. 

 

The maximum compressive/tensile forces were equal to 32/7 N at the peak load and 19/6 N at the 

failure for D=0.05 m and 38/9 N at the peak load and 31/8 N at the failure for D=0.15 m. The mean 

values were 2.0/1.0 N and 0.5/0.3 N or 1.3/0.5 N and 1.1/0.4 N, respectively.  

 

  

 A) 

  

 B) 

 I) 

a) b) 
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 A) 

 

 

 B) 

 II) 

a) b) 

Fig.5.34: 2D DEM results: distribution of inter-particle normal contact forces  two different 

specimen diameters D: I) compressive forces, II) tensile forces, A) D=0.05 m, B) D=0.15 m, a) 

forces up to the peak load for v/D=0.36%/0.30%, b) contacts after the peak load for 

v/D=0.40%/0.25% (red and blue colour - forces above mean value, black colour - forces below  

mean value) 

 

The force transmission within particulate bodies is via co-existing strong and weak contacts which 

form the corresponding strong and weak force networks. The external vertical splitting force P was 

transmitted mainly via a network of strong compressive contact forces that formed clear force 
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chains parallel to P (red lines in Fig.5.34). The weak contact forces (black lines in Fig.5.34) were 

insignificant. Initially, large vertical compressive normal contact forces were created in the 

specimen mid-region (Fig.5.34). The tensile normal forces were located in a perpendicular 

(horizontal) direction. In the boundary regions compression obviously dominated over tension. 

Before the peak of the vertical force, the compression and tensile forces increased, however some 

single tensile forces started to break due to the contact damage. After the peak load, the tensile 

forces started to decrease. When a vertical macro-crack already crossed through the specimen, the 

contact force networks appeared to be sparse and some tensile forces became located mainly along 

the specimen circumference due to the compression of two separated specimen halves.  

 

The %-number of strong compressive/tensile normal contact forces was 35.2/31.8% (peak load) and 

31.4/30.6 (failure) for D=0.05 m. The %-number of strong compressive/tensile normal contact 

forces was however 31.2/31.8% (peak load) and 30.7/30.5 (failure) for D=0.15 m. Thus, the %-

number of strong compressive normal contact forces was higher for the smaller specimen (due to its 

higher strength). The %-number of strong tensile contact normal forces was similar in both the 

specimens. 

 

The results of Fig.5.34 are well co-related with Figs.5.31 and 5.32. Large changes in the distribution 

of contact forces after the peak load are noticeable for D=0.05 m (Fig.5.34A) due to the stronger 

cracking process (Fig.5.32). They were not visible for D=0.15 m (Fig.5.34B). 

 

Evolution of crack displacements 

Figure 5.35 presents the evolution of the average normal and shear displacement along the main 

central macro-crack exactly at the mid-height for two different specimen diameters: D=0.05 m and 

D=0.15 m.  

 

The failure had a clear tensile type. i.e. the normal crack displacement always dominated over the 

tangential crack displacement. The crack displacements clearly increased after the peak load. The 

normal crack displacement was slightly higher at the peak load for D=0.15 m (0.20 m versus 0.15 

m versus) and at the failure for D=0.05 m (0.70 m versus 0.60 m versus). The tangential crack 

displacement was a few times smaller than the normal one.  
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A) 

B) 

Fig.5.35: DEM results: evolution of crack displacement versus normalized vertical displacement 

v/D in macro-crack in central specimen region (a) normal displacement w and b) shear displacement 

δ) for two different specimen diameters: A) D=0.05 m and B) D=0.15 m 

 

Internal energies (Suchorzewski et al. 2019) 

Non-fractured state 

In a discrete undamaged concrete system there exist initially 2 main internal energies: elastic and 

dissipated energy. In addition, the numerical dissipation and kinetic energy also take place due to 
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the application of DEM. The elastic internal energy stored at existing contacts N between aggregate 

grains Ee, expressed in terms of work of the elastic contact tangential forces Fs on the elastic 

tangential displacements Sc and the elastic contact normal forces Fn on the elastic penetration depths 

U (Figs.2a and 2b) was 

 

                                                          ).
2

||

2

||
(

22

1 n

n

s

s
N

e
K

F

K

F
E                                                    (40) 

 

When the tangential force between grains reached the value of 𝐹𝑠
𝑚𝑎𝑥  (Fig.2a), the dissipated energy 

Dp, expressed in terms of work of the tangential (shear) forces on the conjugate sliding 

displacements Sl (Fig.2a), was determined as (with F=Fn×tan) 

 

                              pprev'pp DDD                   with      𝐷𝑝 =  𝐹𝜇𝑆𝑙
𝑁
𝑖    (41) 

 

The dissipated energy was calculated incrementally at each time step and summed for the time 

period of the contact of two respective particles. The kinetic energy Ek of grains was caused by their 

translation and rotation (m - the particle mass, I - the moment of inertia of a particle, vp - the particle 

translational velocity and ωp - the particle rotational velocity) 

 

                                                          𝐸𝑘 =  (
1

2
𝑚𝑣𝑝

2 +
1

2
𝐼𝜔 𝑝

2)𝑁
1 .                                              (42) 

 

In addition, the numerical dissipation Dn, expressed in terms of work of dampened normal and 

tangential forces (Eq.6) on the conjugate normal and tangential displacements U and Sl (Figs.2a and 

2b) was specified as 

 

                  𝐷𝑛 = 𝐷𝑛 ′𝑝𝑟𝑒𝑣 + 𝐷𝑛             with              𝐷𝑛 =  (𝐹𝑑𝑎𝑚𝑝𝑒𝑑
𝑖𝑁

𝑖 𝑈(𝑆𝑙)).                (43) 

 

The cohesion contact failure energy release Es was (Fig.2a) 

 

                                                         𝐸𝑠 =
1

2
(

(𝐹𝑠
𝑚𝑎𝑥 )2

𝐾𝑠
−

 𝐹𝜇  
2

𝐾𝑠
).                                                   (44) 

 

In general, the total accumulated energy was in the non-fractured specimen 
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                                             𝐸(𝑢𝑛𝑓𝑟𝑎𝑐𝑡 ) = 𝐸𝑒 + 𝐸𝑘 + 𝐷𝑝 + 𝐷𝑛 + 𝐸𝑠.                                         (45) 

 

It was equal to the external boundary work W expended on the particle assembly by the external 

vertical splitting force P on the vertical specimen top displacement v (𝑊 = 𝑊𝑝𝑟𝑒𝑣 +  𝑃𝑑𝑣). 

 

Fractured state (with normal contact breakage) 

When the particle normal contacts started to break during deformation, the broken normal springs 

were immediately removed from the DEM system (together with the tangential springs). Thus, the 

existing up to this moment internal elastic energy of removed (broken) contacts (shear and tensile 

contact energy) had to be added to the total internal energy. The total removed contact failure 

energy Erc (composed of the shear Es and tensile Et contact failure energy) was equal to (Figs.2a and 

2b) 

 

                                                     𝐸𝑟𝑐 = 𝐸𝑠 + 𝐸𝑡 =
1

2

(𝐹𝑠)2

𝐾𝑠
+

1

2

(𝐹𝑛
𝑚𝑖𝑛 )2

𝐾𝑛
,                                    (46) 

 

where Fs is the actual elastic tangential force. 

 

In general, the total accumulated energy E for the fractured specimen was thus equal to 

 

                                                      𝐸(𝑓𝑟𝑎𝑐𝑡 ) = 𝐸𝑒 + 𝐸𝑘 + 𝐷𝑛 + 𝐸𝑟𝑐 = 𝑊.                                  (47) 

 

Energies in two specimens with different diameter 

Figure 5.36 shows the evolution of the calculated normalized energy E/(0.25D
2
) against the 

normalized vertical piston displacement v/D for two concrete specimens D=0.05 m and D=0.15 m. 

The strain increment after the peak load (v/D) was the same in both cases (v/D=0.05%). 

 

The evolution of the elastic internal energy Ee in a normal and tangential direction was similar to 

the evolution of the mobilized specimen strength (expressed by the splitting tensile stress in 

Fig.5.36a). The elastic internal energy Ee was obviously significantly higher than the plastic 

damping Dp due to cohesion. The elastic energy portion due to the tangential force action was 

obviously smaller than that due to the normal force action in view of the lack of plastic damping in 
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a normal direction. The kinetic energy Ec was insignificant due to numerical damping and quasi-

static numerical tests.  

 

For the normalized vertical top displacement v/D=0.35% corresponding to the peak load for 

D=0.05 m, (Fig.5.36), the normalized elastic internal energy was equal to Ee
n
=97.2% (normal 

energy – 70.0%, tangential energy – 27.2%), normalized plastic dissipation was almost Dp
n
=0.0%, 

normalized energy of removed cohesive contacts was equal to Drc
n
=0.8%, normalized kinetic 

energy was equal to Ec
n
=0.6% and normalized numerical damping was equal to Dn

n
=1.4% of the 

total normalized energy (Fig.5.36A). For v/D=0.4 mm corresponding to the test end (Fig.5.36), the 

normalized elastic internal energy was Ee
n
=45%, normalized plastic dissipation was Dp

n
=0.25%, 

normalized energy of removed cohesive contacts was Drc
n
=3.3%, normalized kinetic energy was 

Ec
n
=0.25% and normalized numerical damping was Dn

n
=51.2% of the total normalized energy 

(Fig.5.36A). 

 

In the case of D=0.15 m, for the normalized vertical top displacement v/D=0.30% corresponding to 

the peak load (Fig.5.36), the normalized elastic internal energy was equal to Ee
n
=73% (normal 

energy – 54%, tangential energy - 19%), normalized plastic dissipation was almost Dp
n
=0.0%, 

normalized energy of removed cohesive contacts was equal to Drc
n
=1.2%, normalized kinetic 

energy was equal to Ec
n
=0.15% and normalized numerical damping was equal to Dn

n
=25.65% of the 

total normalized energy (Fig.5.36B). At the failure (v/D=0.25%, Fig.5.36), the normalized elastic 

internal energy was 54%, normalized plastic dissipation was Dp
n
=0.25%, normalized energy of 

removed cohesive contacts was equal to Drc
n
=3.5%, normalized kinetic energy was Ec

n
=0.1% and 

normalized numerical damping was Dn
n
=42.15% of the total normalized energy (Fig.5.36B). Due to 

the snap-back instability, the total internal energy reduced by 25%, the elastic normal internal 

elastic energy reduced by 52% and the elastic tangential internal energy reduced by 30%. In turn, 

the plastic dissipation, numerical damping and elastic energy from removed cohesive contacts 

increased on average by the factor 2. 

 

The total normalized internal energy was higher by 10% at the peak load (1.35 kN/m against 

1.25 kN/m) and by 70% at the failure (1.6 kN/m against 0.95 kN/m) in the smaller specimen 

D=0.05 m (Fig.5.36A) as the result of the higher vertical force P and ductility (Fig.5.36). The 

contribution of the total normalized elastic energy to the total normalized energy was significantly 

higher for D=0.05 m before the peak (97% versus 73%) and for D=0.15 m at the failure (54% 

versus 45%) due to fracture (see Evolution of broken contacts). The total normalized elastic energy 
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Ee
n
 was thus higher by 40% at the peak load and smaller by 10% at the failure in the smaller 

concrete specimen (D=0.05 m) due to the different fracture type in both the specimens. The stronger 

contribution of the total normalized elastic energy at the peak caused the higher strength of the 

small specimen (with respect to the small fracture impact, see Evolution of broken contacts). The 

contribution of the numerical damping Dn was inverse, i.e. higher for D=0.15 m before the peak 

load and for D=0.05 m after the peak load. 

 

 

A) 

 

B) 

Fig.5.36: Evolution of normalized energy E/(0.25D
2
) in 2D concrete specimen versus normalized 

vertical piston displacement v/D for 2 different specimen diameters D: A) D=0.05 m and  

B) D=0.15 m based on DEM (dcm
min

=0.35 mm): a) external work, b) total internal work, c) normal 

elastic energy, d) tangential elastic energy, e) plastic dissipation, f) kinetic energy, g) numerical 

damping and h) energy of removed cohesive contacts  

 

Energies’ split in two specimens with different diameter 
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Figures 5.37 and 5.38 show the split of normalized energies into two regions: region in the fractured 

region (marked in blue in Fig.5.30) and region beyond the fractured region.  

 

For the smaller specimen (D=0.05 m), the total normalized absorbed energy Eabs
n
 in the fractured 

zone was higher than the total normalized released energy Erel
n
 in the remaining unloaded region by 

the factor 2.5 at the peak load and 1.6 at the failure. For the larger specimen (D=0.15 m), the total 

normalized absorbed energy Eabs
n
 in the fractured zone was however smaller than the total 

normalized released energy Erel
n
 in the remaining region by 15% at the peak load and larger by 20% 

at the failure (Figs.5.37 and 5.38).  

 

In the case of D=0.05 m, the increment of the total normalized absorbed energy after the peak load 

in the fractured zone Eabs
n
 was significantly higher by the factor than the increment of the total 

normalized released energy after the peak load in the remaining unloaded region Erel
n
 

(Eabs
n
>Erel

n
) (Fig.5.38) that caused a global quasi-brittle behaviour in the post-peak region of the 

small concrete specimen (Fig.5.29). For D=0.15 m, the increment of the total normalized absorbed 

energy after the peak load in the fractured zone Eabs
n
 was smaller than the increment of the total 

normalized released energy after the peak load in the remaining region Erel
n
 (Eabs

n
<Erel

n
) 

(Fig.5.38) that contributed to a global very brittle behaviour with the snap-back instability in the 

post-peak regime (Fig.5.29). The same tendency occurred for the total normalized elastic energy 

amounts after the peak load (Figs.5.37C and 5.38C). The maximum total normalized absorbed 

energy in the fractured region was as twice as large for D=0.05 m (Figs.5.37A and 5.38A). 

Therefore the normalized kinetic energy and normalized numerical damping (both connected with 

each other) were obviously higher in the fractured region and were again higher for D=0.05 m in 

this region. 
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A) 

B) 
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C) 

 

Fig.5.37: Evolution of normalized energy E/(0.25D
2
) in concrete specimen with D=0.05 m versus 

normalized vertical piston displacement v/D using DEM: (A) fractured region, B) remaining 

unloaded region and C) total elastic energy (a) total internal work, b) normal elastic energy,  

c) tangential elastic energy, d) plastic dissipation, e) kinetic energy, f) numerical damping, g) energy 

of removed cohesive contacts) 

A) 
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B) 

C) 

 

Fig.5.38: Evolution of normalized energy E/(0.25D
2
) in concrete specimen with D=0.15 m versus 

normalized vertical piston displacement v/D using DEM: A) fractured region, B) remaining 

unloaded region and C) total elastic energy (a) total internal work, b) normal elastic energy,  

( tangential elastic energy, d) plastic dissipation, e) kinetic energy, f) numerical damping, g) energy 

of removed cohesive contacts) 
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5.4 Comparison with size effect experiments from literature  

Figure 5.39 presents the cross-section of 4 2D cylindrical concrete specimens with the diameter  

D=74 mm, D=100 mm, D=150 mm and D=290 mm assumed for DEM calculations. The crack 

opening was measured between two spheres situated in the specimens mid-height at the distance of 

65 mm in a horizontal direction (as in experiment). Note that the exact micro-structure used in 

experiments could not be reproduced due to the lack of data.  

 

Figure 5.40 compares the DEM results with the experimental ones by Carmona et al. (1998) with 

respect to the vertical force P against CMOD. The vertical force P was calculated as the sum of 

vertical inter-particle forces along the horizontal mid-height section (with L equal to the mean 

particle diameter). The experimental and numerical results are in satisfactory agreement. For two 

largest specimens (D=150 mm and D=290 mm) the peak vertical force was lower by 10% than in 

the experiment, whereas for two smallest specimens (D=74 mm and D=100 mm), Pmax was higher 

by 15% and 25%. For a better accuracy, the real micro-structure of concrete specimens has to be 

taken into account in DEM (Skarżyński et al. 2016, Suchorzewski et al. 2018a). 

 

 

a)                 b)                           c)                                                    d) 

 

Fig.5.39: Cross-sections of concrete specimens in tests by Carmona et al. (1998) with diameter: a) 

D=74 mm, b) D=100 mm, c) D=150 mm and d) D=290 mm for DEM calculations (grey colour 

denotes cement matrix da<2 mm, green spheres denote aggregates with ITZ (2 mm<da< 12 mm), 

blue clusters of spheres describe loading plates, red points are points for CMOD measurement at 

specimen mid-height) 
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Figure 5.41 describes the numerical size effect due to the specimen strength and specimen 

brittleness, expressed by the inclination  of the initial softening curve (=f(CMOD/D) to the 

horizontal in the counter-clockwise direction versus the experimental outcomes. The DEM indicate 

that the tensile strength increased and brittleness decreased with decreasing specimen diameter. The 

calculated concrete tensile strength changed by 16% between D=74 mm and D=100 mm, by 3% 

between D=100 mm and D=150 mm and by and 2.5% between D=150 mm and D=290 mm. The 

trends of the calculated varying  versus D and  versus D were similar to the experimental ones 

except of two smallest specimens. The too low tensile strength in experiments for the smallest 

specimens was probably caused by boundary effects caused by concrete drying (Vorechovsky 

2007). Note that other experiments did not indicate this phenomenon (Section 3.4). 

 

 

 

Fig.5.40: Vertical force P against crack mouth opening displacement (CMOD) from experiments by 

Carmona et al. 1998 (red lines): a) D=74 mm, b) D=100 mm, c) D=150 mm, d) D=290 mm and 

from DEM (black lines): e) D=74 mm, f) D=100 mm, g) D=150 mm and  

h) D=290 mm 

 

The deformed concrete specimens are shown in Figure 5.42. The crack was simulated by broken 

element contacts in the granular assembly (Fig.5.43). For all concrete specimens one almost vertical 

crack appeared in the specimen's central region. The crack was curved due to the presence of 

aggregate and always propagated through the cement matrix and ITZs, which were the weakest 
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phases in specimen. The macro-crack was strongly non-uniform (in particular under the loading 

plate and at the specimen bottom) and possessed several small branches. Directly under the loading 

plate, a stiff wedge with two inclined cracks might occur (Figs.5.42a, 5.42b and 5.42d). The macro-

cracks were created by bridging the interfacial micro-cracks (Skarżyński et al. 2016, Suchorzewski 

et al.  2018a). First, broken contacts occurred in ITZs at aggregate particles. Next they developed 

along aggregate circumferences. Afterwards they connected with each other in the cement matrix by 

bridging (Skarżyński et al. 2016, Suchorzewski 2018a). There existed many micro-cracks in the 

central specimen region (Fig.5.4.5). 

