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ABSTRACT: We describe a versatile method to enforce the rotation of subsets of atoms, e.g., a protein subunit, in molecular
dynamics (MD) simulations. In particular, we introduce a “flexible axis” technique that allows realistic flexible adaptions of both the
rotary subunit as well as the local rotation axis during the simulation. A variety of useful rotation potentials were implemented for the
GROMACS 4.5 MD package. Application to the molecular motor F1-ATP synthase demonstrates the advantages of the flexible axis
approach over the established fixed axis rotation technique.

1. INTRODUCTION

Biomolecular function often rests on or is performed through
motions of subunits. Rotary motions, in particular, are essential
for the function of many motor proteins. These nanomotors
use the free energy of chemical reactions or ion concentration
gradients to generate mechanical torque. Rotary mechanisms
were unequivocally demonstrated for three molecular engines,
the Fo and F1 motors in F-ATP synthase (F-ATPase)1,2 and the
bacterial flagellar motor.3 Recently, rotary motion was also shown
for the V1 portion of the prokaryotic homologue of the vacuolar
ATPase (V-ATPase).4Othermotor proteins that are assumed to be
rotary include DNA helicases5 and proteins that translocate viral
DNA into preformed capsids.6�8

The molecular mechanisms by which chemical reactions or
transmembrane gradients drive protein rotary motions are in
most cases not understood in full detail.9 Also, these often quite
complex motions are typically too slow or infrequent to be
accessible to equilibriummolecular dynamics (MD) simulations.
To overcome this limitation, techniques have been developed
to exert external forces10�12 or torques13�15 to certain subunits
to induce rotation and/or to increase its rate without severely
perturbing the nature of the involved structural changes. This
approach has also been used to simulate experiments in which
biomolecules, such as proteins or DNA, are mechanically driven
to rotate by externally applied torques by single molecule
manipulation techniques.16 In one impressive example, the F1
portion of ATP synthase (F1-ATPase) has been shown to produce
ATP when the γ subunit is enforced to rotate using magnetic
tweezers.17

With exceptions,18 in most simulations involving external
torque, a fixed, “stiff” rotation axis has been used so far15,19,20

(dashed line in Figure 1A). As shown in the figure, this approach
does not properly describe situations such as F1-ATPase, where
the rotating part flexibly adapts (dotted lines) to the steric
restraints set by the bearing (gray). To more realistically describe
biomolecular rotations, we have therefore developed a flexible
axis rotation technique that (i) exerts torque with a curved
axis that flexibly fits the shape of an arbitrarily shaped cavity

(Figure 1A), (ii) avoids any impact or bias previously introduced
by the necessary choice of the pivot for the axis, (iii) perturbs the
internal dynamics and flexibility of the rotated structure as little
as possible, and (iv) allows the curvature of the axis to adapt to
structural changes of the bearing. In summary, a rotated fragment
such as the γ subunit inside the ATPase R3β3 stator should
deform like a rotating pipe-cleaner.

To clarify notation and to explain the basic ingredients needed
for the flexible technique, we start with a recapitulation of the
established fixed axis rotation, as implemented, e.g., in NAMD21

or EGO.22 From these notions, several more complex potentials
will be developed and characterized, and the resulting forces will
be derived. We will then motivate and describe in detail the
flexible axis approach, for which we present two different variants.
After outlining details of our GROMACS23,24 implementation,
we will apply flexible axis rotation to the F1-ATPase molecular
motor and test if our approach is indeed capable of providing
more accurate torque or free energy profiles.

2. FIXED AXIS ROTATION

Stationary Axis with an Isotropic Potential. In the estab-
lished fixed axis approach15,19�22 (Figure 1B), torque on a group
of N atoms with positions xi (denoted “rotation group”) is ap-
plied by rotating a reference set of atomic positions—usually
their initial positions yi

0—at a constant angular velocityω around
an axis defined by a direction vector v̂ and a pivot point u. To that
aim, each atom with position xi is attracted by a “virtual spring”
potential to its moving reference position yi = Ω(t) (yi

0 � u),
whereΩ(t) is a matrix that describes the rotation around the axis.
In the simplest case, the “springs” are described by a harmonic
potential

V iso ¼ k
2 ∑

N

i¼ 1
wi½ΩðtÞðy0i � uÞ � ðxi � uÞ�2 ð1Þ
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with optional mass-weighted prefactors wi = Nmi/M with total
mass M = ∑i=1

N mi. The rotation matrix Ω(t) is

ΩðtÞ ¼
cos ωt þ v2xξ vxvyξ� vz sin ωt vxvzξþ vy sin ωt

vxvyξþ vz sin ωt cos ωt þ v2yξ vyvzξ� vx sin ωt

vxvzξ� vy sin ωt vyvzξþ vx sin ωt cos ωt þ v2xξ

0
BBB@

1
CCCA

where vx, vy, and vz are the components of the normali-
zed rotation vector v̂ and ξ := 1 � cos (ωt). As illustrated
in Figure 2A for a single atom j, the rotation matrix Ω(t)
operates on the initial reference positions yj