 

 

A) 

 

B) 
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Fig.5.41: Size effect in concrete by DEM (a) versus splitting tensile experiments (b): A) splitting 

tensile stress  versus specimen diameter D and B) softening curve inclination to horizontal  

 versus specimen diameter D 

 

a)             b)         c)     d) 

 

Fig.5.42: Crack patterns from DEM in deformed concrete specimens: a) D=74 mm, b) D=100 mm, 

c) D=150 mm and d) D=290 mm for CMOD=50 μm (displacements were magnified by factor 40)  

 

Figure 5.44 shows the normal force contact evolution. The red lines in Fig.5.44 correspond to 

compressive forces and the blue lines to tensile forces. The thickness of lines in Fig.5.44 represents 

the magnitude of the normal contact force between two particles. The external vertical splitting 

force was transmitted via a network of contact forces which formed force chains. They carried the 

majority of the loading and transmitted it on the entire system and were the predominant structure 

of internal forces at micro-scale. Initially large vertical compressive normal forces were created  in 

the almost entire specimen. In a perpendicular (horizontal) direction tensile normal forces occurred 

(Fig.5.44a). In the boundary regions compression obviously dominated over tension. Before the 

peak vertical force, the compression forces increased and some single tensile forces started to 

disappear due to the contact damage (Fig.5.44b). After the peak force when a vertical macro-crack 

occurred, the compressive forces concentrated in the specimen mid-region whereas the tensile 

forces became located mainly along the specimen circumference due to the compression of two 

separated specimen halves (Fig.5.44c).  
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a)             b)         c)     d) 

Fig.5.43: Broken contacts (in red) in concrete specimens from DEM: D=74 mm (a), D=100 mm (b), 

D=150 mm (c) and D=290 mm (d) for CMOD=50 μm 

 

 

a)                                               b)                                                  c) 

Fig.5.44: Evolution of contact normal forces (specimen diameter D=150 mm) for crack mouth 

opening displacement CMOD: a) 10 μm, b) CMOD=20 μm and c) CMOD=50 μm (red lines 

indicate compressive normal forces and blue lines tensile normal forces, line thickness denotes 

force magnitude) 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


162 Chapter 5 - DEM calculations 

 

5.5 Comparison with own size effect experiments 

The laboratory experiments described in Chapter 3.3 were simulated with DEM similarly as in 

Chapter 5.3). This time a stochastic distribution of aggregates was taken into account due to micro-

CT images for three specimen diameters D=74 mm, D=150 mm and D=250 mm (Fig.5.45). The full 

3D CT scan was possible before the test solely for the smallest specimen D=74 mm due to size 

limitations in the micro-CT system.  
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C) 

a)      b) 

 

Fig.5.45: Concrete specimens a) view on front surface and b) DEM model for 3 different specimen 

diameters D: A) D=74 mm, B) D=150 mm and C) D=250 mm (green particles represent aggregate, 

grey particles stand for cement matrix and white spots are empty zones representing macro-pores, 

red squares indicate area for measurement of average CMOD and blue particles are loading strips , 

note that specimens are not proportionally scaled) 

 

The DEM calculations for concrete splitting were carried out with the following parameters of the 

cohesion and tensile strength: cement matrix (Ec,cm=15 GPa, Ccm=140 MPa and Tcm=22 MPa) and 

ITZs (Ec,ITZ=12 GPa, CITZ=112 MPa and TITZ=17.6 MPa) based on uniaxial compression test 

calibration (Fig.5.46). ITZs were again assumed as the weakest phase. The ratio Ec,ITZ/Ec,cm=0.8 was 

again chosen based on the experiments by Xiao et al. (Xiao 2013). The remaining ratios were also 

assumed as 0.8: CITZ/Ccm=0.8 and TITZ/Tcm=0.8. The hardboard loading/bearing strips at the top and 

bottom of the specimen were built of spheres‟ clusters with the width, proportionally to the diameter 

D as in experiments. Their diameter was 0.5 mm with the 5-times lower stiffness than the cement 

matrix (stiffness of a hardboard used in experiments). The deformation was induced by prescribing 

the vertical top displacement in such a way that the changes of CMOD (crack mouth opening 

displacement) were approximately linear (as in experiments). CMOD was calculated as a horizontal 

displacement at the specimen mid-height between mid-points of two regions with the area of 

A=5×15 mm
2 

(D=150 mm), twice as small and twice as large for D=74 mm and D=250 mm. The 

mid-points were at the distance of 40 mm as in the experiment, for D=150 mm and were 

proportionally scaled for other diameters. The time step was Δt=10
-8

 s. The calculation time on 8-
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core CPU 3.3 GHz varied between 10 days and 2 months depending on the specimen diameter. The 

calculated mean nominal inertial number I for the maximum vertical load (that quantifies the 

significance of dynamic effects) was <10
-4

 that always corresponded to a quasi-static regime. The 

minimum diameter of particles creating the cement matrix was reduced to dmin=0.15 mm for all 

specimens. The 2D concrete specimens under tensile splitting included in total about 42‟000, 

230‟000 and 491‟000 spheres for D=74 mm, D=150 mm and D=250 mm respectively. The values 

of cohesion were calibrated with the aid of the uniaxial compression test wherein random spheres 

were assumed with the same size as in the concrete mix. The specimens for the compression test 

were sawed out from the same concrete block like the ones used in splitting tension. The cylindrical 

specimens had a diameter D=100 mm and the depth of t=100 mm. Therefore, the obtained strength 

might be directly compared with one measured on cubic specimens 150×150×150 mm
2
 (EN 12390-

1:2012). The experimental compressive strength was 38 MPa for =0.19%. The satisfactory 

agreement both in stiffness and strength was achieved (Fig.5.5.2). 

 

 

 

Fig.5.46: Stress-strain curves ζ-ε curves in  uniaxial compression test:  

a)-c) experimental curves and d) DEM result 

 

The DEM results for splitting as compared to the experiments are shown in Figs.5.47 and 5.48. Very 

good agreement was achieved between numerical and experimental results for all specimens 

diameters with respect to the stress-displacement curve (Fig.5.47) and fracture geometry (Fig.5.51).  

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Chapter 5 - DEM calculations   165 

 

 

A)      B) 

 

C) 

 

Fig.5.47: Tensile stress ζ versus normalized displacement v/D for splitting tension: a) DEM and b)-

c) experiments for different specimen diameters (A) D=74 mm, B) D=150 mm and C) D=250 mm) 

 

The calculated maximum tensile splitting stress =2Pmax/(DL) decreased with increasing diameter 

D. For D=74 mm, the calculated tensile splitting strength was ft=4.0 MPa for v/D=1.8% 

(Fig.5.47Aa), for D=140 mm, ft=3.2 MPa for v/D=1.5% (Fig.5.3.3.Ba)) and ft=2.8 MPa for 

v/D=1.2% (D=250 mm, Fig.5.47Ca). Apart from the smallest specimen D=74 mm, where the DEM 

strength was smaller by 4% than the lower experimental result (Fig.5.47Ab), the remaining DEM 

results were between the experimental curves. For the specimen D=250 mm, the strength obtained 

with DEM (Fig.5.47Ca) was equal to the higher experimental result (Fig.5.47Cc). The elastic 

response of the DEM model was similar as in the experiment, however, the initial hardboard 

compression-hardening response was not well reproduced (since the loading boards in DEM were 

assumed to be rigid). This behaviour is clearly visible in the case of the largest specimen 

(Fig.5.47Cb-c) where this effect was most significant due to a very high compression force in the 
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experiment (above 80 kN). The concrete brittleness decreased with increasing specimen diameter.  

A clear snap-back mode of failure occurred for specimens D>74 mm, expressed by a simultaneous 

reduction of the vertical stress  and vertical piston displacement v after the maximum stress max. 

The calculated rate of softening was similar as in the experiment for the specimens D=74 mm and 

D=150 mm. For the largest specimen D=250 mm, the calculated softening was higher than in the 

experiment. 

 

 

Fig.5.48: Tensile stress ζ versus normalized displacement v/D curves for splitting in DEM for 

specimen diameters D: a) D=74 mm, b) D=150 mm and c) D=250 mm 

 

The clear size effect was obtained in calculations, characterized by the loss of strength and ductility 

with increasing specimen diameter. The calculated elastic stiffness was similar for all 3 specimens. 

The curve for D=74 mm (Fig.5.58a) showed a plastic behaviour close to the the peak (for v/D=1.8-

2%). The specimen D=250 mm indicated a very brittle behaviour (snap-back) after the peak, 

changing the displacement direction from positive to negative one (Fig.5.48c). 

 

The damage in DEM may be described by the  number of broken contacts n (Fig.5.49). The broken 

contacts were divided on those broken in ITZz (Fig.5.49a), cement matrix (Fig.5.49b) and the total 

number of broken contacts (Fig.5.49c). The amount of contacts broken in ITZ up to the peak was 

equal to 57%, 62% and 68% for D=74 mm, D=150 mm and D=250 mm respectively (Fig.5.49a). 

For the specimen D=150 mm (Fig.5.49B) in elastic part of the curve the fast creation of the macro-
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crack is visible as an increase of broken contacts number (mainly in cement matrix). It is connected 

with instant crack appearance between the two largest aggregate grains in the specimen centre. 

After the peak, the increase of broken contacts in the cement matrix was greater than in ITZs by the 

factor of 5. The normalized total number of broken contacts in peak increased with the specimen 

diameter and was equal to n/D=17.5 for D=74 mm (Fig.5.49A), n/D=22 for D=150 mm 

(Fig.5.49B), n/D=28 for D=250 mm (Fig.5.49C). Those specimens were more damaged before the 

peak and thus had the lower strength. 

 

 

A)      B) 

 

 

C) 

 

Fig.5.49: Number of broken contacts n against normalized displacement v/D for splitting in DEM: 

a) ITZ, b) cement matrix, c) all particles for different specimen diameters D (A) D=74 mm,  

B) D=150 mm, C) D=250 mm) 
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Figure 5.50 presents the relative number of broken contacts normalised by the number of particles 

(the so-called coordination number N). The coordination number was always slightly smaller for the 

larger specimen due to a higher number of particles in the specimen. The initial coordination 

number was similar for all specimens and was equal to about N=4.82. In the smallest specimen 

D=74 mm, the coordination number decreased down to N=4.7, whereas for the specimen D=150 

mm and D=290 mm to N=4.75 and N=4.78. From the peak load to the test end, the reduction rate of 

N was higher for the smaller specimen due to more intense fracture. 

 

 

Fig.5.50: Coordination number N versus normalized displacement v/D curves for splitting tension 

test calculated with DEM in specimens with different diameter D (a) D=74 mm, b) D=150 mm and 

c) D=250 mm) 

 

Finally, the crack morphologies expressed by broken contacts (in red, Fig.51b) and deformed 

specimens (Fig.51c) were compared with the micro-CT scans of Fig.5.51. For the specimen 

D=250 mm, the image from the digital camera of full specimen height was additionally presented as 

the specimen was too high for full scanning (2/3 of the total specimen height was solely scanned 

with micro-CT). 
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a) b) c)  

A) 

     

a)    b)    c) 

B) 
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a)     b)    c)   

C) 

 

Fig.5.51: Crack geometry: a) micro-CT images, b) deformed specimens in DEM and c) images of 

broken contacts (particles with broken contacts were marked with red colour) in DEM for different 

specimen diameters D (A) D=74 mm, B) D=150 mm and C) D=250 mm) 

 

For the specimen D=74 mm (Fig.5.51A), the crack propagated close to the same aggregate 

particles, however, on their opposite sides than in the experiment. The crack propagated near the 

large aggregate in the specimen‟s mid-height on the right side instead of breaking it on the left side. 

The bottom part of the crack was narrow and straight as in the experiment, however, the crack 

propagated on the left side of a large aggregate, opposite to the experiment wherein it followed the 

right edge of the aggregate (Fig,5.51Ac). Additionally, the crack was more curved. The large 

aggregate at the mid-height of the specimen was also broken in the experiment. The top of the 

specimen was crushed in the experiment that was reproduced in DEM as intensive micro-cracking 

of the cement matrix under the loading board (Fig.5.51Aa) and wider crack opening. In the small 

specimen, some fine differences in the aggregate shape and pores‟ position greatly influenced the 
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crack pattern. Moreover, the 3D aggregate arrangement influenced the crack shape. To obtain a 

more realistic crack patterns, the 3D DEM simulations should be carried out. The cracks computed 

in DEM for D=150 mm were more realistic as compared to the experiment (Fig.5.51B). For 

D=150 mm, no aggregate breakage occurred in the experiment (Fig.5.51Ba) Note that  the crushed 

peace of specimen fell apart during transportation (Fig.5.51Ba). The same crack‟s shape was 

reproduced in DEM as to the crack‟s branching at the specimen top (Fig.5.51Bb-c). The main crack 

followed the left side of a large aggregate in the specimen‟s mid-height, however the another 

branching appeared at the specimen bottom (Fig.5.51Bc) with a finer crack that propagated at the 

same side of the aggregate as in the experiment. Finally, the largest specimen D=250 mm was 

almost symmetrically cracked in DEM while in the experiment it was curved to the right side 

(Fig.5.51Cc), probably due to a small load eccentricity. The crack was curved to the left at the 

specimen top, both in the experiment and DEM, forming a wedge connecting the straight part of the 

crack with the loading strip edge (Fig.5.51Ca-c). The similar behaviour was obtained in the 

specimen‟s mid-height wherein the crack in DEM was curved to the left (Fig.5.51Cb-c). Even 

though, the macro-crack developed along other aggregate particles, it had a very small width in the 

specimen mid-height and was branched with various micro-cracks at bottom and top both, as in the 

experiment and DEM (Fig.5.51Ca-c). The intense cracking at the top and bottom (the wedges) was 

obtained in the model as a multiple micro cracking in the cement matrix. 

 

The macroscopic DEM results: strength (Fig.5.52) and angle α between the horizontal axis and 

softening curve (Fig.5.53) from the experiments (Section 3) were directly compared directly with 

DEM simulation results. The strength reduction was very similar in the experiment and DEM for 

the specimens D=150 mm and D=250 mm. The size effect on brittleness (defined as the angle α 

between horizontal axis and the softening part of the curve) was stronger in DEM than in the 

experiment. For the smallest specimen, the softening angle in DEM was equal to the mean angle in 

experiment (α=78°) whereas for the specimens D=150 mm and D=250 mm was equal to α=95° and 

α=106° in the experiments and α=102° and α=120° in the numerical calculations (the difference 

7%-13%). 
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Fig.5.52: Comparison of experimental and numerical results of tensile splitting strength ft against 

specimen diameter D for: a) each specimen (dots), b) mean value trend (continuous line) and 

c) DEM result (dashed line) 

 

 

 

Fig.5.53: Softening parameter α versus specimen diameter D for each specimen in tensile splitting 

experiment (dots), b) mean value trend (continuous line) and c) DEM result (dashed line) 
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Chapter 6 

Conclusions 

Some interesting conclusions may be offered from the experimental and numerical research works 

on concrete fracture at the meso-scale: 

 

Experiments 

- The size effect on strength and brittleness of concrete occurred in tensile splitting test due to 

fracture and non-uniformity of the vertical tensile stress caused by a formation of compressive 

wedges at the loading/supporting regions. The strength and ductility of concrete diminished with 

increasing specimen diamter. In experiments under the CMOD control mode, a snap-back 

phenomenon occurred. 

 

- The type of a loading/supporting strip strongly affected the concrete behaviour during tensile 

splitting. The splitting tensile strength was smaller by 10%, CMOD corresponding to the strength 

was smaller by 20% and displacement corresponding to the strength was smaller by 300% when the 

steel loading/supporting cylinders were used. A clear compressive wedge took place when plywood 

loading/supporting boards were used. 

 

- ITZs had a different width and porosity depending on aggregate roughness that determines the 

strength and brittleness of concrete. The width increased with growing aggregate roughness. ITZs 

usually did not surround all aggregate particles but covered solely 80-90% of the aggregate 

circumference. The ITZ porosity decreased towards the cement matrix. ITZs acted as attractors for a 

macro-crack. 

 

- The cracks in concrete occurred through bridging of interfacial micro-cracks. The macro-cracks 

propagated also sometimes through weak aggregate particles. The crack branching also happened. 

 

- The width of the fracture process zone (strain localization) was about 3.4 mm (0.28×da
max

). 

 

- X-ray micro-CT is a powerful tool to quantitatively measure the internal damage in concrete. 
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DEM analyses (uniaxial compression and tension) 

- The DEM model demonstrated its accuracy and applicability for concrete in terms of its elasticity 

and fracture properties. It realistically followed fracture including the occurrence of micro-cracks 

during their onset, formation and propagation (including phenomena of crack bridging, crack 

branching and inter-locking). The amount, shape and location of cracks were strongly affected by 

the shape of aggregate, its location and strength of ITZs. 

 

- The calculated concrete strength increased with increasing ratio CITZ/Ccm, and minimum cement 

particle diameter (tension) and decreasing number of ITZs. The ductility became larger mainly with 

decreasing ratio CITZ/Ccm (tension) and decreasing minimum cement particle diameter (compression). 

The crack number increased with increasing amount of ITZs. The cracks were more curved when the 

larger number of ITZs was assumed in DEM. The concrete ductility increased in 3D computations. The 

rate of breakage was significantly higher in ITZs than in the cement matrix. The tensile inter-granular 

fracture dominated.  

 

- The calculated concrete strength was larger by 10% for spheres than for clusters of spheres due to 

stress concentrations for the real aggregate with sharp edges that contributed to the smaller strength and 

faster cracking. More straight cracks occurred when spheres were used. The number of broken contacts 

was higher and more uniform for spheres. It was also higher in 3D than in 2D simulations. 

 

- The discrete macro-cracks were curved due to a stochastic distribution of aggregate particles 

including ITZs. They were created by bridging the interfacial micro-cracks (in calculations and in 

experiments). They possessed many small branches. The micro-cracking also occurred far beyond 

the crack tip. The external vertical load was transmitted via a network of normal contact forces 

which formed force chains. The compressive normal contact forces connected to the tangential 

contact forces developed along macro-cracks due to aggregate inter-locking. 

 

DEM analyses (splitting tension) 

- The experimental size effect was realistically reproduced in numerical calculations at the 

aggregate level, i.e. the concrete strength and ductility decreased with increasing concrete specimen 

diameter. The calculated decreasing strength approached an asymptote with increasing cylindrical 

specimen diameter within the considered specimen size range. 
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- DEM proved its capability to model concrete fracture in detail by taking the snap-back instability 

into account. The agreement of calculated stress-displacement results and crack shapes with 

experimental ones was satisfactory. The decrease of the strength of ITZs and minimum particle 

diameter in the mortar caused the reduction of both the splitting tensile strength and material 

brittleness.  

 

- The external vertical splitting force was transmitted via a network of normal contact forces which 

formed clear force chains. Some compressive forces appeared also along the macro-crack edge due to 

aggregate inter-locking. 

 

- For the force line contact, the total number of broken normal contacts was always lower by about 

10% than for the force surface contact. The rate of the normal contact breakage was higher in ITZs 

before the peak load and in the cement matrix after the peak load. Nearly 30-40% (cement matrix) and 

90% (ITZs) of normal contacts were damaged before the peak load due to micro-cracking. Due to 

cracking, the coordination number reduced from 4.75-4.80 down to 4.57-4.59. 

 

- The calculated maximum tensile normal stress along the central vertical line was very similar as the 

measured one and as the theoretical one according to the elastic theory. The calculated maximum 

compressive normal stress was smaller at the boundaries for plywood boards than for steel cylinders.  

 

- The shear crack displacement dominated over the normal crack opening before fracture and during 

fracture the normal crack displacements were obviously higher due to a tensile dominating failure. The 

particle rotations occurred after the bond breakage. The maximum rotations were very small (0.7°). 

 

- Due to the snap-back instability, the total internal energy reduced by 15%, the elastic normal 

internal energy reduced by 60% and the elastic tangential internal energy reduced by 20%. The 

plastic dissipation, numerical damping and elastic energy from removed cohesive contacts  increased 

by the factor 2.5, 2 and 2.5, respectively.  

 

- The continuous micro-cracking process started in the central vertical region at a very early 

deformation stage, i.e. far before the peak load. It consisted of two/three intensity regimes depending 

upon the specimen size. Initially, it evolved with the moderate intensity before the peak load for both 

the specimens and later with the pronounced intensity for the smaller specimen or with the pronounced 

and following moderate intensity for the larger specimen. The pronounced micro-cracking process 
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mainly started in the smaller specimen slightly before the peak load and in the larger specimen clearly 

before the peak load.  

 

- The snap-back behaviour occurred after the peak load in the larger specimen since the specimen was 

already strongly fractured and relatively fewer contacts were needed in the post-peak regime to fully 

damage the specimen in contrast to the smaller specimen. The specimen failure had a clear tensile type. 

i.e. the normal crack displacement always dominated strongly over the tangential crack displacement. 

At the peak, a clear macro-crack already developed in the larger specimen with the height equal to the 

half of the specimen diameter. For the smaller specimen, there existed many micro-cracks at the peak 

load. The width of FPZ was about 1/3 of the maximum aggregate diameter. 

 

- The higher strength of the smaller specimen was caused by the contribution of the normalized 

elastic energy that was greatly higher at the peak load than for the larger specimen due to the much 

lower fracture process intensity, expressed by a lower relative number of broken contacts with 

respect to the specimen diameter. The greatest total normalized internal energy absorbed in the 

fractured region was higher at the peak load by 30% in the smaller specimen. The greatest total 

normalized internal energy released in the region beyond the fracture zone was higher at the peak 

load by 30% for the larger specimen.  

 

- The load was carried in the specimens by strong compressive normal contact forces. The %-number 

of strong compressive/tensile normal contact forces was higher at the peak load for the smaller 

specimen due to its higher strength and low fracture intensity. After the peak, their drop was by far 

higher for the smaller specimen due to the high fracture intensity. 
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APPENDIX 1 

Experimental study of shear strength and failure mechanisms 

in RC beams scaled along height or length 

 

(published in the paper by Suchorzewski, J., Korol, E., Tejchman, J. i Mróz, Z. Experimental study 

of shear strength and failure mechanisms in RC beams scaled along height or length. Engineering 

Structures, 157, 203-223, 2018). 

 

A1.1 Introduction 

The extensive experimental studies and analytical formulae were presented in order to specify the 

dependence of the critical stress value on the size factor for plain and reinforced concrete beams 

subjected to bending, tension or compression (e.g. Bažant et al. (1994), Carpintieri (1989), Bažant 

et al. (1998), Duan et al. (2004), Bažant et al. (2007), Hoover&Bažant (2014), Korol et al. (2013), 

Korol&Tejchman (2014a)). The evolution of a post-critical softening modulus was also observed 

but regrettably not systematically documented. A transition from the snap-through response in the 

post-critical phase under load control for small size elements to snap-back response for large size 

elements observed in tests and predicted numerically (Korol&Tejchman(2014a), Korol et al. 

(2014b), Korol et al. (2015)) indicates the growth of brittleness of elements with growing size 

factor.Most tests were conducted for geometrically similar beams of varying size and reinforcement 

ratio (Korol et al. (2015), Kani (1967), Walraven (1978), Bažant et al. (1991), Yang et al. (2003), 

Reineck et al. (2003), Lubell et al. (2004), Tan et al. (2005), Zhang and Tan (2007), Belgin&Sener 

(2008)). However, only several papers were devoted to the analysis of the size effect in beams for 

an independent variation of height and length (e.g. Słowik&Smarzewski (2013)). This class of the 

variation of geometric parameters is typical in the engineering design and requires a separate study. 

The objective of the present paper is to identify experimentally differing failure mechanisms in 

reinforced concrete beams subjected to four-point bending for a separate variation of the depth and 

length at the constant thickness. Special attention was paid to a description of a shear fracture 

process (inherently related to the size effect) by specifying the width of strain localization zones by 

means of the digital image correlation (DIC) technique and measuring crack opening and slip 

displacements. The commonly used code procedures using strut-and-tie models proposed in the 

literature were used to calculate theoretical ultimate shear strengths in order to compare them with 

experimental outcomes. In addition, crack widths and deflections were compared with code 

formulae. 
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A1.2 Specimens geometry 

The beams of the series „1‟ were scaled along the effective height D in the proportion 1:2:4 with the 

constant effective span length leff=2700 mm. The beams were denoted as S1D18a108, S1D36a108 

and S1D72a108, where the symbol S1 denotes the series „1‟, D - the effective beam depth in [cm] 

and a - the shear zone length in [cm]. Note that the beam S1D36a108 (D=360 mm) had the same 

dimensions as the concrete beam (denoted as SL40) used in the size effect experiments by Korol 

(Krol et al. 2010) and was twice as high as the beam S1D18a108 (D=180 mm) and twice as small as 

the beam S1D72a108 (D=720 mm). Thus, the shear zone length a and bending zone length b 

(distance between two concentrated forces V) were constant a=1080 mm and b=540 mm, 

respectively (Fig.A1.1A, Tab.A1.1). The shear span parameter ηa=a/D was 1.5, 3 and 6, the length 

parameter ηl=leff/D=3.75, 7.5 and 15 and the bending span parameter ηb=b/D was 0.75, 1.5 and 3. 

Each beam height h included 3 identical concrete specimens in order to verify the result 

repeatability (indicated as: S1D18A108_1 - S1D18a108_3, S1D36a108_1 - S1D36a108_3 and 

S1D72a108_1 - S1D72a108_3). 

 

The beams of the series „2‟ had the same height (D=360 mm) but varying effective span length leff 

and shear span a (the latter scaled in the proportion 1:2:3) (Fig.A1.1B, Tab.A1.2). The beams were 

denoted as S2D36a36 (a=360 mm), S2D36a72 (a=720 mm) and S2D36A108 (a=1080 mm) with 

the length parameter ηl=leff/D=3.5, 5.5 and 7.5, shear span parameter ηa=a/D=1.0, 2.0 and 3.0 and 

bending span parameter ηb=b/D=1.5. The longest beam from the series 2 (S2D36a108) had the same 

dimensions as the beam from the series „1‟ denoted as S1D36a108. The beam S2D36a36 was as 

twice as short as the beam S2D36a72 and the beam S2D36a108 was as twice as long as the beam 

S2D36a72. Each beam included 2 identical specimens only (instead of 3) in order to reduce the 

costs of the beams‟ production (denoted as: S2D36a36_1 and S2D36a36_2, S2D36a72_1 and 

S2D36A72_2 and S2D36a108_1 and S2D36a36_2). 

 

In total 15 beams (series „1‟: 9 beams and series „2‟: 6 beams) were subjected to four-point bending. 

The ratio of the shear span a to the effective height D varied from ηa=a/D=1 up to ηa=6, thus 

different failure modes were expected to be developed (Zhang&Tan 2007b, Belgin&Sener 2008). 

The ratio of the bending span b to the effective height D varied from ηb=b/D=0.75 up to ηb=3 (series 

„1‟) and ηb=1.5 (series „2‟). 
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A) 

B) 

 

Fig.A1.1: Experimental reinforced concrete beams under four-point bending: A) loading scheme for 

series „1‟ (leff=2700 mm, a=1080 mm, b=540 mm) with varying D, B) loading scheme for series „2‟ 

(D=360 mm, b=540 mm) with varying a and leff. (D - effective beam height, leff - distance between 

beam supports, l - total beam length, V - vertical concentrated force applied, a - shear zone span, b - 

bending zone span, dimensions are in [mm]) 

 

                               a)                                    b)                                   c) 
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Fig.A1.2: Experimental cross-section of: a) beam S1D18a108 (D=180 mm), b) beams: S1D36a108, 

S2D36a36, S2D36a72, S2D36a108 (D=360 mm) and c) beam S1D72a108 (D=720 mm) 

(dimensions are in [mm]) 

 

Tab.A1.1: Dimensions of RC beams in test series „1‟ 

Beam dimension 
Beam 

S1D18a108 

Beam 

S1D36a108 

Beam 

S1D72a108 

D [mm] 180 360 720 

leff [mm] 2700 2700 2700 

a [mm] 1080 1080 1080 

b [mm] 540 540 540 

ηl=leff/D 15 7.5 3.75 

ηa=a/D 6 3 1.5 

ηb=b/D 3 1.5 0.75 

c=c’/D 0.28 0.14 0.10 

 

Tab.A1.2: Dimensions of RC beams in test series „2‟ 

Beam dimension 
Beam 

S2D36a36 

Beam 

S2D36a72 

Beam 

S2D36a108 

D [mm] 360 360 360 

leff [mm] 1260 1980 2700 

a [mm] 360 720 1080 

b [mm] 540 540 540 

ηl=leff/D 3.5 5.5 7.5 

ηa=a/D 1 2 3 
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ηb=b/D 1.5 1.5 1.5 

c=c’/D 0.14 0.14 0.14 

 

The reinforcement of all beams consisted of ribbed bars of the diameter ϕ=20 mm with the mean 

yielding stress of 560 MPa (class B500) and the modulus of elasticity of 205 GPa. The longitudinal 

reinforcement ratio was designed as l=1.4%. Each beam size required a different number of bars 

depending on the effective depth D. The beams of D=18 cm and D=36 cm had 2 and 4 bars in one 

layer, respectively whereas the beam of D=72 cm had two layers with 4 bars i.e. 8 bars in total 

(Fig.A1.2). In order to avoid the anchorage zone failure and slip between reinforcement and 

concrete, hooked steel bars were used (Fig.A1.1) with the anchorage length of 130 mm, 310 mm or 

670 mm, depending on the beam height. 

 

Tab.A1.3: Concrete mixture recipe 

Material Weight or volume 

in dry state 

Portland cement: CEM II/A-V 42.5R 340 kg 

Aggregate:  

     sand 0-2 mm 775 kg 

     gravel 2-8 mm 750 kg 

     gravel 8-16 mm 400 kg 

Water 140 l 

 

The specimens from the series „1‟ and series „2‟ were casted separately, however the concrete recipe 

was similar (Tab.A1.3). The maximum aggregate diameter was dmax=16 mm and the water to 

cement ratio was 0.41. The accompanying tests were performed, including uniaxial compression on 

6 cubes (150×150×150 mm
3
), splitting tension and elastic compression on 3 cylinders (θ=150 mm 

and L=150 mm). The measured average compressive strength on cubes fcm was 59.26 MPa (series 

„1‟, standard deviation of 2.37 MPa) and 63.81 MPa (series „2‟, standard deviation of 2.09 MPa) 

(the mean value 


cm
f 61.5 MPa). Thus the corresponding concrete class was C45/55. The average 

characteristic splitting tensile strength was 2.81 MPa (series „1‟, standard deviation of 0.52 MPa) 

and 3.61 MPa (series „2‟, standard deviation of 0.76 MPa) (the average value was 3.21 MPa). The 
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measured average elastic modulus was E=33.1 GPa (series „1‟, standard deviation of 2.36 GPa) and 

E=35.3 GPa (series „2‟, standard deviation of 3.02 GPa). 

 

A1.3 Test procedure 

The tests were performed under displacement-controlled conditions. Steel loading plates were 

always used in order to avoid local concrete crushing. Their area was always the same, i.e. 100×250 

mm
2 

(la×t). The area of support (bearing) plates (lb×t) had also the same size. During the test, the 

vertical force and displacements were measured. The true deflection at the mid-span and support 

displacement were registered by means of linear variable displacement transducers (LVDT‟s). The 

steel strains were traced with strain gauges placed on reinforcement bars at the beam mid-span.  

 

The back side of beams was intended for 2D displacement measurements of localized zones using 

the non-invasive Digital Image Correlation (DIC) technique (Skarżyński&Tejchman (2013b), 

Skarżyński et al. (2011), Bhardi&Inoue (2005), Rechenmacher&Finno (2004), Słonimski et al. 

(2007)). The ability of DIC method to measure the width of a localized zone on the concrete surface 

was confirmed in laboratory tests by Skarzynski et al. (Skarżyński&Tejchman 2013b) The localized 

zones were registered above a small notch in the concrete cover (below the reinforcement) at the 

beam mid-span (the notch length was 20 mm). The digital camera Nikon D800 with the image 

resolution of 36 MPix was used. The image captured area on the concrete surface of size 75 mm 

(height) and 50 mm (width). The images were taken every 30 seconds. The pixel number per mm 

was about 90 pix/mm. On the opposite side of beams above the notch tip the digital microscope 

DG-3X with a lens with the magnification up to 1000× was used to trace a crack propagation. 

 

The front side of the beam was prepared to track cracks and to measure their width with a simple 

microscope. A detailed description including crack opening ω and slip displacements δ were 

calculated based on measurements with a digital extensometer of DEMEC type with base of 

100 mm. The measuring mesh consisting of equilateral triangles which covered the area where a 

critical diagonal crack was expected to appear. The number of triangles varied between particular 

series depending on the beam size. During test the elongation of triangle sides (AB, AC and BC) 

was measured and the crack trajectory was registered. The crack normal (opening) displacement ω 

and crack tangential (shear) displacement δ were calculated using a simplified formula by Sato et al. 

(Sato et al. 2004). The increments of lengths of triangle sides AB and AC (Fig.A1.3) can be 

expressed as follows: 
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   1111

'

1 sincos   lll ,     (A1.1) 

and 

2222

'

2 sincos   lll ,     (A1.2) 

 

where: li=|AB| – the initial triangle side length, li’=|AB‟| – the deformed triangle side length and θi - 

the angle between the crack and triangle side. Equations 2 and 3 allowed for determining the crack 

displacements δ and ω: 

 

                                                 
1221

122211






sincossincos

sin)ll(sin)ll( ''






    

(A1.3) 

and 

2112

122211






sincossincos

cos)ll(cos)ll( ''




 .   (A1.4) 

 

The varying angles θ1 and θ2 were measured during post-processing analyses of images taken 

during tests. Since the angle differences inside all equilateral triangles during deformation were 

negligible, therefore for the simplicity of calculations these internal angles were assumed to be 

constant (60
o
). 
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Fig.A1.3: Calculation method of crack opening and sliding displacements based on grid of 

equilateral triangles on concrete surface (ABC - initial triangle location, AB'C' - - displaced triangle 

location) (Sato et al. 2004) 

 

A1.4. Experimental results 

Failure modes and nominal strength 

Series ‘1’: varying effective depth D and bending zone span b at constant shear zone span a 

The varying effective depth D=0.18, 0.36 and 0.72 m and constant shear span a=1.08 m contributed 

to the variation of the parameter ηa from 1.5 through 3.0 up to 6.0, the parameter ηb from 0.75 up to 

3 and the parameter ηl from 3.75 up to 15. It was experimentally observed that these parameters had  

a great effect on the beam failure mode and ultimate load. 

 

The smallest beams S1D18a108 with ηa=6.0 (ηb=3, ηl=15) reached their limit state in the flexural 

failure mechanism developing in the central beam zone, inducing concrete cracking and 

longitudinal reinforcement yielding combined with concrete crushing in the upper beam portion. 

This  failure mode was preceded by growth and opening of bending cracks leading to localized 

failure combined with a significant increase of the beam deflection. The  total averaged ultimate 

vertical force acting on the beams was Pmax=2Vmax=120.74 kN (Fig.A1.4a) while the normalized 

average deflection u/D corresponding to the failure onset was 12.3%. This failure mode and the 

related scale effect was analyzed in numerous papers (Bažant&Planas (1998), Korol et al. (2013), 

Korol&Tejchman 2014), Korol et al. (2015)). The effective stress ζeff used for the expression of 

beam strength was the elastic stress value at the external beam layer ζeff=(3Pmax/tD)a/D. 

 

The medium high beams S1D36a108 for ηa=3 (ηb=1.5, ηl=7.5) failed in shear with dominant normal 

diagonal crack displacements (so-called diagonal shear-tension failure (Sato et al. 2004) and this 

type of failure was sudden and brittle. The mean total ultimate vertical force was 

Pmax=2Vmax=242.47 kN (Fig.A1.4b) while the normalized average deflection u/D corresponding to 

the ultimate force was 1.71%. The highest beams S1D72a108 with ηa=1.5 (ηb=0.75, ηl=3.75) failed 

in shear with significant both tangential and normal diagonal crack displacements (so-called 

diagonal shear-compression failure (Sato et al. 2004)) and with a huge increase of the ultimate shear 

strength supported by an internal arch action (Fig.A1.4c). This failure mode was also sudden and 

brittle. The mean total ultimate vertical force was Pmax=2Vmax=1029.70 kN (Fig.A1.4c) while the 

normalized average deflection u/D corresponding to Pmax was 1.0%. The vertical-force-deflection 
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diagrams were similar for beams with the similar geometry (Fig.A1.4). All curves after first 

cracking changed their slope and behave almost linearly up to the yield plateau and/or up to the 

peak force (for the beams S1D36a108 and S1D72a108, the yield plateau was not reached). The 

post-peak softening was not observed due to a sudden loss of the beam stability during failure. 

a) 

 

b) 

` 
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c) 

 

Fig.A1.4: Experimental force - deflection diagrams P=f(u) for RC beams (series „1‟ with 

leff=1080 mm and b=540 mm): a) S1D18a108 (D=180 mm, ηa=6), b) S1D36a108 (D=360 mm, 

ηa=3) and c) S1D72a108 (D=720 mm, ηa=1.5, P=2V) 

 

Series ‘2’: varying shear zone span a at constant effective depth D and bending zone span b 

The varying shear span a=0.36 m, 0.72 m and 1.08 m and constant beam depth D=0.36 m provided 

the varying shear span parameter ηa from 1.0 through 2.0 up to 3.0 and constant bending span 

parameter ηb=1.5, (ηl=3.5-7.5). The effect of the varying shear span on the nominal strength and 

failure mode was very strong (Tab.A5). The longest beam S2D36a108 with ηa=3.0 failed due to 

diagonal shear failure with the dominant tension by reaching the mean ultimate vertical force 

Pmax=2Vmax=229.42 kN (Fig.A1.5a). The corresponding normalized deflection u/D was 1.65%. The 

shortest beams S2D36a36 with ηa=1.0 (ηl=3.5) failed due to the shear failure combined with the 

dominant compression. The mean total ultimate vertical force was Pmax=1330.48 kN (Fig.A1.5c) 

while the corresponding normalized deflection was 1.83%. The failure was characterized by a high 

shear strength and relatively low deflection. The shear span parameter ηa=2 in the beam S2D36a72 

(ηl=5.5) (Fig.A1.5b) turned out to be a transitional limit value between high beams and low beams 

where the failure changed its mode. The first beam S2D36a72_1 failed in shear with dominant 

normal diagonal crack displacements and the second one S2D36a72_2 failed in shear with 

significant both normal and tangential diagonal crack displacements. Due to a varying failure mode, 

the ultimate vertical forces and corresponding deflections strongly varied (Fig.A1.5). The beam 

S2D36a72_1 reached Pmax=320.17 kN and u/D=1.86% whereas the beam S2D36a72_2: 
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Pmax=439.43 kN and u/D=3% . The difference in the ultimate force was 35% while in the deflection 

was 60%. The force-deflection diagrams were nearly linear up to the peak force and had similar 

shapes (Fig.A1.5). The post-peak softening was not registered because of the sudden failure. 