0 = xj(t0) of atom j at
t = t0. At a later time t, the reference position has rotated away
from its initial place (along the blue dashed line), resulting in
the force

Fisoj ¼ �rjV
iso ¼ kwj½ΩðtÞðy0j � uÞ � ðxj � uÞ� ð2Þ

which is directed toward the reference position.
Pivot Free Isotropic Potential. We first address the bias

introduced by an arbitrary choice of the pivot vector u. This arbi-
trariness is avoided by defining as the pivot the center of mass xc
of the rotation group

xc ¼ 1
M ∑

N

i¼ 1
mixi and y

0
c ¼ 1

M ∑
N

i¼ 1
miy

0
i ð3Þ

which yields the “pivot-free” potential

V iso-pf ¼ k
2 ∑

N

i¼ 1
wi½ΩðtÞðy0i � y0cÞ � ðxi � xcÞ�2 ð4Þ

with forces

Fiso-pfj ¼ kwj½ΩðtÞðy0j � y0cÞ � ðxj � xcÞ� ð5Þ

Without mass-weighting, the pivot xc is the geometrical center of
the group.
Parallel Motion Potential Variant. Obviously, the forces

generated by the isotropic potentials (eqs 1 and 4) also contain
components parallel to the rotation axis and thereby restrain
motions along the axis of either the whole rotation group (in case

of Viso) or within the rotation group (in case of Viso-pf). For cases
where unrestrained motion along the axis is preferred, we
have implemented a “parallel motion” variant by eliminating all
components parallel to the rotation axis for the potential. This is
achieved by projecting the distance vectors between reference
and actual positions:

ri ¼ ΩðtÞðy0i � uÞ � ðxi � uÞ ð6Þ

onto the plane perpendicular to the rotation vector

r^i :¼ ri � ðri 3 v̂Þv̂ ð7Þ

yielding

V pm ¼ k
2 ∑

N

i¼ 1
wiðr^i Þ2 ¼ k

2 ∑
N

i¼ 1
wi ΩðtÞðy0i � uÞ � ðxi � uÞ�

� f½ΩðtÞðy0i � uÞ � ðxi � uÞ� 3 v̂gv̂
�2 ð8Þ

and similarly

Fpmj ¼ kwjr
^
j ð9Þ

Pivot-Free Parallel Motion Potential. Replacing in eq 8 the
fixed pivot u with the center of mass xc yields the pivot-free
variant of the parallel motion potential. With

si ¼ ΩðtÞðy0i � y0cÞ � ðxi � xcÞ ð10Þ

the respective potential and forces are

Vpm-pf ¼ k
2 ∑

N

i¼ 1
wiðs^i Þ2 ð11Þ

Fpm-pf
j ¼ kwjs

^
j ð12Þ

Radial Motion Potential. In the above variants, the minimum
of the rotation potential is either a single point at the reference
position yi (for the isotropic potentials) or a single line through
yi parallel to the rotation axis (for the parallel motion potentials).
As a result, radial forces restrict radial motions of the atoms.
The two subsequent types of rotation potentials, Vrm and Vrm2,
drastically reduce or even eliminate this effect. The first variant,

Figure 1. Comparison of fixed and flexible axis rotation. (A) Rotating the sketched shape inside the white tubular cavity creates severe artifacts when a
conventional fixed rotation axis (dashed) is used. More realistically, the shape would revolve like a flexible pipe-cleaner (dotted) inside the bearing
(gray). (B) Fixed rotation around an axis v with a pivot point specified by the vector u. (C) Subdividing the rotating fragment into slabs with separate
rotation axes (v) and pivot points (•) for each slab allows for the required flexibility. The distance between two slabs with indices n and n þ 1 is Δx.
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Vrm (Figure 2B), eliminates all force components parallel to the
vector connecting the reference atom and the rotation axis

V rm ¼ k
2 ∑

N

i¼ 1
wi½pi 3 ðxi � uÞ�2 ð13Þ

with

pi :¼
v̂ �ΩðtÞðy0i � uÞ

jj v̂ �ΩðtÞðy0i � uÞ jj ð14Þ

This variant depends only on the distance pi 3 (xi�u) of atom i
from the plane spanned by v̂ and Ω(t)(yi