 

a) 

 

b) 
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c) 

 

Fig.A1.5: Experimental vertical force - deflection diagrams P=f(u) for RC beams (series „2‟ with 

D=360 mm and b=540 mm): a) S2D36a108 (ηa=6), b) S2D36a72 (ηa=3) and c) S2D36a36 (ηa=1) 

(P=2V) 

 

The effective ultimate shear stress representing beam strength was assumed as its mean cross-

sectional value c=Vmax/(tD). In the series „1‟ (leff=2700 mm, a=1080 mm) its mean value was 

c=1.34 MPa, c=1.35 MPa and c=2.86 MPa for the beam S1D18a108 (D=180 mm, ηa=6, ηb=3), 

S1D36a108 (D=360 mm, ηa=3, ηb=1.5) and S1D72a108 (D=720 mm, ηa=1.5, ηb=0.75), respectively 

(Tab.A1.4, Fig.A1.6). Thus the effective failure stress c increased with increasing depth D due to a 

different failure mode but decreased with increasing span ratio ηa (Figs.A1.6A-6B). In the series „2‟ 

(ηb=1.5, D=360 mm), the measured shear strength c=Vmax/(tD) decreased with increasing shear 

span a and effective  length leff  from c=7.39 MPa (ηa=1, l=3.5) to c=2.11 MPa (ηa=2,  ηl=5.5) 

and next down to c=1.31 MPa (ηa=3, ηl=7.5) (Tab.A1.4, Figs.A1.6A). Thus with the decrease of a 

from 3 down to 1.5 (l=7.5-3.75), the shear strength increased 2.2 times but with the decrease of a 

from 3 down to 1 (l=7.5-3.5), the shear strength increased 6 times. Figure A1.5C presents the shear 

strength evolution for increasing parameter ηa based on own experimental data (Fig.A1.6Ca) and 

compared with results obtained by Słowik and Smarzewski (2012) (Fig.A1.6Cb) wherein the beams 

were scaled along their length. Both experimental data show good agreement. 
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Tab.A1.4: Experimental results providing  failure load Pmax and shear failure stress ηc=Vmax/(tD) for 

two failure modes with RC beams of series „1‟ and series „2‟ (Y – flexural mechanism with 

reinforcement yielding, T – shear-tension failure in concrete with dominant normal diagonal crack 

opening displacements, C – shear-compression failure in concrete with combined significant 

tangential and normal  crack displacements, t=0.25 m) 

 

Beam description 
Beam ‘1’ 

Pmax [kN] 

Beam ‘2’ 

Pmax [kN] 

Beam ‘3’ 

Pmax [kN] 

Mean value 

Pmax [kN] 

c=Vmax/(tD) 

[MPa] 

Failure 

mode* 

S1D18a108 

ηa=6.0, ηb=3.0, 

c=0.28 

104.88 125.52 131.83 120.74 

 

1.34 

 

Y 

S1D36a108 

ηa=3.0, ηb=1.5, 

c=0.14 

* 235.70 249.24 242.47 

 

1.35 

 

T 

S1D72a108 

ηa=1.5, ηb=0.75, 

c=0.10 

953.86 1075.32 1059.91 1029.70 

 

2.86 

C 

S2D36a36 

ηa=1.0, ηb=1.5, 

c=0.14 

1170.12 1490.83 - 1330.48 

 

7.39 

 

C 

S2D36a72 

ηa=2.0, ηb=1.5, 

c=0.14   

320.17 439.43 - 379.80 

 

2.11 

 

C/T 

S2D36a108 

ηa=3.0, ηb=1.5, 

c=0.14  

220.32 238.51 - 229.42 

 

1.31 

 

T 

*result‟s lack due to measuring system failure 
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C) 

 

Fig.A1.6: Experimental results presenting evolution of shear strength: A) for varying length 

parameter l=l/D and shear span parameter ηa=a/D, B) for varying bending span parameter ηb=b/D 

(a) series „1‟ with varying effective depth D and bending span b at constant shear span a and b) 

series „2‟ for varying a  with constant effective depth D and bending span b) and C) as compared 

with experiments by Slowik and Smarzewski (2012) for different a (a) our experiments and b) 

experiments by Słowik and Smarzewski (2012) (note that beams for a =6 failed in flexural 

mechanism). 

 

A1.5 Failure mechanisms and crack patterns 

Figure A1.7 presents the typical evolution of cracks for 3 different failure modes with increasing 

load. The failure modes were determined based on DEMEC measurements (see section A1.8). The 

crack evolution was similar for all the specimens up to 50% of the ultimate load value. First, the 

vertical flexural cracks appeared in the beam mid-span region (8-12% of the failure force) wherein 

the bending moment was constant. Later inclined cracks formed in the shear zone due to shear 

stress action close to both supports. A further evolution of the crack pattern was different: the low 

beams ( a =6, l =15) failed in bending by reinforcement yielding (Fig.A1.7A) and the high beams 

( l 7.5) failed in brittle diagonal shear (Figs.A1.7B and A1.7C). The shape and location of the 

critical diagonal crack from the nearest support depended upon the failure type. 
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a) 

 

b) 

 

c) 

 

d) 

A) 

 

a) 

 

b) 

 

c) 

 

d) 

B) 
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a) 

b) 

c) 

d) 

C) 

Fig.A1.7: Typical crack pattern evolution for different failure modes in RC beams: A) beam 

mechanism with reinforcement yielding (S1D18a108, a=6), B) shear failure in concrete with 

dominant normal diagonal crack displacement (S1D36a108, a=3) and C) shear failure in concrete 

with dominant tangential diagonal crack displacement (S1D72a108, a=1.5) for increasing vertical 

force P (a) 25%, b) 50%, c) 70% and d) 100% of failure force Pmax) 
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Figure A1.8 presents the final crack pattern (at the failure) for RC beams with the different ratio 

a=a/D. In the beam S1D18a108 (a/D=6) (Fig.A1.8a), the vertical cracks stabilized after reaching 

12% of the beam height for 80% of the peak force Pmax. Next the crack width in the bending span 

domain b continuously increased. The critical diagonal crack for low beams (a=3, Fig.A1.8b) 

initiated near the mid-point of the shear span a and after reaching the ⅓ of the beam height turned to 

the direction of the vertical force point with the angle between 16.8
o
 and 19.4°, whereas in the 

bottom part, where the crack propagated through reinforcement, the angle varied between 42.2
o
 and 

43.6°. The distance between the critical diagonal crack and beam support dc related to the shear 

span a varied between dc/a=0.5 (a=3) for low beams up to as dc/a=0 for high beams (a=1). The 

dominant inclined crack propagated towards a beam compression zone and support, reaching at the 

failure first the beam top and next the beam bottom. The formation of a critical diagonal crack for 

high beams (a=1 and a=1.5) (Figs.A1.8c and A1.8f) was sudden. Shortly after the appearance, the 

critical diagonal crack stabilized at the 65% of the beam height. The further growth towards a 

compression zone was very slow and stable. Just before the failure a new diagonal crack appeared 

in concrete by connecting the support and vertical force point. The crack evolution for the beam 

S2D36a72_1 (Fig.A1.8d) was similar to the one for low beams with the ratio a/D=3 (Fig.A1.8b) 

while the second beam S2D36a72_2 (Fig.A1.8e) had a crack pattern typical for high beams. For 

a=2-3 the critical diagonal cracks (Figs.A1.8b and A1.8e) were strongly curved to the horizontal in 

the compressive region opposite to the cases with  a<2 where they were almost straight 

(Figs.A1.8c and A1.8f). In general, the crack geometries were approximately in agreement with the 

direction of compressive principal stresses.  

 

Crack inclination and heights  

The mean failure diagonal crack inclination to the horizontal changed from 30° up to 42
o
 for a=1-3 

(Fig.A1.9).The critical diagonal crack (a≤3) was significantly steeper for the smaller ratio of a 

and l (Fig.A1.10). The average number of main cracks decreased with decreasing shear span ratio 

a/D and changed from 4 cracks in the beam S1D18a108 up to 8 for the beam S1D72a108. The 

crack spacing increased from 14 cm (beams S1D18a108 and S1D36a108) up to 20 cm for the 

highest beam S1A108D72. In the beam series „2‟ it was constant - 12.5 cm. The crack width w was 

the largest for the beam S1D18a108 due to steel yielding (w=0.35 mm) and the smallest for the 

highest beam S1D72a108 (w=0.20 mm). 
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e) 

 

f) 

 

Fig.A1.8: Crack pattern at failure typical for each beam geometry depending upon ratio a/D for 

different failure mode: a) reinforcement yielding (S1D18a108, a=6), b) shear failure in concrete 

with dominant normal diagonal crack displacement (S1D36a108, a=3), c) shear failure in concrete 

with dominant tangential diagonal crack displacement (S1D72a108, a=1.5), d) shear failure in 

concrete with dominant normal diagonal crack displacement (S2D36a72_1, a=2), e) shear failure 

in concrete with dominant tangential diagonal crack displacement (S2D36a72_2, a=2) and f) shear 

failure in concrete with dominant tangential diagonal crack displacement (S2D36a36, a=1) (critical 

diagonal crack is marked in red, beams are not proportionally scaled). 

 

The DIC method was applied to visualize localized zones based on displacements which precede 

macro-cracks. Digital Image Correlation (DIC) technique. DIC is a well-known velocity measuring 

non-invasive procedure, originally developed for fluid mechanics and used for the analysis of 

displacements in tests on soil and rock models (Bhandari&Inoue 2005, Rechenmacher&Finno 2004, 

Słonimski et al. 2007, White et al. 2003, Skarżyński&Tejchman 2013, Skarżyński et al. 2013, 

Skarżyński et al. 2011). It operates by tracking spatial variations of brightness within an image 

(divided into a mesh of patches) by comparing successive images so that displacement data can be 

extracted from sequences of images, and strains then calculated from gradients of measured 

displacements. The capability of DIC for measuring the shape and width of fracture process zones 

in concrete was confirmed in the experimental research results (Skarżyński&Tejchman 2013, 
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Skarżyński et al. 2013, Skarżyński et al. 2011). The surface on the opposite side of the beam was 

observed with a digital microscope DG-3x. 

 

 

Fig.A1.9: Diagonal failure crack inclination to horizontal θ in RC beams for experiment series „1‟ 

(S1, triangular markers) and „2‟ (S2, diamond markers) versus ratio a=a/D=1-3 (a - shear domain 

span, D - effective height) 

 

Figure A1.11 shows the evolution of a vertical (flexural) localized zone with increasing vertical 

force for the beam S1D18a108_2 (3 cm above the beam bottom) which failed in bending (l=15, 

a=6). The localized zone appeared at around 2% of the failure force. Later, at 3.75% of the failure 

load, two localized zones could be observed. Next both the zones were connected and created a 

branching (at 5% of the failure force). The right localized zone reached the top border of the image 

frame for 11.3% of the failure force.  

 

For P=15 kN (12.5% of Pmax) the macro-crack appeared along the left localized zone (Fig.A1.2). 

The width of the flexural localized zone was 2.4 mm (based on DIC). 

 

The evolution of the horizontal normal strain εxx for the high beam S2D36a36 (l=3.5, a=1) which 

failed in shear is demonstrated in Fig.A1.13 again in the bending region (10 mm above the beam 

bottom). First, the localized zone was noticed at the 5% of the failure force reaching 75% of the 

DIC frame height. For the 6.5% of failure force, the localized zone was visible over the entire 
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height of the frame. The maximum horizontal strain increased linearly with the vertical force 

growth. The maximum horizontals strains for the 17% (Fig.A1.13c) of the failure force were 2 

times higher than at 3% (Fig.A1.13d) of the failure force. Figure A1.13g shows the evolution of 

cumulative horizontal displacement in the image area for different force levels. A jump in the 

distribution of horizontal displacement increments indicated the crack presence. This width of the 

flexural localized zone was again 2.4 mm (based on DIC). 

 

a) 

 

b) 

Fig.A1.10: Experimental normalized mean height of compressive zone hc/h in RC beams for series 

„1‟ (S1; marked with dots) and „2‟ (S2, marked with triangles) in shear zone (a) and bending zone 

(b) versus a=a/D (a - shear span, D - effective height) 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig.A1.11: Horizontal normal strain maps εxx for beam S1D18a108_2 failed in bending (a=a/D=6) 

(vertical and horizontal axes denote coordinates in [mm] and colour scale strain intensity) for 

increasing vertical force P: a) 2%, b) 3.75%, c) 5%, d) 6.5%, e) 8.2%, f) 11.3% of failure force Pmax 

(strains are shown for mid-span, 3 cm above beam bottom) 
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Fig.A1.12: Macro-crack on beam surface S1D18a108-2, image taken by microscope DG-3X with 

magnification 1000× for 15 kN at same height as DIC image of Fig.A1.11 (crack width  

wc≈0.009 mm) 

 

The DEMEC triangle measurements enabled us to accurately determine the crack normal (opening) 

and crack tangential (shear) displacement (Eqs.A1.3 and A1.4, Section A1.3). Figure A1.14 shows 

the location of triangles in DEMEC measurements for RC beams. Figures A1.15 and A1.16 present 

the crack displacement evolutions for each beam size for two locations: bottom (reinforcement) and 

top (shear-compression zone). All measured crack displacements in 4 beams S1D36a108 (a/D=3), 

S1D72a108 (a/D=1.5), S2D36a72 (a/D=2) and S2D36a36 (a/D=1) are shown in Fig.A1.16. The 

measurement accuracy of crack displacements was 0.001 mm. 
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a) 

 

b) 

 

c) 

 

d) 

e) 

 

 

Fig.A1.13: Horizontal normal strain maps εxx for beam S2D36a36_1 (a=1) for increasing vertical 

force: a) 5%, b) 6.8%, c) 13%, d) 17% of failure force Pmax (strains are shown in mid-span - 10 cm 

above beam bottom), e) evolution of cumulative horizontal displacement dx along image frame 

width d for different force levels - 10 mm above beam bottom (vertical and horizontal axes denote 

coordinates in [mm] and colour scale strain intensity) 
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a) 

 

b) 

 

c) 

A) 
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a) 

 

b) 

 

c) 

B) 

Fig.A1.14: Location of triangles for DEMEC measurements in RC beams: A) series „1‟: a) 

S1D18a108 (D=180 mm, a=6), b) S1D36a108 (D=360 mm, a=3), c) S1D72a108 (D=720 mm, 

a=1.5) and B) series „2‟: a) S2D36a108 (a=1080 mm, a=3) b) S2D36a72 (a=720 mm, a/D=2), c) 

S2D36a36 (a=360 mm, a=1) (main cracks are marked by thick solid lines) 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


204 APPENDIX 1 

 

In the beam S1D18a108 (D=180 mm, a=6, mean Pmax=120 kN) which failed in bending by 

reinforcement yielding (Fig.A1.15Aa), an insignificant tangential crack displacement was observed 

(δ<0.02 mm) whereas the normal crack opening constantly grew with increasing vertical force P 

(from P=35 kN) up to ω=0.14 mm (bottom) and ω=0.12 mm (top) (Fg.1.15A).  

 

In the beam S1D36a108 (D=360 mm, a=3, mean Pmax=242 kN) which failed in shear (Fig. 

A1.15Ab), a slightly larger tangential diagonal crack displacement was observed at the bottom 

(δ=0.04 mm) (Fig.1.15Ba). This tangential crack displacement occurred as a straight flexural crack 

changed into an inclined shear crack (P=150 kN). The maximum normal crack displacement was 

significantly larger (ω=0.27 mm). At the beam top region, a small tangential crack displacement 

continuously increased from the test initiation up to δ=0.003 mm (Fig.A1.15Bb). The small normal 

crack displacement, ω=0.017 mm, was negative in this zone due to compression (the crack reached 

the triangle location just before failure). Summing up the tangential crack displacement was 

insignificant along the entire diagonal shear crack. 

 

In the beam S1D72A108 (D=720 mm, a=1.5, mean Pmax=1029 kN) which also failed in shear 

(Fig.A1.15Ac), the failure diagonal crack development was initiated later (P=400 kN) with a 

proportional normal ω and tangential displacement δ at the beam bottom (Fig.1.15Ca). The 

maximum crack displacements were: δ=0.10 mm and ω=0.30 mm. At the beam top region, the 

failure crack was preceded by a tangential crack displacement up to δ=0.1 mm without a normal 

crack displacement (Fig.A1.15Cb). The normal crack displacement appeared when the diagonal 

failure crack was created. The maximum crack displacements were: δ=0.58 mm and ω=0.25 mm. 

Thus the tangential crack displacement was higher than the normal one along the diagonal shear 

crack in the compressive beam region. 
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 a) 

 

                            b)                                A) 

 

 

a) 
                               b)                               B) 

 

 

 

 

a)             b)                                C) 

Fig.A1.15: Experimental force – normal and tangential crack displacements in RC beams (series 

„1‟): A) S1D18a108 (D=180 mm, a=6) (Fig.A1.14Aa), B) S1D36a108 (D=360 mm, a=3) 

(Fig.A1.14Ab) and C) S1D72a108 (D=720 mm, a=1.5) (Fig.A1.14Ac) for: a) bottom triangle in 

reinforcement anchorage zone and b) in compression-shear zone (continuous blue lines denote 

tangential displacement δ and dashed green lines denote normal displacement ω, sections are shown 

in Fig.A1.14) 
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The beam S2D36a108 (D=360 mm, a=3, mean Pmax=229 kN, Fig.A1.16Ba) exhibited the same 

behaviour as the beam from the series „1‟ (S1D36a108, a/D=3) with a clear normal diagonal crack 

displacement at the bottom (ω=0.11 mm) and a small tangential crack displacement along the entire 

crack (δ=0.02 mm) (Fig.1.16A). 

 

In the beam S2D36A72 (D=360 mm, a=2, mean Pmax=379 kN, Fig.A1.16Bb), the normal crack 

displacement again strongly dominated (Fig.A1.16B). At the bottom, the normal crack first opened 

(ω=0.16 mm) due to bending and later closed (down to ω=0.05 mm) when the diagonal shear crack 

crossed the reinforcement (Fig.A1.16Ba). In the beam top region, a negative (compressive) normal 

crack displacement increased with the force P up to P=250 kN (ω=-0.04 mm)). Later when the 

crack crossed the triangle, this normal crack displacement changed into a significant positive 

(tensile) one (ω=0.20 mm) (Fig.A1.16Bb). The maximum tangential crack displacement was 

insignificant there δ=0.02 mm. 

 

The behaviour of the diagonal shear crack in the most slender beam S2D36a36 (D=360 mm, a=1, 

mean Pmax=1330 kN, Fig.A1.16Bc) was similar as this in the beam S1D72a108 (a=1.5) 

(Fig.A1.16C). At the bottom the normal and tangential diagonal crack displacements increased from 

the test beginning (Fig.A1.16Ca). The maximum crack displacements were: δ=0.15 mm and ω=0.38 

mm. At the beam top region, they also immediately increased (Fig.A1.16Cb). The maximum crack 

displacements were there: δ=0.08 mm and ω=0.10 mm. 

 

Summing up, the limit load Pl in experiments depended on two non-dimensional geometric 

parameters a=a/D and b=b/D and the scale parameter D, thus ),,( DPP ball  . The length 

parameter baeffl Dl   2/  was affected then by a and b. Depending upon a=a/D, two 

failure mechanisms occurred, namely the flexural mechanism in the central beam zone and the 

shear mechanism developed through a combined shear-tension or shear-compression mode in 

exterior beam zones. Two shear failure modes were distinguished depending on the dominance of 

tension or compression acting on the progressive shear crack interface. 
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                                  a)                           b)                             A) 

a)                                b)                             B) 

                                      a)                                b)                               C) 

 

Fig.A1.16: Experimental force – normal and tangential crack displacements in RC beams (series 

„2‟): A) S2D36a108 (a=1080 mm, a=3) (Fig.A1.14Ba), B) S2D36a72 (a=720 mm, a=2) 

(Fig.A1.14Bb) and C) S2D36a36 (a=360 mm, a=1) (Fig.A1.14Bc) for: a) bottom triangle in 

reinforcement anchorage zone and b) in compression-shear zone (continuous blue lines denote 

tangential displacement δ and dashed green lines denote normal displacement ω, sections are shown 

in Fig.A1.14) 
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A1.6. Analytical calculation 

Initially the experimentally measured beam shear strengths were compared with the analytical 

values based on EC (EN 1992-1-1 (2008)) and ACI 318-14 (2014) and proposed by Zhang and Tan  

(2007). 

 

EN 1992-1-1 (2008) 

The characteristic shear strength of RC beams without shear reinforcement was calculated as  

 

                             𝑉𝑅𝑑 ,𝑐 = [𝐶𝑅𝑑 ,𝑐𝑘 100
𝑙
𝑓𝑐 

1

3]𝑡𝐷       0.035𝑘
3

2𝑓𝑐

1

2 𝑡𝐷                     (A1.5) 

with 

                                                                     𝑘 = 1 +  200/𝐷,                                            (A1.6) 

 

where CRd,c is the recommended empirical coefficient derived from experiments (the characteristic 

value of CRd,c=0.18), ρl denotes the longitudinal reinforcement ratio (ρl=1.4%) and fc is the uniaxial 

(cylinder) compressive strength of concrete (fc=49 MPa=0.8
cm

f


), t=0.25 m and D in [mm]). 

 

ACI 318-14 (2014) 

The shear strength of high RC beams was calculated by applying a simple strut-and-tie model 

(Fig.A1.17). With the angle θ between the strut and tie (tanθs=D/a) and compressive force in the 

strut Fus, the ultimate vertical force Vn was computed from the strut compressive force: 

 

Vn=Fussinθs      (A1.7) 

with  

Fus=fceAcs=fcewst=0.85fcwst,    (A1.8) 

 

wherein fce - the effective strut compressive strength, Acs=ws×t - the cross-sectional area at the end 

of the strut (t=0.25 m), ws- the strut width of diagonal strut, fc – the cylinder compressive strength 

(fc=49 MPa) and  - the efficiency factor (=0.6). The width of the strut ws was related to lc and lb 

and calculated as  

ws=lccoss  + lbsins              with                tanθs=D/a  (A1.9) 
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and lc=2c’ (a=1 and 2) for one reinforcement layer and lc=2c’+50 mm (a=1.5) for two 

reinforcement layers with c’=(h-D) (la=100 mm - the width of the loading plate, lb=100 mm - the 

width of the bearing plate).  

 

 

 

Fig.A1.17: Strut-and-tie model for deep beams under 4-point bending (s - strut inclination angle to 

horizontal, ws – width of diagonal strut (ws=lccoss  + lbsins, la=100 mm – width of loading plate, 

lb=100 mm - width of supporting plate, lc=ld=2c
’
, tanθs=dc/a, dc=h-c

‟
-0.5ld,=(D-c)/a, c

’
=h-D) (Zhang 

and Tan 2007) 

 

The inclination angle of the diagonal compressive strut was: θs=26.6
o
 (a=2), θs=33.7

o  

(2 reinforcement layers)/θs=35.5
o 

(1 reinforcement layer) (a=1.5) and θs=45.0
o
 (a=1), for the deep 

beams S2D36A72, S1D72A108 and S2D36A36, respectively. The width of the strut was thus 

(Eq.A1.9): ws=134.2 mm for a=2, ws=180.3 mm (2 reinforcement layers)/ws=139.5 mm  

(1 reinforcement layer) for a=1.5 and ws=141.4 mm for a=1 (with la=lb=100 mm). 

 

In the experiments, the average width of the compression strut between the loading and bearing 

plates versus the shear ratio was: ws=94 mm (a=2), ws=166 mm (a=1.5) mm and ws=126 mm 

(a=1) (Figs.A1.7 and A1.8). The diagonal strut width was measured as the distance between the 

critical diagonal crack and nearest diagonal crack in the beam mid-height. The measured values of 

ws were smaller by 30% (a=2), 5% (a=1.5) and 10% (a=1) than the theoretical ones. The 

measured inclination angles of the diagonal strut were about θs=40
o
 for a=1-2 (Fig.8) and were 
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significantly higher than the theoretical values for a=1.5-2 (θs=33.7
o
 and θs=26.6

o
) and smaller 

than the theoretical values for a=1 (θs=45.0
o
). 

 

Zhang and Tan (2007) proposed the modification of a strut-and-tie model (Fig.A1.17) by taking into 

account the Mohr-Coulomb failure condition in a tension-compression stress state and a 

contribution of the bottom reinforcement to the strut compression. The ultimate force Vn in RC 

beams without web reinforcement may be determined from the formula (Zhang&Tan 2007) 

 

4sin cos sin
[ ] 1s s s

n

t c c str

V
f A f A

  
  ,    (A1.10) 

 

where Ac=dc×t is the effective cross-sectional area of high beams (dc=D-0.5ld), Astr=ws×t is the 

cross-sectional area of the strut, θs is angle between the strut and tie (tanθs=dc/a=(D-c
’
)/a) 

(Fig.A1.17), fc denotes the cylinder compressive strength and ft is the maximum tensile strength of 

the bottom nodal zone which can be calculated as the sum of two components: 

 

                                   4.0

1

2

)(31.0
sin4




cr

c

c

sys

t f
A

fA
f  ,    (A1.11) 

 

The first component in Eq.A1.11 results from the main longitudinal reinforcement (fy - yield stress 

in reinforcement) and the second component from the cracked concrete tensile strength (εcr - the 

concrete strain during cracking taken as 0.00008, ε1 - the principal tensile strain of the concrete strut 

(ε1=εs+(εs+ε2)ctg
2
θs, εs and ε2 - the tensile strain of longitudinal reinforcement and peak 

compressive strain of the concrete strut at crushing). The width of the compressive strut ws was 

assumed according to ACI 318-14 (2004) (Eq.A1.9). The inclination angle of the diagonal 

compressive strut (tanθs=dc/a) was: θs=24.77
o
 (a=2), θs=31.86

o
 (a=1.5) and θs=43.08

o
 (a=1). 

 

Alternative strut-and-tie models 

The ACI-model (Eqs.A1.7-A1.8) may be modified to analytically specify the size effect. The strut 

width was simply calculated as ws=lc/cos (Fig.A1.17), thus the support plate length equalled lb=lc 

tanθs. The inclination angle s was expressed by the relationship 

 

a
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D

c

a

D

a

cD


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1
)1()1(tan

''
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

 .     (A1.12) 
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The ultimate force Vn can now be related to two scale parameters a  and c, thus          
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1
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0216071

 

 (A1.13) 

 

and the related ultimate shear strength was 

 

a

cc

'

c

n

c )(f.
tD

V




1
1021  .     (A1.14) 

 

Assuming the lower bound approach, we can neglect the contribution of the reinforcement force  

component in the axial compressive strength of the concrete strut in Eq.A1.10. Then the following 

alternative expression for Vn is obtained 

 

1
sin

1sincos4











cstrstc

ss

n
fAfA

V



,    (A1.15) 

 

where systc fAfA 2sin4  as it follows from Eq.A1.11 when the effect of the second term 

representing the concrete tensile strength is neglected. Similarly, 

sscstr tcltwA  cos/2cos/   and acs  /)1(tan   (Eq.A1.12). The following 

expressions for Vn and c were now obtained: 

 

ccn AV                    and                  
1

1
1

2

l yc
c

l ya

c c

f

f

f













. (A1.16) 

 

Comparing Eqs.A1.14 and A1.16 it is seen that the critical stress value depends on two geometric 

parameters a and c. In Eq.A1.12 only the concrete compressive strength is present but in 

Eq.A1.16 both concrete and reinforcement strengths affect the critical shear stress. 
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Similarly, starting from Eq.A1.15 and neglecting the concrete tensile strength in Eq.A1.11, we can 

express c as follows  

 

2 2

2 2 2

(1 )1

1
(1 ) (1 )

2

l y a cc
c

l ya
a c c

c c

f

f

f

  



  



    

   

.   (A1.17) 

The residual flexural force Vres,flex was calculated from the equilibrium of the compression zone 

force thfF ccc   (where the height of the compression zone is 
y

c l

c

f
h D

f
 ) and tensile force of 

reinforcement 
s l yF f Dt  (by assuming the full concrete cracking in the tensile zone) 

 

max,

1
[1 ]

l y

flex l y

a c

f
V f Dt

f





  .     (A1.18) 

 

A1.7. Comparison between experimental and theoretical results 

The results of the shear strengthc=Vmax/(tD) (Vmax=0.5Pmax) for all theoretical models as compared 

to the experimental values are presented in Table A1.5.and in Fig.A1.18. 

 

Analytical formulae by Eq.A1.7-A1.11 (Tab.A1.5, Fig.A1.18A) 

According to the strut-and-tie model in ACI 318-14 (Eq.A1.7-A1.8) and the strut-and-tie model 

(STM) by Zhang and Tan (2007) (Eqs.A1.10 and A1.11), the ultimate shear strength was solely 

calculated for 3 deep beams: S1D72A108 (a=1.5, l=3.75), S2D36A72 (a=2, l=5.5) and 

S2D36A36 (a=1, l=3.5). These models are solely valid for structural elements wherein the strut 

inclination angle θs ranges from 25
o
 to 65

o 
(ACI 318-14 (2004)). 

 

EC underestimated the vertical load (strength) of all beams except of slender beams with a=3 and 

6 (Fig.A1.18A). ACI/STM overestimated (for a=1.5-2) and underestimated (for a=1) the shear 

strength of high beams (Tab.A1.5, Fig.A1.18A). The result difference was +100%/+60% (a=2), 

+20%/+40% (a=1.5) and -5%/-25% (a=1). STM indicated a size effect (strength decreased with 

increasing a) Thus, the absolute value of the difference diminished with decreasing a (the 

difference was smaller for ACI for a=1-1.5 and for STM for a=2. The highest difference was for 

the beams with dominant normal crack displacements (a=2-3). A better agreement was achieved 

for a=1.5 (ACI/STM) if one reinforcement layer was taken into account in calculations (Tab.A1.5).  
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Alternative formulae by Eq.A1.14, A1.16 and A1.17 (Tab.A1.5, Fig.A1.18B) 

The alternative formulae realistically capture the size effect. With the modified ACI formula 

(Eq.A1.14), a more realistic result of c was achieved for a=1.5-2, however for a=1, the result of 

c was less realistic as compared to Eqs.A1.7-A1.9 (the strength was lower by 25% than the 

experimental result). It may be seen that Eq.A1.16 fits well the test data, except for 1a  where 

the experimental value of c is much higher (by 75%). On the other hand, Eq.A1.17 provided a 

higher assessment of the shear strength than Eq.A1.16.  

 

The discrepancies between the experimental and theoretical results are caused by the following 

factors: 1) different strut widths and strut inclinations for all high beams(a=1-2, l=3.5-5.5), 

2) different shape of the compressive strut for a=2 (Fig.A1.7e), 

3) varying strut width along the beam height in experiments (Fig.A1.7),  

4) lack of the reinforcement yielding in experiments and 

5) different width of the compressive strut and upper compressive horizontal zone. 

 

In the experiments, the mean strut width was smaller (a=1-2), the strut inclination to the horizontal 

was lower (a=1-1.5) or higher (a=2) and the strut shape was more parabolic (a=2) comparing to 

theoretical value obtained with ACI standard formulas (Eq.A1.9). In addition, the strut width varied 

along the beam height in experiments (Fig.A1.6), the steel reinforcement did not yield and the width 

of the compressive strut was different than the width of the upper compressive horizontal zone. 

 

Crack width and deflection 

Figure A1.19 presents the maximum experimental flexural crack widths w in the beam mid-regions 

for the mean maximum vertical forces Pmax
exp

 of Tab.A1.5 as compared to EC2 (EN 1992-1-1 

(2008)) and ACI (ACI 224R-01). For Pmax and the beam series „1‟ the standard flexural crack 

spacing ls were 182 mm, 148 mm and 142 mm (EC2) and 222 mm, 140 mm and 127 mm (ACI) 

whereas the experimental ones were different: 218 mm, 140 mm and 137 mm with increasing a 

from 1.5 up to 6 (Fig.A1.20a). In the series „2‟ (D=360 mm), the standard values of ls for Pmax were 

148 mm (EC2) and 140 mm (ACI) versus the experimental ones were between 96 mm (a=1) and 

137 mm (a=2-3) (Fig.A1.20b). Thus, the standard values of the flexural crack widths w were the 

most realistic for the beams with a>1.5. 
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A) 

B) 

Fig.A1.18: Shear strength c=Vmax/(tD) (Vmax=0.5Pmax) for varying shear span parameter ηa=a/D in 

experiments (a) and in analytical solutions: A) codes ((b) ACI (Eqs.A1.7-A1.9), c) STM  (c) 

(Eqs.A1.10 and A1.11) and d) EC2 (Eqs.A1.5 and A1.6)) and B) alternative formulae (b) alternative 

ACI (Eq.A1.14), c) alternative STM (Eq.A1.16) and alternative STM (Eq.A1.17) (note that beams 

for a =6 failed in flexural mechanism) 
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Tab.A1.5: Shear strengths c=Vmax/(tD) (Vmax=0.5Pmax) for RC beams according to EC2 (Eqs.A1.5 

and A1.6), ACI 318 (Eqs.A1.7-A1.9), STM (Eqs.A1.13 and A1.14), alternative ACI (Eq.A1.12), 

alternative STM (Eq.A1.16), alternative STM (Eq.A1.17) and Eq.A1.18 as compared to 

experimental values (Y - reinforcement yielding, T – diagonal shear-tension failure with dominant 

normal diagonal crack displacements, C – diagonal shear-compression failure with significant both 

tangential and normal diagonal crack displacements, (*) - calculated for beams with one 

reinforcement layer if a=1.5). Note values for a>2 (Eqs.A1.12, A1.16 and A1.17) were calculated 

for inclination angles  greater than limit angle for ACI and STM 

 

Beam 
a 

[mm] 

D 

[mm] 

Failure 

mode 

τc
exp

 

[MPa] 

(exp.) 
Tab.A1.4 

τc
ACI

 

[MPa] 
Eq.A1.7-

A1.9 

τc
STM

 

[MPa] 
Eq. 

A1.10-

A1.11 

τc
EC

 

[MPa] 

Eqs. 

A1.5-

A1.6 

τc
ACI 

(alternative)
 

[MPa] 

Eq.A1.14 

τc
STM 

(alternative)
 

[MPa] 

Eq.A1.16 

τc
STM 

(alternative)
 

[MPa] 

Eq.A1.17 

τc
flex

 

[MPa] 

Eq. 

A1.18 

S2D36a36 

(a=1, 

c=0.14) 

360 360 C 7.39 6.94 5.83 1.29 5.98 4.28 5.42 6.59 

S1D72a108 

(a=1.5, 

c=0.10 

(0.14*)) 

1080 720 C 2.86 
3.47 

(2.67*) 

4.07 

(3.87*) 
1.13 

3.11 

(2.15*) 

2.65 

(2.26*) 
3.90 4.39 

S2D36a72 

(a=2, 

c=0.14) 

720 360 C/T 2.11 4.17 3.43 1.29 2.99 2.14 3.10 3.29 

S1D36a108 

(a=3, 

c=0.14) 

1080 360 T 1.35   1.29 1.99 1.43 2.16 2.20 

S2D36a108 

(a=3, 

c=0.14) 

1080 360 T 1.31   1.29 1.99 1.43 2.16 2.20 

S1D18a108 

(a=6, 

c=0.28) 

1080 180 Y 1.34   1.47 1.67 0.73 0.94 1.10 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


216 APPENDIX 1 

 

 

 

Finally, the beam deflections were calculated by EC2 (EN 1992-1-1 (2008)) and ACI (ACI 435R-

95) and compared with the mean experimental values for Pmax
exp

 (Fig.A1.21). The creep effects 

were neglected. For the high shear span ratio a/D=3-6 the experimental beam deflections for Pmax
exp

 

were underestimated by about 10-20%. For the small shear span ratio (a2), the standard 

deflections were underestimated by the factor 3. For the beams S2D36a36 (a=1), S1D72a108 

(a=1.5) and S2D72a36 (a=2), the standard formulae provided the deflection values of u=2.19 

mm, u=2.66 mm and u=2.90 mm (EC2) and u=2.20 mm, u=2.58 mm and u=2.76 mm (ACI) 

whereas in the experiments they were higher and equal on average to 6.90 mm (Fig.A1.8c), 7.23 

mm (Fig.A1.7c) and 6.84 mm (Fig.A1.8b), respectively. 

a) 
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b) 

Fig.A1.19: Experimental (circles) and analytical flexural crack widths w by EC2 (triangles) and 

ACI (diamonds) versus a=a/D for Pmax in RC beams: a) series „1‟ (S1) and b) series „2‟ (S2) 

 

a) 
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 b) 

 

Fig.A1.20: Experimental (circles) and analytical flexural crack spacing ls by EC2 (triangles) and 

ACI (diamonds) versus a=a/D for Pmax in RC beams: a) series „1‟ (S1) and b) series „2‟ (S2) 
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a) 

b) 

 

Fig.A1.21: Beam deflections u in experiments (circles) and calculated according to EC2 (triangles) 

and ACI (diamonds) (without creep) versus a=a/D for Pmax: a) series „1‟ (S1) and b) series „2‟ (S2) 
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A1.7 Conclusions 

The following basic conclusions may be derived from our novel size effect experiments on RC 

beams being scaled along either the depth or length with the size parameters a=a/D=1-6, b=0.75-

3 and l=leff/D=3.5-15:  

 

- The shear strength of beams evidently decreased with increasing both parameters a=a/D and 

l=leff/D. It also decreased with increasing parameter b from 0.75 up to 1.5 in beams with varying 

effective depth and constant effective length. The shear strength‟s increase was extremely large 

(250%) in the range of a=1.0 (l=3.5) and a=1.5 (l=3.75) in series ‟2‟ with constant effective 

depth D.  

 

- Two different failure modes were observed in RC beams: plastic flexural expressed by 

reinforcement yielding for a/D=6 (l=15, b=3) and brittle shear in concrete with dominant normal 

diagonal crack displacements (so-called shear-tension failure) for a=2-3 (l=5.5-7.5, b=1.5) or 

with simultaneous significant normal and tangential diagonal crack displacements (so-called shear-

compression failure) for a=1-2 (l=3.5-5.5, b=0.75-1.5). The distance between the critical 

diagonal crack and beam support dc related to the shear span a varied between dc/a=0.5 for low 

beams (a=3) up to dc/a=0 for high beams (a=1). 

 

- For high beams, the strut-and-tie models following ACI and Zhang and Tan overestimated the 

shear strength for a=1.5-2 (by 20%-100%) and underestimated for a=1 (by 5%-25%). The 

difference between experimental and the theoretical results by ACI and Zhang and Tan increased 

with decreasing a. The alternative formulae based on the modification of ACI/STM significantly 

improved the theoretical results in the range of a=1.5-2 but at the same time significantly worsen 

the results for a=1. 

 

- The discrepancies between the experimental and theoretical results were caused by the different 

strut widths and strut inclinations for all high beams with a=1-2 and different shapes of 

compressive struts for the beams with a=2. In addition, the strut width varied along the beam 

height in all experiments for a=1-3. The evident disadvantage of strut-tie models is the fact that 

they do not distinguish between 2 different failure modes in shear (diagonal tension and shear 

compression) which affect the beam strength to a different grade. 
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- The standards EC2 and ACI realistically determined the flexural crack widths and beam 

deflections solely for the beams with a=2-6 with respect to cracks widths and with a=3-6 with 

respect to deflections. For a=1 the standard crack widths were higher by the factor 1.5-1.8 and the 

standard deflections were smaller by the factor 3. 
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APPENDIX 2 

Experimental investigations of shear strength and failure mechanisms 

in RC beams with stirrups scaled along height or length 

 

(published in the paper by Korol, E., Suchorzewski, J., Tejchman, J. i Mróz, Z. Experimental 

investigations of shear strength and failure mechanisms in RC beams with stirrups scaled along 

height or length, submitted to Engineering Structures, 2019). 

 

A2.1 Introduction 

The extensive experimental studies of a size effect were performed for plain and reinforced concrete 

(RC) beams that were geometrically similar. In the case in RC beams without shear reinforcement, a 

strong size effect was experimentally observed wherein diagonal shear-tensile fracture occurred 

(Walraven (1978), Bažant et al. (1991), Kim&Park (1994), Tan&Lu (1999), Angelakos et al. (2001), 

Yang (2003), Reineck et al. et al. (2003), Lubell et al.(2004), Tan et al. (2005), Korol et al. (2014a)). 

It was predominantly of the energetic type. The experimental diagonal failure cracks had in 

experimental tests similar paths and relative lengths at the maximum load independently of the 

beam size. The size effect was also observed in RC beams with shear reinforcement (Walraven 

(1994), Tan et al. (2005), Zhang and Tan (2007a, 2007b)). In these experiments, a diagonal shear-

tensile fracture (Walraven 1994), Tan et al. (2005), Zhang and Tan (2007b)) or crushing of a 

compressive zone (Zhang and Tan 2007b) took place in concrete. Thus the use of stirrups did not 

suppress the size effect provided the longitudinal and vertical reinforcement yielding did not occur. 

However, only a few papers were devoted to a size effect in RC beams without and with vertical 

reinforcement scaled along height or length (e.g. RC beams  without shear reinforcement (Korol et 

al. 2014a) and RC beams with shear reinforcement (Zhang and Tan 2007b). The effect of the 

varying reinforcement ratio on the failure mode in RC beams was experimentally shown by 

Carpinteri et al. (2011). The observed failure mode changed from longitudinal reinforcement 

yielding, through diagonal tension to compressive zone crushing with increasing reinforcement 

ratio. 

 

The objective of the present paper is to identify experimentally different failure mechanisms in 

reinforced concrete beams including vertical (shear) reinforcement for a separate variation of the 

depth and length. Special attention was paid to a description of a fracture process by measuring the 

critical crack opening and slip displacements. The commonly used code procedures using strut-and-

tie models proposed in the literature were applied to calculate theoretical shear strengths in order to 
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compare them with experimental outcomes. In addition, crack widths and deflections were 

compared with code formulae. The current RC beams, in contrast to those in (Suchorzewski et al. 

2018c), were equipped with both longitudinal and shear (transverse) reinforcement. The geometry 

of beams in the current study was similar to those in (Suchorzewski et al. 2018c – see Appendix 1) 

for comparative purpose. The shear strength of beams without shear reinforcement in our previous 

investigations (Suchorzewski et al. 2018c – see Appendix 1) evidently decreased with the increasing 

ratio of the shear span to the beam depth ηa = a/D (ηa =1-6) and the ratio of the effective beam 

length to the beam depth ηl  (ηl =3.5-15). The failure modes changed with the varying parameter ηa . 

The beams were damaged due to reinforcement yielding (ηa =6), diagonal tension (a critical 

diagonal crack has a dominant normal opening displacement) (ηa =2-3) or shear (a critical diagonal 

crack has a dominant tangential opening displacement) (ηa =1-2). None of the verified analytical 

models (EC2 1992-1-1, ACI 318-14 and Zhang and Tan (2007)) was able to estimate the strength of 

tested beams with a satisfactory accuracy. For high beams, the strut-and-tie models following ACI 

318-14 and Zhang and Tan (2007) overestimated the shear strength by 20%-100% for ηa=1.5-2 (20-

100% for (ACI 318-14 and 40%-66% for Zhang and Tan (2007)) and underestimated it by 5%-20% 

for ηa=1 (5% for ACI 318-14 and 20% for Zhang and Tan (2007)). Thus the difference between 

experimental and the theoretical results by ACI 318-14 and Zhang and Tan (2007) increased with 

decreasing ηa. The own alternative formulae based on the modification of the formulae Zhang and 

Tan (2007), ACI 318-14 significantly improved the theoretical results in the range of ηa=1.5–2 but 

not accurately for =1. The discrepancies between the experimental and theoretical results were 

caused by: a) the varying strut widths and strut inclinations for all high beams with a=1-2 and b) 

the different shapes of compressive struts for the beams with a=2 in the experiments. The evident 

disadvantage of strut-tie models was the fact that they were not able to distinguish between two 

different failure modes in shear (diagonal tension and shear compression) which affected the beam 

strength to a different grade. The experimental results concerning strength, brittleness and fracture 

were however realistically described in FE calculations using a coupled elasto-plastic-damage 

model with non-local-softening for concrete (Marzec et al. 2019). 

 

A2.2 Specimens geometry 

The beams of the series „3‟ had the same effective depth (D=360 mm) and varying span length leff 

and shear span a (the latter scaled in the proportion 1:1.5:3). The beams were denoted as 

S3D36a2016, S3D36a108 and S3D36a54, where the symbol S3 denotes the series „3‟, D - the 

effective beam depth in [cm] and a - the shear zone length in [cm]. Note that the beam S3D36a108 
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(D=360 mm) had the same dimensions as and beams S1D36a108, S2D36a108 in series without 

stirrups and the concrete beam (denoted as SL40) used in the size effect experiments by Korol and 

Tejchman (Korol and Tejchman 2014) and was twice as short as the beam S3D36a216 (D=180 mm) 

and twice as long as the beam S3D36a54. Thus, the effective depth D and bending zone length b 

(distance between two concentrated forces V) were constant D=360 mm and b=540 mm, 

respectively (Fig.A2.1A, Tab.A2.1). The shear span parameter ηa=a/D was 1.5, 3 and 6. Each beam 

length leff included 2 identical concrete specimens in order to verify the result repeatability 

(indicated as: S3D36a216_1 – S3D36a216_3, S3D36a108_1 – S3D36a108_3 and S3D36a54_1 – 

S3D36a54_3). 

 

The beams of the series „4‟ had different thickness than all previous beams equal to t=150 mm due 

to limitations of the loading device. The beams in series „4‟ various effective depth D in the 

proportion 1:2:4 with the constant effective span length leff =2700 mm. (Fig.A2.1B, Tab.A2.2). The 

beams were denoted as S4D18a108 (D=180 mm), S4D36a108 (D=360 mm) and S4D72a108 

(D=720 mm). The beam from S4D36a108 had the same dimensions as the beam from the series „3‟ 

denoted as S3D36a108 and beams S1D36a108, S2D36a108 in series without stirrups. The beam 

S4D18a108 was as twice as low as the beam S4D36a108 and the beam S4D72a108 was as twice as 

high as the beam S4D36a108. Each beam included 2 identical specimens (denoted as: 

S4D18a108_1 and S4D18a108_2, S4D72a108_1 and S4D36a108_2 and S4D72a108_1 and 

S4D72a108_2). 

 

The reinforcement of all beams consisted of ribbed bars of the diameter ϕ=25 mm and  

ϕ=10 mm with the mean yielding stress of 560 MPa (class B500) and the modulus of elasticity of 

205 GPa. The longitudinal reinforcement ratio was designed as l=4.2% to eliminate possibility of 

steel yielding due to presence of stirrups. The transverse reinforcement ratio was always equal to 

s=0.4% and was formed with double-sheared stirrups with diameter of ϕ=8 mm made out of the 

same steel as longitudinal reinforcement.  Each beam size required a different number of bars 

depending on the effective depth D. The beams of D=18 cm had 2 bars in two layers, D=36 cm 2 

bars in two layers and one more bar in third layer, whereas the beam of D=72 cm had 6 layers with 

2 bars i.e. 12 bars in total (Fig.A2.1C). In order to avoid the anchorage zone failure and slip 

between reinforcement and concrete, hooked steel bars were used (Fig.A2.1) with the anchorage 

length of 130 mm, 310 mm or 670 mm, depending on the beam height. 
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The specimens from the series „3‟ and series „4‟ were casted separately, however the concrete recipe 

was similar as in previous series (see Tab.A1.3). 
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B) 

  

Fig.A2.1: Experimental reinforced concrete beams under four-point bending: A) loading scheme for 

series „3‟ (D=360 mm, b=540 mm) with varying a and leff with varying a and leff, B) loading scheme 

for series „4‟ (leff=2700 mm, a=1080 mm, b=540 mm) with varying D (D - effective beam height, leff 

- distance between beam supports, l - total beam length, V - vertical concentrated force applied, a - 

shear zone span, b - bending zone span, dimensions are in [mm]) 
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Tab.A2.1: Dimensions of reinforced concrete beams in series 3 

Beam dimension 
Beam 

S3D36A54 

Beam 

S3D36A108 

Beam 

S3D36A216 

D [mm] 360 360 360 

H [mm] 440 440 440 

leff [mm] 1620 2700 4860 

a [mm] 540 1080 2160 

b [mm] 540 540 540 

ηa=a/D 1.5 3 6 

ηl=leff/D 4.5 7.5 13.5 

ηb=b/D 1.5 1.5 1.5 

c=c’/D 0.22 0.22 0.22 

 

Tab.A2.2: Dimensions of reinforced concrete beams in series 4 

Beam dimension 
Beam 

S4D22A108 

Beam 

S4D43A108 

Beam 

S4D72A108 

D [mm] 220 430 720 

H [mm] 275 520 870 

leff [mm] 2700 2700 2700 

a [mm] 1080 1080 1080 

b [mm] 540 540 540 

ηa=a/D 5 2.5 1.5 

ηl=leff/D 12 6.3 3.75 
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ηb=b/D 2.5 1.25 0.75 

c=c’/D 0.43 0.38 0.22 

 

A2.3 Test procedure 

The test procedure was analogical to the one described in Section A1.3. 

 

A2.4. Experimental results 

Series ‘3’: varying shear span a for constant effective depth D and bending zone span b 

The constant effective depth D=0.36 m and varying shear span a=540, 1080 and 2160 mm 

contributed to the change of the parameter ηa from 1.5 through 3.0 up to 6.0 (Tabs.A2.1-2). The 

parameter ηb was 1.5 and the parameter ηl varied from 4.5 up to 13.4.  

 

The longest beams S3D36A216 with ηa=6.0 (ηb=1.5, ηl=13.5) failed due to concrete crushing in the 

constant bending moment zone since both flexural and shear reinforcement were sufficient to resist 

the critical bending and shear stresses. The total averaged ultimate vertical force acting on the 

beams was Pmax=2Vmax=474.6 kN. The average deflection u corresponding to the failure onset was 

35.4 mm while its normalized values u/D and u/Leff were u/D=9.8% and u/Leff =3‰. All beams had 

similar normalized load-deflection paths including the registered post-peak brittleness resulting 

from the compressive concrete behaviour in the softening regime (Fig.A2.2A). In contrast, the 

slender beams with the same parameter ηa=6.0 but without shear reinforcement and lower 

reinforcement ratio failed due to steel yielding. 

 

The beams S3D36A108 with ηa=3 constituted a transitional geometry between two different failure 

mechanisms. The beam S3D36A108_1 failed in shear-compression for Pmax=2Vmax=802 kN and 

u=12.0 mm (u/D=3.3% and u/Leff=4.4‰) and the beam S3D36A108_3 was damaged due to 

concrete crushing in the constant bending moment zone for Pmax=2Vmax=954 kN with u=20.1 mm 

(u/D=5.6% and u/Leff=7.4‰). The beam S3D36A108_2 (made of weaker concrete) lost its load 

bearing capacity also due to concrete crushing for Pmax=2Vmax=601 kN and u=16.7 mm (u/D=4.6% 

and u/Leff=6.2‰). The beams S3D36A108_2 and S3D36A108_3 which failed due to concrete 

crushing had the relatively higher normalized deflection u/D for Pmax than the beam S3D36A108_1 

that was damaged in shear-compression. Moreover, the beams S3D36A108_2 and S3D36A108_3 

showed more ductility after reaching Pmax in contrast to the beam S3D36A108_1 (Fig.A2.2B). The 

normalized load-deflection diagrams in Fig.2.2B indicated the similar curve shapes corresponding 
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to the beams S3D36A108_2 and S3D36A108_3 that failed in the same failure mode in spite of 

weaker concrete. The beams from our previous study without transverse reinforcement which had a 

similar geometry but no shear reinforcement failed in diagonal tension. 

 

All deep beams S3D36A54 with ηa=1.5 failed in shear-compression with a significant increase of 

the shear strength supported by an internal arch action (Fig.A2.2C). The beam S3D36A54_2 (casted 

together with S3D36A108_2) which was made of weaker concrete, reached Pmax=2Vmax=1165 kN 

with the corresponding deflection u=7.7 mm (u/D=2.1% and u/Leff=4.8‰). In the beam 

S3D36A54_1, the failure force was Pmax=2Vmax=1574 kN with u=6.8 mm (u/D=1.9% and 

u/Leff=4.2‰) while in the beam S3D36S54_3, Pmax=2Vmax=1271 kN with u=5.2 mm (u/D=1.4% and 

u/Leff=3.2‰). The beams S3D36A54_1 and S3D36A54_3 had the similar load-deflection curves 

that demonstrated a very stiff beam response connected with the high vertical load and small 

deflection (Fig.A2.2C). The beam S3D36A54_2 possessed the relatively low ultimate force and 

high deflection as compared to S3D36A54_1 and S3D36A54_3 (due to weaker concrete). The post-

peak behaviour was brittle (all beams lost their capacity in a sudden failure).  

 

Series ‘4’: varying effective depth D and bending zone span b at constant shear zone span a 

The varying effective depth D=0.22, 0.43 and 0.72 m and constant shear span a=1.08 m contributed 

to the change of the parameter ηa from 5 through 2.5 down to 1.5, the parameter ηb from 2.5 down 

to 0.75 and the parameter ηl from 12 down to 3.75 (Tab.A2.2). The effect of the varying parameter 

ηa on beams‟ strength, ductility and failure modes was very strong. 

 

The lowest beams S4D22A108 with ηa=5.0 failed due to concrete crushing in the constant bending 

moment zone similarly to the beams S3D36A218 with ηa=6.0 in the series „3‟. The average ultimate 

vertical force achieved by the beams S4D22A108 was Pmax=2Vmax=207.4 kN with the 

corresponding average deflection u=19.1 mm. The load-displacement curves (Fig.A2.3A) had 

similar shapes and all of them showed the post-peak structural quasi-brittle behaviour. The average 

normalized deflection was u/D=7.8% and u/Leff=7.1‰.  

 

For the medium-high beam (ηa=2.5), two beams S4D43A108_1 and S4D43A108_2 lost the load 

bearing capacity in shear-compression with the average Pmax=751 kN for u=13.5 mm (u/D=3.1% 

and u/Leff=5.2‰). However, the third beam S4D36A108_3 failed due to concrete crushing in the 

constant bending moment zone for Pmax=732 kN with u=14.3 mm (u/D=3.3% and u/Leff=5.3‰). The 

force-deflection curves (Fig.A2.3B) had the similar shapes up to the peak force, later the post-peak 
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behaviour was different. The beams S4D36A108_1 and S4D36A108_2 failed in a brittle way and 

the beam S4D36A108_3 n a quasi-brittle way.  

 

The highest beams S4D72A108 were first designed as plain beams with the rectangular cross-

section („trial beams‟). The highest „trial‟ beams denoted as S4D72A108_T1 and S4D72A108_T2 

(with ηa=1.5) failed due to local concrete crushing at the supporting plate for Pmax=1375 kN and 

u=8.62 mm. For this reason, the beam S4D72A108_T3 was strengthened by increasing its thickness 

locally at supports. It failed under shear-compression conditions for Pmax=1423 kN and u=8.7 mm 

(u/D=1.2% and u/Leff=3.2‰). The beams S4D72A108_1 and S4D72A108_2 had however 4 

symmetric pilasters at all loading/supporting points (Fig.A2.1). Those beams also failed in shear-

compression for the similar load, i.e. Pmax=1418 kN for u=9.6 mm (u/D=1.3% and u/Leff=3.5‰). 

The entire force-deflection curves of the beams S4D72A108_1, S4D72A108_2 and 

S4D72A108_T3 (Fig.A2.3C) were of a similar shape. 
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B) 

C) 

Fig.A2.2: Experimental normalized vertical force-deflection P=f(u) curves of RC beams with 

stirrups (series „3‟) of Fig.A2.1: A) S3D36A216 with ηa=6.0, B) S3D36A108) with ηa=3.0 and C) 

S3D36A54 with ηa=1.5 (* - beams made of weaker concrete) 
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a) 

b) 

c) 
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Fig.A2.3: Experimental normalized vertical force-deflection P=f(u) curves of RC beams with 

stirrups (series „4‟) of Fig.A2.1: A) S4D22A108 with ηa=6.0, B) S4D43A108 with ηa=3.0 and C) 

S4D72A108 with ηa=1.5 

 

Figure A2.4 compares the experimental results from Series „3‟ and „4‟, expressed as a function of 

the parameters a=a/D and b=b/D. The normalized ultimate shear stress in both the series was 

related to the uniaxial compression strength fc as Vmax/(tDfc) due to the different concrete class. It 

apparently decreased with increasing parameter a. The increasing beam depth D (with the constant 

a) had a slightly weaker effect on the ultimate shear stress reduction than the decreasing shear span 

a (with the constant D). 

 

 

 

 

Tab.A2.3: Experimental failure force Pmax=2Vmax and shear failure stress =Vmax/(tD) for two 

failure modes with RC beams including stirrups of series „3‟ and series „4‟ (C - crushing of concrete 

in compression zone, SC – shear-compression) 

 

Beam description 
Beam ‘1’ 

Pmax [kN] 

Beam ‘2’ 

Pmax [kN] 

Beam ‘3’ 

Pmax [kN] 

Mean value 

Pmax[kN] 

=Vmax/(tD) 

[MPa] 

Failure 

mode 

S3D36A216 

ηa=6.0, ηb=1.5 
544 411 469 475 2.64 C 

S3D36A108 

ηa=3.0, ηb=1.5 
802 601 954 878* 4.88* SC/C 

S3D36A54 

ηa=1.5, ηb=1.5 
1574 1165 1271 1423* 7.43* SC 

S4D22A108 

ηa=5.0, ηb=2.5 
227.4 203.6 191.2 207.4 3.17 C 

S4D43A108 

ηa=2.5, ηb=1.5 
694 807.5 731.8 744.4 5.76 SC/C 
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S4D72A108 

ηa=1.5, ηb=0.75 
1420 1416 1423 1420 6.52 SC 

*average value without beam „2‟ of weaker concrete 

 

 

a) 

 

b) 

Fig.A2.4: Experimental normalized ultimate shear stress c/fc in series „3‟ and „4‟ for varying 

parameters a=a/D (a) and b=b/D (b) (fc - uniaxial compression strength of concrete) 
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Figure A2.5 presents the comparative results from current and previous experiments on the RC 

beams without shear reinforcement (Series „1‟ and „2‟). The series 1 had the  varying beam depth 

D=180 mm, 360 mm and 720 mm and the constant shear span a=1080 mm with the corresponding 

parameter ηa=6, 3 and 1.5. The series 2 had the constant beam depth D=360 mm and the varying 

shear span a=360, 720 and 1080 mm with the corresponding parameter a=a/D=1, 2 and 3. The 

presence of stirrups obviously increased the beam strength in particular for the lower parameter ηa; 

the shear strength increased by 130% (ηa=3.0) and 300% (ηa=1.5). Their presence also strongly 

affected the failure mode. The slender beams without stirrups (ηa=6 in the series „1‟) failed due to 

steel yielding whereas the slender beams with stirrups (ηa=6 in the series „3‟) failed due to concrete 

crushing. The beams of a transitional geometry without stirrups in the series „1‟ (with ηa=2.5) failed 

in diagonal tension whereas the beams in the series „4‟ with ηa=3.0 failed due to shear-

compression/concrete crushing. The deep beams with ηa=1.5 in both the series „1‟ and series „4‟ 

behaved similarly and failed under shear-compression conditions. The beams with the varying shear 

span a without stirrups in the series „2‟ and with stirrups in the series „3‟ had also a similar trend for 

the parameter ηa3 (Fig.A2.5b). The ultimate shear stress of the beams with the varying depth D in 

the series „1‟ and series „4‟ had also a similar trend when ηa3 (Fig.A2.5a). The increase of the 

ultimate shear stress of the beams with ηa=1 as compared to ηa=2 in the series „2‟ was significantly 

stronger than between ηa=2 and ηa=3 (series „2‟) or between ηa=1.5 and ηa=3 (series „3‟). Thus the 

ultimate shear stress did not proportionally change with a. The shear reinforcement in the beams 

with the varying shear span had the same effect as in the beams with the varying beam depth. The 

stirrups in the series „3‟ increased the ultimate shear stress and changed the beam failure mode of 

the beams with ηa=3 as compared to the series „2‟. 

 

 

 

 

 

 

 

 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


APPENDIX 2   237 

 

a) 

b) 

Fig.A2.5: Average ultimate shear stress in beams with shear reinforcement (series „3‟ and series „4‟) 

and without shear reinforcement (series „1‟ and series „2‟) with varying parameter a=a/D (D - 

effective depth and a - shear span) 
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Tab.A2.4: Experimental and theoretical shear strengths/ultimate stresses according to various 

analytical models of Section 4 (C
Exp

 – experimental average shear stress of beams failing due to 

concrete crushing, SC
Exp

 – experimental average shear strength of beams failing due to shear-

compression) 

 

Beam a 
Failure 

mode 
C

Exp
 SC

Exp
 


EC

 

(Eq.6) 


Fl 

(Eq.17) 


STM 

(Eq.8) 


MSTM

 

(Eq.12) 


CSTM 

(Eq.16) 

S3D36A216 6 C 2.64 - 2.03 2.86 - - - 

S3D36A108 3 C/SC 5.30 4.46 2.03 5.72 4.52 5.91 3.63 

S3D36A54 1.5 SC - 7.90 2.03 - 8.22 10.43 8.43 

S4D22A108 5 C 3.14 - 2.11 3.38 - - - 

S4D43A108 2.5 C/SC 5.67 5.82 2.11 6.84 4.97 6.78 4.65 

S4D72A108 1.5 SC - 6.52 2.11 - 6.83 10.11 5.19 

 

A2.5 Failure mechanisms and crack patterns 

The simultaneous proportional scaling of the RC beams along two dimensions (length and height) 

did not change the parameter a=a/D, hence a failure mode (assuming the constant reinforcement 

ratio) remained the same as it was demonstrated in experiments by Korol and Tejchman 

(Korol&Tejchman 2014). In contrast, the separate scaling of RC beams along one direction only 

(i.e. length or height) modified the parameter a=a/D that affected the failure mode. The other 

parameters that affected the failure mode were the flexural l and shear s reinforcement ratios. The 

sketches in Fig.A2.6 illustrate the changes of the failure mode with the varying geometry parameter 

a and reinforcement ratios l and s. The slender beams with a>4 and without shear reinforcement 

(sketch „a‟ in Fig.8) failed due to steel yielding (symbol „Y‟). With decreasing parameter a, the 

failure mode changed from diagonal tension (symbol „DT‟) for beams with a transitional geometry 

a (sketch „e‟) to shear-compression (symbol „SC‟) for deep beams (sketch „i‟). When the main 

reinforcement ratio increased (the steel yielding was eliminated), the slender beams failed in 

diagonal tension (sketch „b‟) and the beams of a transitional geometry were damaged by either 

diagonal tension or shear-compression failure (sketch „f‟) while the deep beams influenced by an 

arch action failed in shear-compression (sketch „j‟). Adding of a sufficient amount of shear 

reinforcement s in slender beams (to suppress the shear failure) contributed to concrete crushing 
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(symbol „CC‟) in the constant bending moment zone (sketches „c‟ and „d‟). The „CC‟ failure 

occurred before the main and shear reinforcement strength were achieved. The beams of a 

transitional geometry with shear reinforcement (sketches „g‟ and „h‟) were damaged due to shear-

compression or concrete crushing. The further increase of the shear reinforcement ratio might 

change the failure mode in deep beams from shear-compression (sketch „k‟) to the damage of the 

support‟s zone (sketch „l‟). The support zone failure in deep beams (symbol „N‟) was due to 

insufficient nodal zone strength which was weaker than both the strut and tie strength i.e. both 

failure type „Y‟ and „SC‟ could not occur (the CCT node at the support is always weaker than the 

CCC node at loading point).  

 

 

 

Fig.A2.6: Sketches of failure modes of RC beams with/without stirrups of varying geometry and 

reinforcement ratio (Y - reinforcement yielding, DT - diagonal tension, SC - shear-compression, CC 

- concrete crushing and N –support zone crushing) 

 

The evolution of the cracking process of the beam S3D36A216 with concrete crushing in the 

compression zone is shown in Fig.A2.7. First, for about 13% of Pmax, some vertical flexural cracks 

appeared in the constant bending moment zone b and gradually developed into the compression 

zone direction up to 52% of the beam total height H (h
b

cr=0.52×H). The inclined cracks initiated in 

the shear zones a for 30% of Pmax and stopped to grow after reaching approximately the beam 

height of h
a

cr=0.66×H. The flexural and shear cracks never crossed the upper beam edge. The 
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average crack spacing (measured above the reinforcement) was s=98 mm. The cracks extended up 

to the width of w=0.4 mm in the bending zone b and w=0.15 mm in the shear zone a leading to a 

significant beam deflection. The concrete crushing started with a nearly horizontal crack which 

developed between two loading points close to the upper beam edge. The subsequent cracks were 

more curved and propagated towards the beam bottom. The cracks coincided with a trajectory of 

principal tensile stresses. Finally, the sudden failure took place after a significant part of the 

concrete surface separated at the beam mid-span region. 

 

 

 

 

Fig.A2.7: Crack pattern evolution in RC beam S3D36A216_3 failing due to concrete crushing in 

constant bending moment zone 

 

Figure A2.8 presents the crack evolution with increasing vertical load P in the beam S3D36A108_1 

that failed in a shear-compression failure mode. All beams S3D36A108 cracked similarly except of 

the final loading stage. First, the vertical cracks appeared in the bending zone b at 8% of Pmax and 

next developed finally up to h
b
cr=0.52×H. Next, the inclined cracks started to grow for 17% of Pmax 

and the cracked section in the shear zones a was higher than in the bending zone h
a

cr=0.79×H. 

Afterwards, the beams S3D36A108_2 and S3D36A108_3 failed due to concrete crushing in the 

constant bending moment zone (in the same way as the beams S3D36A216). In contrast, 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


APPENDIX 2   241 

 

S3D36A108_1 failed in shear-compression with a critical diagonal crack that appeared for 43% of 

Pmax and was affected by both tangential (shear) and normal (opening) crack displacements. 

Eventually, in the front of the critical crack tip, local concrete crushing occurred and afterwards the 

crack intersected the beam upper edge that caused the sudden beam failure. The critical crack 

inclination to the horizontal was 35 and its normalized distance to the support was dc/a=0.39. The 

average crack distance in the beams S3D36A108 was s=11 mm (measured above the longitudinal 

reinforcement level) and was similar as in all 3 beams independently of the failure mechanism. The 

maximum width of vertical cracks in the constant bending moment zone was w=0.15 mm in all 

beams. The inclined cracks were wider than the vertical ones and had the width of w=0.3 mm 

(except of the critical one). The critical crack in the beam S3D36A108_1 had the width of w=1.0 

mm before the failure. As compared to the longer beams S3D36A216, the shorter beams 

S3D36A108 had the narrower vertical cracks and wider inclined cracks. The cracked section height 

in the bending zone h
b

cr was the same in the beams S3D36A108 and S3D36A216 whereas in the 

shear zone the shorter beams had the cracked section by 33%  higher. The average crack distance 

differed by 14% as compared to the longer beams. 

 

The subsequent cracking stages preceding the shear-compression failure mode of a strut in the 

beams S3D36A54 can be seen in Fig.A2.9. The initial vertical cracks appeared for 6% of Pmax in the 

constant bending zone b. Next, for 28% of Pmax, the inclined cracks developed and the last one (the 

nearest one to the support) turned out to be the critical one. The inclination of the critical crack to 

the horizontal was 44. The crack initiated from the corner of the supporting plate. The cracked 

section height before the failure was h
b

cr=0.52×H in the bending zone and h
a

cr=0.87×H in the shear 

zone. When the critical crack reached the loading plate, a few new cracks appeared parallel to the 

critical one. Afterwards, concrete between those parallel cracks was crushed and separated from the 

remaining beam part. The maximum width of the vertical cracks was similar in all deep beams 

S3D36A54 w=0.15 mm while the width of the inclined cracks (except of the critical one) was 

w=0.4 mm. The critical crack had the width of w=1.2 mm before the failure. The crack distance was 

s=110 mm and was similar as in the beams S3D36A108. 

 

Figure A2.10 presents the final crack pattern for RC beams of the series „3‟ with a different failure 

mode due to the varying a=a/D. In all beams, the flexural cracks in the bending zone b had the 

same average height independently of a, whereas the inclined cracks in the shear zones developed 

higher for the lower parameter a. The crack spacing was slightly lower in the longest beams by ca. 
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10% as compared to the other beams. The width of flexural cracks was larger in the longest beams 

and the inclined cracks were the widest in the shortest beams. 

 

 

Fig.A2.8: Crack pattern evolution in RC beam S3D36A108_1 during shear-compression failure 

(critical diagonal crack is in red) 
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Fig.A2.9: Crack pattern evolution in RC beam S3D36A54_1 during shear-compression failure 

(critical diagonal crack is in red) 

 

„CC‟ FAILURE 

 

a) 

„SC‟ FAILURE 

 

b) 

„SC‟ FAILURE 
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c) 

Fig.A2.10: Crack pattern at failure in RC beams of series „3‟: a) concrete crushing in beam 

S3D36A216_1 with a=6, b) shear-compression failure in beam S3D36A108_1 with a=6 and c) 

shear-compression strut failure in beam S3D36A54 with a=1.5 (critical diagonal crack is in red) 

 

Figure A2.11 includes the final crack patterns for RC beams in the series „4‟ that failed in a different 

mode due to the varying parameter a=a/D. The average crack spacing in the lowest beams was  

about 50% lower than in other beams in the series „4‟. The flexural cracks in the bending zone b 

were always shorter than the inclined cracks in the shear zone a. The higher the beam and lower a, 

the more pronounced was the difference between the height of vertical and inclined cracks in the 

bending and shear zone. The width of cracks was also affected by the beam depth D (and a) as in 

the series „3‟. The flexural cracks were wider in the lower beams (i.e. for the higher parameter a). 

In contrast, the shear cracks were wider in higher beams (i.e. for the lower parameter a). 

 

„CC‟ FAILURE 

a) 

„SC‟ FAILURE 

b) 

„SC‟ FAILURE 

c) 

Fig.A2.11: Crack pattern at failure in RC beams (series „4‟): a) concrete crushing in beam 

S4D22A108_1 for a=5, b) shear-compression failure in beam S4D43A108_2 for a=2.5 and c) 
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shear-compression failure in beam S4D72A108_2 with pilasters for a=1.5 (critical diagonal crack 

is in red) 

 

Crack inclination and heights  

Figure A2.12A compares the normalized height of the compressive zone in the pure bending b and 

shear zone a. The height of the compressive zone was calculated as a difference between the 

measured cracked section height and the beam total height (h
b

c=H-h
b

cr or h
a
c=H-h

a
cr ). The height of 

the compressive zone in the pure bending part was independent of a and a (D was constant). 

Whereas, the height of the compressive zone in the shear span was proportionally increasing with o 

a and a. Figure A2.12B compares the average normalized compressive zone height in the series „4‟ 

that was separately measured in the bending b and shear zone a. Similarly to the series „3‟, the 

compressive zone height in the pure bending area h
b

c was proportional to the beam depth D and 

independent of a. On the other hand, the compressive zone height in the shear span h
a

c was 

proportionally increasing with a. 

 

DIC – digital image correlation 

The digital image correlation method (DIC), was described in A1.5. 

 

Figure A2.13 shows the evolution of an exemplary vertical (flexural) localized zone at the beam 

mid-span with the increasing vertical force for the beam S3D36A108_2 that failed in bending 

(a=3). The localized zone was enforced by a small notch. The localized zone appeared at around 

3% of the failure force. The localized zone reached the top of the image frame for 9% of the failure 

force. 

 

In order to calculate the width of a localized zone wlz, the calculated displacements were fitted first by 

the error function ERF (Skarżyński et al. 2011, Skarżyński&Tejchman 2013a): 

 

              .      (A2.1) 

 

The halved error function evaluated at  for the positive x-values gives the probability that the 

measurement under the influence of normally distributed errors with the standard deviation s has a 

distance smaller than x from the mean value. The fitting function parameter s in Eq.A2.1 was used to 

2

0

2
( )

x

tERF x e dt
x

 

2s

x

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


246 APPENDIX 2 

 

determine the width of a localized zone wc. Based on experimental results regarding concrete beams 

(Skarżyński et al. 2011), the width wlz might be calculated from the equation wlz=4s. Thus, 95% of the 

values of the normal distribution function area were within the distance of 2s in both the directions 

from the mean value. The measured width of the localized zone at 10 mm above the bottom beam 

was wc=3.13 mm (Fig.A2.14) lying between 2 mmd50 (d50 - the mean aggregate diameter) and 4 

mm0.25dmax (dmax - the maximum aggregate diameter). Later a discrete macro-crack was created. 

 

A) 

 

B) 

Fig.A2.12: Average normalized compressive zone height hc/D in RC beams with A) constant depth 

D and varying shear zone a (series „3‟) and B) varying depth D and constant shear zone a (series 

„4‟) 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 
g) 

 

 

 

Fig.A2.13: Horizontal normal strain maps εxx for beam S3D36A108_2 failed in bending (a=a/D=6) 

(colour scale denotes strain intensity) for increasing vertical force P: a) 3%, b) 4%, c) 5%, d) 6%, e) 

7%, f) 8% and g) 9% of failure force Pmax (strains are shown for beam mid-span) 
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Fig.A2.14: DIC measurements: evolution of horizontal strain εxx for different load levels  

(10 mm above beam bottom) 

 

DEMEC crack displacement measurements 

The DEMEC triangle measurements enabled us to determine the normal (opening) and tangential 

(shear) crack displacements (Eqs.A1.1-4). Figure A2.15 shows the triangle location in DEMEC 

measurements for RC beams. Figures A2.16 and A2.17 present the measured crack displacement 

evolutions for each beam size at two locations: 1) the beam mid-height and 2) the top of the shear-

compression crack. The measured strains are shown in Figs.A2.17 for the RC beams of the series 

„3‟. 
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a) 

 

b) 

c)                        A) 

a) 
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b) 

 

                                                                       c)                                                                          B) 

 

Fig.A2.15: Location of triangles for DEMEC measurements in RC beams in series „3‟ (A):  

a) S3D36A216 (a=216 mm, a=6), b) S3D36A108 (a=108 mm, a=3), c) S3D36A54 (a=54 mm, 

a=1.5) and in series „4‟ (B): a) S4D22A108 (D=220 mm, a=6), b) S4D43A108 (D=430 mm, 

a=3), c) S4D72A108 (D=720 mm, a=1.5) (main cracks are marked by thick solid lines) 

 

In the beam S3D36a216 (a=6) that failed due to concrete crushing in the compression zone 

(Fig.A2.16A), the horizontal displacements along the beam length 5 cm below the beam top were 

the largest in the central (bending) zone. The maximum measured horizontal displacement in the 

beam mid-point was 0.43 mm. In the beam S3D36a108 (a=3) which failed in shear-compression or 
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concrete crushing (Fig.A2.16B), the tangential diagonal crack displacement was slightly smaller 

than the normal crack opening at the beam mid-height (Fig.A2.16Ba). The maximum normal crack 

displacement was there ω=0.5 mm. At the beam top region, the tangential crack displacement 

continuously increased from the beginning of loading up to δ=0.18 mm (Fig.A2.16Bb). The normal 

crack displacement, ω=0.1 mm, was negative in this zone due to compression (the crack reached the 

triangle location just before failure). In the beam S3D36a54 (a=1.5) which also failed in shear 

(Fig.A2.16C), the  diagonal crack development started later (for P=400 kN) with the proportional 

normal ω and tangential displacements δ at the beam mid-height (Fig.A2.16Ca). The maximum 

crack displacements were: δ=0.08 mm and ω=0.10 mm. At the beam top region, the failure crack 

was preceded by the increasing tangential crack displacement up to δ=0.18 mm and negative normal 

crack displacement up to =0.13 (Fig.A2.16Cb). Thus the tangential crack displacement was higher 

than the normal one along the diagonal shear crack in the compressive beam region. 

 

The differences in failure modes were well visible based on the horizontal displacements at the 

beam top (Fig.A2.17). In the beam S3D36a108_2 which failed in the bending zone due to concrete 

crushing, the displacement was the largest in the beam mid-point (Fig.A2.17A), whereas in the 

beam S3D36a108_3 which failed in shear compression it was the largest under the loading plates 

(Fig.A2.17B). The maximum displacement was greater in the beam failing in bending - 0.43 mm 

while for the beam failing in shear it was 0.25 mm. The beam S4D18a108 (a=6) exhibited the 

same behaviour as the beam from the series „3‟ (S3D36a216, a=6) with a clear increase of 

horizontal displacements in the bending zone (Fig.A2.18A). The maximum measured horizontal 

displacement in the beam mid-region was ω=0.20 mm. 
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A) 

a) 
 

b) 

B) 

a) 

 

b)                                 

C) 

 

Fig.A2.16: Experimental relationships between normal/tangential crack displacements and vertical 

force P in RC beams (series „3‟): A) S3D36A216 (a=216 mm, a=6) (Fig.A2.15Aa), B) 

S3D36A108 (a=108 mm, a=3) (Fig.A2.15Ab) and C) S3D36A54 (a=54 mm, a=1.5) 

(Fig.A2.15Ac) for: a) shear zone mid-height and b) compression-shear zone top (continuous red 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


APPENDIX 2   253 

 

lines with dots denote normal displacement ω and dashed green lines with diamonds denote 

tangential displacement δ, sections are shown in Fig.A2.15) 

 

a) 

 

b) 

 

Fig.A2.17: Horizontal normal displacements along RC beam length measured 5 cm below beam top 

directly before failure for various load level: a) beam S3D36a108_2 (failed by concrete crushing) 

and b) beam S3D36a108_3 (failed in shear) 
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a) b)                              

B) 

a) 
 

b)                             

C) 

 

Fig.A2.18: Experimental relationships between normal/tangential crack displacements and vertical 

force in RC beams (series „4‟): A) S4D22A108 (D=180 mm, a=6) (Fig.A2.15Ba), B) S4D43A108 

(D=360 mm, a=3) (Fig.A2.15Bb) and C) S4D72A108 (D=720 mm, a=1.5) (Fig.A2.15Bc) for: a) 

shear zone mid-height and b) compression-shear zone top (continuous red lines with dots denote 

normal displacement ω and dashed green lines with diamonds denote tangential displacement δ) 

 

A2.6. Analytical calculation 

Shear strength 

The experimental shear strengths of RC beams with stirrups were compared with the analytical 

predictions based on the truss analogy proposed in Eurocode (EN 1992-1-1 (2008)), the strut-and-

tie model (STM) in ACI (ACI 318-14 (2014)), the modifief strut-and-tie model (MSTM) proposed 
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by Zhang and Tan (2007) and the cracking strut-and-tie model (CSTM) derived by Chen et al. 

(2018). 

 

EN 1992-1-1 (2008) 

The shear strength of RC beams with stirrups is calculated based on the variable inclination truss 

analogy. The shear resistance for non-prestressed members should be taken to be less than: 

 

 𝑉𝑅𝑑 ,𝑠 =
𝐴𝑠𝑤

𝑠
𝑧𝑓𝑦𝑤𝑑 𝑐𝑜𝑡𝜃 (shear reinforcement yielding)  (A2.2) 

or 

 𝑉𝑅𝑑 ,𝑚𝑎𝑥 =
𝑡  𝑧1𝑓𝑐𝑑

(𝑐𝑜𝑡𝜃 +𝑡𝑎𝑛𝜃 )
 (concrete crushing), (A2.3)  

 

where the recommended strut inclination is 1 cot 2.5, Asw - the cross-section area of one stirrup, 

fywd - the yield strength of stirrups, s denotes the stirrup spacing, fcd - the design concrete 

compressive strength, ν1 - the empirical coefficient of the cracked concrete shear strength (ν1=0.6 

for the characteristic concrete strength fck<60 MPa) and z - the internal lever arm (z0.9D for 

bending). 

 

ACI 318-14 (2014) 

The shear strength of deep RC beams according to ACI  is calculated by applying a simple strut-

and-tie model with the strut inclination angle θs defined as tanθs=D/a. (Fig.A1.18). The shear 

strength of beams is governed by the minimum from the strut compressive strength Fns, the tie 

tensile strength Fnt and the compressive strength of the nodal zone Fnn. Generally in deep beams, the 

strut is the weakest component and the resultant ultimate vertical force Vn and corresponding shear 

strength c=Vn/Ac are calculated as 

 

 Vn=Fnssinθs=(fceAcs)sinθs (A2.4) 

and 

 c= (fceAcs)sinθs/Ac,  (A2.5) 

 

where fce - the effective strut compressive strength and Acs=wst - the cross-sectional area at the strut 

end, Ac=tD – the effective cross-sectional area of a beam. The strut width ws depends on the 

supporting plate geometry and longitudinal reinforcement arrangement: 
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  ws=lccoss  + lbsins. (A2.6) 

 

where lb - the supporting plate length and lc - the height of the CCT node depending on the concrete 

cover and number of reinforcement layers. The presence of stirrups is taken into account by 

modifying the effective compressive strength of concrete in the strut fce=0.85sf ’c with s=0.75 (in 

the beams without transverse reinforcement s=0.6). To analytically specify the size effect, Eq.A2.5 

can be transformed (by substituting lb=lctgs) as  

 

 c=2fcec/a=1.7sf ’c c/a. (A2.7) 

 

The shear strength in Eq.A2.7 is affected by two size parameters a and c (the shear strength 

increases with decreasing a and increasing c) and one material parameter fce that takes into 

account the concrete strength and presence of stirrups. The nominal strength of the nodal zone was 

calculated as Fnn=fceAnz with fce=0.85fc’n (n=0.8 for the CCT node and n=1.0 for the CCC node) 

wherein Anz - the node face area perpendicular to the strut direction.  

 

Zhang and Tan (2007)  

Zhang and Tan (2007) improved a strut-and-tie model by taking into account the Mohr-Coulomb 

failure condition in a tension-compression stress state and a contribution of the bottom 

reinforcement to the strut compression. The ultimate force Vn in RC beams may be determined from 

the formula: 

 

 

4sin cos sin
[ ] 1s s s

n

t c c str

V
f A f A

  
  ,    (A2.8) 

 

where Ac=dct is the effective cross-sectional area of a beam (dc=D-0.5ld), Astr=wst is the cross-

sectional area of the strut. The width of strut ws is calculated in the same way as in ACI but with a 

slightly modified strut inclination angle θs defined as tanθs=dc/a. The maximum tensile strength ft of 

the bottom nodal zone is calculated as the sum of three components: 

 

 

2

0.4

1

4 sin sin( )
0.31 ( )

/ sin

s y s ywd sw s w cr
t c

c c s

A f f A
f f

A A

   

 


   .  (A2.9) 
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The first component in Eq.A2.9 results from the main longitudinal reinforcement action, the second 

part takes into account the effect of shear reinforcement (w - the inclined angle of shear 

reinforcement with respect to horizontal line) and the third component considers the cracked 

concrete tensile strength (εcr - the concrete strain during cracking taken as 0.00008, ε1 - the principal 

tensile strain of the concrete strut (ε1=εs+(εs+ε2)ctg2θs, εs and ε2 - the tensile strain of longitudinal 

reinforcement and peak compressive strain of the concrete strut at crushing). The tensile strain εs 

depends on the compressive zone height and is calculated in an iterative procedure. Thus, the 

ultimate force resulting from Eq.2.8 (or the corresponding shear strength) cannot be expressed in a 

straightforward manner by the size parameters a , b and c as it in the case of Eq.A2.7. The 

ultimate force in Eq.A2.8 depends on six geometric parameters (D, t, c’, As, Asw, s,  and ld) and five 

material parameters (fy, fywd, fc, εcr, and ε1). 

Chen et al. (2018) 

The strut-and-tie model formulated by Chen et al. (2018) assumes the strut of the width ws 

consisting of a the cracked and un-cracked part that transfer the following ultimate forces 

(Fig.A2.19):  

 

 twftwF sicsicsicisi

'  ,  (A2.10) 

 twftwF sccscscccsc

'  .  (A2.11) 

 

The non-cracked part of the width wsi and cracked part of the width wsc have the effective 

compressive strengths si=csif ’c and sc=scf’c, respectively (f ’c is the cylindrical concrete 

compressive strength, c=1- f ’c/250 and si=0.85). The strut efficiency coefficient sc takes into 

account the aggregate interlocking, dowel action of longitudinal bars and shear reinforcement 

strength. The value of sc is found through an iterative procedure with the initial value of sc=0.85. 

The ultimate force of deep beams  is obtained as the sum of Fsi and Fsc:  

 

 sscsin FFV sin)(  , (A2.12) 

 

where the strut angle tans=(D-c/2)/a  is the function of the effective beam depth D, shear span a 

and nodal CCC zone height c (Fig.A2.19). The compression zone depth c can be found using the 

linear flexural theory (the concrete compressive strength in the compression zone at the mid-span 

does not reach its ultimate strength). The solution of equation c
2
+2nDc-2nD

2
=0 (with n=Es/Ec) 

derived from the equilibrium condition of a plane section provides the compression zone height c. 
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The ultimate force (or corresponding shear strength) in Eq.A2.12 cannot be presented as an explicit 

function of the size parameters a , b and c due to an iterative procedure used to determine the 

strut efficiency coefficient sc .The ultimate shear strength of deep beams in Eq.A2.12 depends on 

ten geometric parameters (D, t, b, c, lbt, s, , , v and s) and five material parameters (c, si, f ’c, 

Es and Ec).  

 

Flexural strength 

The ultimate flexural strength of beams with a2.5 failing due to concrete crushing in the 

compression zone was estimated from the equilibrium conditions in the beam section. Assuming a 

simplified rectangular stress distribution in the compression zone, the lever arm is z=D(1-0.5eff,lim) 

with eff,lim=0.80.0035/(0.0035+Ec/Es). The ultimate vertical force reads as follows: 

 

 𝑉𝑛 ,𝑓𝑙𝑒𝑥 =
𝑓𝑐𝑡𝐷

2𝑒𝑓𝑓 ,𝑙𝑖𝑚

𝑎
 (A2.13) 

 

with eff,lim=eff,lim(1-0.5eff,lim) and =0.85. 

 

 

 

Fig.A2.19: Strut with diagonal cracks at CCC node (Chen et al. 2018) 
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A2.6. Comparison between experimental and theoretical results 

The shear strengthsc=Vmax/(tD) (Vmax=0.5Pmax) or ultimate stresses (in the case of flexural failure) 

predicted by the analytical models from Section 4 were compared to the experimental results in 

(Tab.A2.5 and Fig.A2.20). The calculations were performed with the mean concrete compressive 

strength fcm=58 MPa and fcm=56 MPa in the series „3‟ and „4‟ and the guaranteed steel yielding 

strength fym=fywm=560 MPa. For the beams of a transitional geometry (beam S3D36A108 with 

a=3.0 and S4D43A108 with a=2.5), the shear strength was calculated using both the beam theory 

and strut-and-tie models (even though it is required that a2.0 by ACI (ACI 318-14 (2014)) and 

a2.5 by Chen (Chen et al. 2018). The experimental and theoretical strut widths ws and strut 

inclination angles s are compared in Tab.A2.5. In Tab.A2.6 the average experimental inclined 

cracks spacing sI
EXP

 (distance between the inclined cracks measured perpendicularly to the critical 

shear crack direction just above reinforcement) was also shown. 

 

According to the simple strut-and-tie model (STM) from ACI 318-14 (Eq.A2.5), the predicted shear 

strengths of deep beams with a=1.5 were very close to experimental results in both the series „3‟ 

and „4‟ (higher solely by 5%) (Tab.A2.5 and Fig.A2.20). With respect to the beams with a 

transitional geometry, the predicted shear strength was the same as the experimentally obtained 

value for a=3 with the shear-compression failure mode. The analytical solution provided for 

a=2.5 the lower shear strength by 15% as compared to the experimental beams that failed due to 

shear-compression (Tab.A2.5 and Fig.A2.20). The calculated beam strength resulting from the 

nodal zone strength was in all beams by 7% (CCT node) and 33% (CCC node) higher than the 

theoretical strut nominal strength (for the beam S4D72A108 the difference further increased up to 

80% and 130% accordingly with the pilaster thickness of 250 mm). The measured ultimate vertical 

forces of beams with a=2.5-3.0 were by 1-8% lower than estimated based on the CCT node 

strengths. In contrast, the high beams with a=1.5 were stronger by 11-12% with respect to the 

theoretical beam strengths resulting from the CCT node failure. 

 

Referring to the model by Zhang and Tan (2007) (Eq.A2.12) (MSTM), the calculated shear 

strengths of beams with a between 1.5 and 3.0 were generally higher than the experimental results 

by 10-55%. Note that MSTM was successfully verified by Zhang and Tan (2007) against the deep 

beams with a=1.1, that indicated this model had the limited applicability. Based on the cracking 

strut-and-tie model (CSTM) by Chen et al. (2018), the estimated shear strength related to the 

experimental results STM
/Exp

 varied between 0.80-1.07 for the beams with a=1.5-2.5. The highest 
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difference of 32% was obtained for the beam with a=3.0 that was however beyond the model 

application range. The CSTM predicted the lowest ultimate shear strength (for a3.0) among all 

analysed strut-and-tie models. The shear stresses of the beams with a=3.0-6.0 failing due to 

concrete crushing were estimated with the 8%-error using a simple equilibrium condition of plane 

section (Eq.A2.13). However, the beams‟ strength with a=2.5 was overestimated by 20%. The 

formula recommended by EC2 (EN 1992-1-1 (2008)) obviously strongly underestimated the 

ultimate shear strength of all beams failing in shear-compression (for a=2.5-3.0, the difference was 

exceeded by 100%). 

 

The theoretical strut width ws was obviously 2.5-4 times wider than the experimental crack spacing 

sI
EXP

 (Tab.A2.6) since, in the idealized truss model, the single strut represented the several real 

struts between cracks. The theoretical inclination of the strut s in STM (ACI 318-14) was always 

lower than the critical shear crack inclination S
EXP

 by 20-50% for a=2.5-3.0 and 10-25% for 

a=1.5. MSTM (Zhang and Tan 2007) and CSTM (Chen et al. 2018) further reduced the strut 

inclination that were by 40-60% and 30-40% lower than the critical shear crack inclination for 

a=2.5-3.0 and a=1.5, respectively. This observation confirms the presented STMs should not be 

used for the beams with a=2.5-3.0 due to an incorrect assumption of a single strut connecting a 

loading and bearing plate. In the case of the beams with a=1.5 the simple ACI model provided an 

acceptable difference between the calculated strut inclination and critical shear crack inclination.   

 

In summary, the best prediction of the shear strength was obtained with the simple strut-and-tie 

model following ACI (ACI 318-14) (5%-error for a=1.5, 15%-error for a=2.5 and 1%-error for 

a=3.0). In the RC beams without stirrups (see Appendix 1), ACI (ACI 318-14) offered however 

very incorrect results for ηa=1.5-2.0 (error of 20-100%) and realistic results for ηa=1 (error of 5%). 

STMs are very sensitive to a different number of reinforcement layers. The increasing number of 

layers affects the height of the support nodal zone (CCT node), the strut width and its inclination. 

Generally, the more reinforcement layers, the higher is the beam strength even with the same 

reinforcement ratio. 
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Fig.A2.20: Average experimental ultimate shear stress =Vmax/(tD) in series „3‟ (a) and series „4‟ (b) 

as compared to analytical solutions based on: c) STM (Eq.A2.5), d) MSTM (Eqs.A2.8), e) CSTM 

(Eqs.A2.12), f) EC2 (Eqs.A2.2 and A2.3) and g) equilibrium condition in vertical cross-section 

(Eq.A2.13) 

 

Tab.A2.5: Experimental and theoretical shear strengths/ultimate stresses according to various 

analytical models of Section 4 (C
Exp

 – experimental average shear stress of beams failing due to 

concrete crushing, SC
Exp

 – experimental average shear strength of beams failing due to shear-

compression) 

Beam a 
Failure 

mode 
C

Exp
 SC

Exp
 


EC

 

(Eq.6) 


Fl 

(Eq.17) 


STM 

(Eq.8) 


MSTM

 

(Eq.12) 


CSTM 

(Eq.16) 

S3D36A216 6 C 2.64 - 2.03 2.86 - - - 

S3D36A108 3 C/SC 5.30 4.46 2.03 5.72 4.52 5.91 3.63 

S3D36A54 1.5 SC - 7.90 2.03 - 8.22 10.43 8.43 

S4D22A108 5 C 3.14 - 2.11 3.38 - - - 

S4D43A108 2.5 C/SC 5.67 5.82 2.11 6.84 4.97 6.78 4.65 
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S4D72A108 1.5 SC - 6.52 2.11 - 6.83 10.11 5.19 

 

 

Tab.A2.6: Experimental inclined crack spacing sI
EXP

 and critical shear crack inclination S
EXP 

compared to theoretical strut width ws and strut inclination angle s following STM by ACI (ACI 

318-14), MSTM by Zhang and Tan (2007)  and CSTM by Chen et al. (2018) 

 

Beam 
sI

EXP
 

[mm] 

S
EXP  

[] 

ws
STM 

[mm] 

s
STM  

[] 

ws
MSTM 

 

[mm] 

s
MSTM

 

[] 

ws
CSTM 

[mm] 

s
CSTM 

[] 

S3D36A54, 

a=1.5 
67 45 180 34 178 28 205 27 

S3D36A108, 

a=3.0 
68 36 174 18 179 14 199 14 

S4D72A108, 

a=1.5 
78 39 311 34 319 28 365 27 

S4D43A108, 

a=2.5 
62 28 202 22 199 17 221 17 

 

Crack width and deflection 

Comparing the flexural crack spacing, the distances between cracks were ls=131.9 mm and 

ls=101.0 mm for the beams of the series „3‟ (D=360 mm) following EC2 (EN 1992-1-1 (2008)) and 

ACI (ACI 224R-01), whereas the experimental ones varied between 98 mm and 114 mm 

(Fig.A2.21a). In the series 4, the theoretical values of cracks spacing according to code provisions 

for Vmax were 125.2 mm, 118.2 mm and 124.7 mm (EC2) and 84.5 mm, 67.5 mm and 83.4 mm 

(ACI) while the experimental ones were 79 mm, 118 mm and 124 mm for a=1.5, 2.5 and 5.0, 

respectively (Fig.A2.21b). 

 

Moreover, the beam deflections were calculated (by neglecting creep) with the formulas by EC2 

(EN 1992-1-1 (2008)) and ACI (ACI  435R-95)and compared with the average experimental values 

(Fig.A2.22). For all tested beams, the experimental mid-length deflections for Vmax were 

underestimated by about 15-70% as compared to the values obtained with the design codes 

formulae. For the beams S3D36a54 (a=1.5), S3D36a108 (a=3.0) and S3D36a216 (a=6.0), the 

standard formulae provided the deflections of u=27.71 mm, u=7.53 mm and u=2.45 mm (EC2) and 
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u=27.20 mm, u=7.54 mm and u=2.45 mm (ACI) whereas in the experiments they were significantly 

higher and equal on average to 36.5 mm 16.2 mm and 6.6 mm, respectively. The discrepancies 

always increased with decreasing a. 

 

Figure A2.23 presents the maximum experimental flexural crack widths in the beam mid-regions for 

the average ultimate vertical forces Vmax of Tab.A2.3 as compared to EC2 (EN 1992-1-1 (2008)) and 

ACI (ACI 224R-01),. For the series „4‟ and for the series „3‟, the measured crack widths were in 

good agreement with the standard values for a=6.0 (Fig.A2.22), and as twice as small for the series 

„3‟ with a=1.5-3.0 (Fig.A2.23a). 

a) 

b) 
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Fig.A2.12: Experimental (circles) and analytical flexural crack widths w by EC2 (EN 1992-1-1 

(2008)) (triangles) and ACI (ACI 224R-01 (2000)) (diamonds) versus a for Pmax in RC beams: a) 

series „3‟ (S3) and b) series „4‟ (S4) 

 

a) 

b) 

 

Fig.A2.22: Experimental (circles) and analytical flexural crack spacing ls by EC2 (EN 1992-1-1 

(2008)) (triangles) and ACI (ACI 224R-01 (2000)) (diamonds) versus a=a/D for Pmax: a) series „3‟ 

(S3) and b) series „4‟ (S4) 
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a) 

b) 

 

Fig.A2.23: Beam deflections u in experiments (circles) and according to EC2 (EN 1992-1-1 (2008)) 

(triangles) and ACI (ACI 224R-01 (2000)) (diamonds) versus a for Pmax in RC beams: a) series „3‟ 

(S3) and b) series „4‟ (S4) 

 

A2.7 Conclusions 

The following basic conclusions may be offered from our novel size effect experiments on RC 

beams with both longitudinal and transverse reinforcement being scaled along either the depth or 

length: 
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- The shear strength of beams evidently decreased with increasing parameter a=a/D. It also 

decreased with increasing parameter b from 0.75 to 2.5 in beams with the varying effective depth 

and constant effective length. 

 

- Two different basic failure modes were observed in RC beams with longitudinal and shear 

reinforcement. First, the concrete crushing in compressive zone occurred in slender beams for a=5-

6 with a global quasi-brittle post-peak behaviour. As the reinforcement remained elastic, the 

compressive zone enlarged transversely and interacted with the cracked tensile zone in the final 

failure stage. Second, the brittle shear-compression failure was registered in beams for a=1.5-3.0 

where the critical diagonal crack developed with normal and tangential displacements of similar 

values. In the RC beams without stirrups (Appendix 1), the reinforcement yielding occurred in 

beams for a=6, diagonal tension failure in beams for a=2-3 and shear-compression failure in 

beams for a=1-2. The presence of stirrups increased the beam strength by 130% for a=1.5 

(stirrups did not affect the failure mode) and 280% for a=3.0 (stirrups changed the failure mode). 

The strength of nodal zones according to ACI was sufficient to prevent local concrete crushing at 

supports in contrast to the experiments with the highest beams wherein it was not high enough and 

the support zone failure was observed. 

 

- A decrease of a due to the varying shear span a with the constant beam depth D had a slightly 

stronger effect on the beam shear strength than a decrease of a due to the varying D with a=const. 

 

- The distance between the critical diagonal crack and beam support dc related to the shear span a 

varied between dc/a=0.5 for beams with a=2.5-3 up to as dc/a=0 for deep beams with a=1.5 

(similarly as in RC beams without shear reinforcement (Appendix 1)). The inclination of the critical 

diagonal shear crack to the horizontal was 28
o
-45

o
 for a=1.5-3 (this inclination was similar (30

o
-

42
o
) in RC beams without stirrups for a=1-3 (Appendix 1)). 

 

- The best prediction of the shear strength of deep beams with a/D=1.5 was obtained with the 

simple strut-and-tie model following ACI (ACI 318-14) (5%-error). The shear strength of beams of 

a transitional geometry a/D=2.5-3.0 were also satisfactorily described with the same model (error of 

1-15%). The strut-and-tie model proposed by Chen (Chen et al. 2018) underestimated the shear 

strength of most beams (except of the beam S3D36A54) by ca. 20%. The modified strut-and-tie 

model by Zhang and Tan (2007) overestimated on the other hand the shear strength of all RC beams 
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with a=1.5-3. Thus, the ACI model, in spite of several simplifications assumed, proved to be the 

most realistic for RC beams with and without shear reinforcement that failed in shear-compression. 

 

- The measured crack widths were in agreement with the standard values for the series „4‟ and for 

the series „3‟ if a=6.0, and were as twice as small for the series „3‟ if a=1.5-3.0. The measured 

beams‟ deflections were higher by the factor 1.1-3.4 than the code values. In RC beams without 

stirrups (Appendix 1), the standards realistically determined the flexural crack widths and beam 

deflections solely for the beams with ηa=2–6 with respect to cracks widths and with ηa=3-6 with 

respect to deflections (the standard crack widths were higher by the factor 1.5 for ηa=1 and the 

standard deflections were underestimated by the factor 3 for ηa≤2). 

 

- The size effect formula should be related to a specific failure mode dependent on both strength and 

geometric parameters. The specification of the failure mode is therefore fundamental in assessing 

the dependence of the limit load on design or redesign variables.  
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