0�u). The resulting
force is

Frmj ¼ � kwj½pj 3 ðxj � uÞ�pj ð15Þ

Pivot-Free Radial Motion Potential. Proceeding similar to
the pivot-free isotropic potential yields a pivot-free version of the
above potential. With

qi :¼
v̂ �ΩðtÞðy0i � y0cÞ

jjv̂ �ΩðtÞðy0i � y0cÞjj
ð16Þ

the potential and force for the pivot free variant of the radial

motion potential read

V rm-pf ¼ k
2 ∑

N

i¼ 1
wi½qi 3 ðxi � xcÞ�2 ð17Þ

Frm-pf
j ¼ � kwj½qj 3 ðxj � xcÞ�qj þ k

mj

M ∑
N

i¼ 1
wi½qi 3 ðxi � xcÞ�qi

ð18Þ

Radial Motion 2 Alternative Potential. As seen in
Figure 2B, the force resulting from Vrm still contains a small,
second-order radial component. In most cases, this perturba-
tion is tolerable; if not, the following alternative, Vrm2, fully
eliminates the radial contribution to the force, as depicted in
Figure 2C,

V rm2 ¼ k
2 ∑

N

i¼ 1
wi

½ðv̂ � ðxi � uÞÞ 3ΩðtÞðy0i � uÞ�2
jj v̂ � ðxi � uÞ jj2 þ ε0

ð19Þ

where a small parameter ε0 has been introduced to avoid
singularities. For ε0 = 0 nm2, the equipotential planes are

Figure 2. Selection of different rotation potentials discussed in the text and definition of notation. All four potentials V (color coded) are shown for a
single atom at position xj(t). (A) Isotropic potentialV

iso, (B) radial motion potentialVrm and flexible potentialVflex, (C,D) radial motion 2 potentialVrm2

and flexible 2 potential Vflex2 for ε0 = 0 nm2 (C) and ε0 = 0.01 nm2 (D). The rotation axis is perpendicular to the plane and marked byX. The light gray
contours indicate Boltzmann factors e�V/(kBT) in the xj plane forT = 300 K and k = 200 kJ/(mol 3 nm

2). The green arrow shows the direction of the force
Fj acting on atom j; the blue dashed line indicates the motion of the reference position.
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spanned by xi � u and v̂, yielding a force perpendicular to
xi � u, thus not contracting or expanding structural parts that
moved away from or toward the rotation axis.
We note that this variant is particularly suitable for free energy

calculations via umbrella sampling techniques,25 because the
radial orientation of the equipotential planes shown in Figure 2C
guarantees statistically consistent sampling of adjacent umbrella
windows, as required for a consistent definition of the free energy
profile via subspace projection. To see why this is actually the case,
note that consistent umbrella sampling requires that for adjacent
umbrella windows the “stack” of (3N� 1 dimensional) configura-
tional subspaces defined by the values of the chosen reaction
coordinate agrees, subspace by subspace, with the one defined by
the values of the umbrella potential. This in turn requires that the
equipotential planes shown in Figure 2 coincide with those of a
rotated potential, which is obviously the case for Figure 2C, but not
for Figure 2A or B.
Choosing a small positive ε0 (e.g., ε0 = 0.01 nm2, Figure 2D) in

the denominator of eq 19 yields a well-defined potential and
continuous forces also close to the rotation axis, which is not the
case for ε0 = 0 nm2 (Figure 2C). With

ri :¼ ΩðtÞðy0i � uÞ ð20Þ

si :¼ v̂ � ðxi � uÞ
jj v̂ � ðxi � uÞ jj � Ψiv̂ � ðxi � uÞ ð21Þ

Ψ
�
i :¼

1
jj v̂ � ðxi � uÞ jj 2 þ ε0

ð22Þ

the force on atom j reads

Frm2
j ¼ � k wjðsj 3 rjÞ

Ψ
�
j

Ψj
rj �

Ψ�2
j

Ψ3
j

ðsj 3 rjÞsj
2
4

3
5

8<
:

9=
;� v̂ ð23Þ

Pivot-Free Radial Motion 2 Potential.The pivot free variant of
the above potential is

V rm2-pf ¼ k
2 ∑

N

i¼ 1
wi
½ðv̂ � ðxi � xcÞÞ 3ΩðtÞðy0i � ycÞ�2

jj v̂ � ðxi � xcÞ jj 2 þ ε0
ð24Þ

with

ri :¼ ΩðtÞðy0i � ycÞ ð25Þ

si :¼ v̂ � ðxi � xcÞ
jj v̂ � ðxi � xcÞ jj � Ψiv̂ � ðxi � xcÞ ð26Þ

Ψ
�
i :¼

1

jj v̂ � ðxi � xcÞ jj 2 þ ε0
ð27Þ

the force on atom j reads

Frm2-pf
j ¼ � k wjðsj 3 rjÞ

Ψ
�
j

Ψj
rj �

Ψ�2
j

Ψ3
j

ðsj 3 rjÞsj
2
4

3
5

8<
:

9=
;� v̂

þ k
mj

M ∑
N

i¼ 1
wiðsi 3 riÞ

Ψ
�
i

Ψi
ri �Ψ�2

i

Ψ3
i

ðsi 3 riÞsi
" #( )

� v̂ ð28Þ

3. FLEXIBLE AXIS ROTATION

As sketched in Figure 1A,B, the rigid body behavior of the fixed
axis rotation scheme is a drawback for many applications. In
particular, deformations of the rotation group are suppressed when
the equilibrium atom positions directly depend on the reference
positions. To avoid this limitation, eqs 18 and 24 will now be
generalized toward a “flexible axis”, as sketched in Figure 1C. This
will be achieved by subdividing the rotation group into a set of
equidistant slabs perpendicular to the rotation vector, and by
applying a separate rotation potential to each of these slabs.
Figure 1C shows the midplanes of the slabs as dotted straight lines
and the centers as thick black dots.

To avoid discontinuities in the potential and in the forces, we
define “soft slabs” by weighing the contributions of each slab n
to the total potential function Vflex by a Gaussian function

gnðxiÞ ¼ Γ exp �β2nðxiÞ
2σ2

 !
ð29Þ

centered at the midplane of the nth slab. Here, σ is the width of
the Gaussian function, Δx the distance between adjacent slabs,
and

βnðxiÞ :¼ xi 3 v̂� nΔx ð30Þ

A most convenient choice is σ = 0.7Δx and

1=Γ ¼ ∑
n ∈ Z

exp �
n� 1

4

� �2

2� 0:72

0
BBBB@

1
CCCCA � 1:75464

Figure 3. Gaussian functions gn centered at nΔx for a slab distanceΔx =
1.5 nm and n g �2. Gaussian function g0 is highlighted in bold; the
dashed line depicts the sum of the shown Gaussian functions.
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which yields a nearly constant sum, essentially independent of xi
(dashed line in Figure 3), i.e.,

∑
n ∈ Z

gnðxiÞ ¼ 1þ εðxiÞ ð31Þ

with |ε(xi)| < 1.3 � 10�4. This choice also implies that the
individual contributions to the force from the slabs add up to
unity such that no further normalization is required.

To each slab center xc
n, all atoms contribute by their Gaussian-

weighted (optionally also mass-weighted) position vectors gn(xi)xi.
The instantaneous slab centers xc

n are calculated from the current
positions xi

xnc ¼
∑
N

i¼ 1
gnðxiÞmixi

∑
N

i¼ 1
gnðxiÞmi

ð32Þ

while the reference centers yc
n are calculated from the reference

positions yi
0

ync ¼
∑
N

i¼ 1
gnðy0i Þmiy0i

∑
N

i¼ 1
gnðy0i Þmi

ð33Þ

Due to the rapid decay of gn, each slab will essentially involve
contributions from atoms located within ∼3Δx from the slab
center only.
Flexible Axis Potential.We consider two flexible axis variants.

For the first variant, the slab segmentation procedure with
Gaussian weighting is applied to the radial motion potential
(eq 18/Figure 2B), yielding as the contribution of slab n

Vn ¼ k
2 ∑

N

i¼ 1
wignðxiÞ½qni 3 ðxi � xncÞ�2

and a total potential function

V flex ¼ ∑
n
Vn ð34Þ

Note that the global center of mass xc used in eq 18 is now
replaced by xc

n, the center of mass of the slab. With

qni :¼
v̂ �ΩðtÞðy0i � yncÞ

jj v̂ �ΩðtÞðy0i � yncÞ jj ð35Þ

bni :¼ qni 3 ðxi � xncÞ ð36Þ
the resulting force on atom j reads

Ff lexj ¼ � kwj∑
n
gnðxjÞ bnj qnj � bnj

βnðxjÞ
2σ2

v̂

( )

þ kmj∑
n

gnðxjÞ
∑
h
gnðxhÞ ∑

N

i¼ 1
wignðxiÞ bni

qni �
βnðxjÞ
σ2

½qni 3 ðxj � xncÞ�v̂
( )

ð37Þ

Note that for Vflex, as defined, the slabs are fixed in space and so
are the reference centers yc

n. If during the simulation the rotation
groupmoves too far in the vdirection, itmay enter a regionwhere—
due to the lack of nearby reference positions—no reference slab
centers are defined, rendering the potential evaluation impossi-
ble. We therefore have included a slightly modified version of
this potential that avoids this problem by attaching the mid-
plane of slab n = 0 to the center of mass of the rotation group,
yielding slabs that move with the rotation group. This is achieved
by subtracting the center of mass xc of the group from the
positions

~xi ¼ xi � xc, and ~y0i ¼ y0i � y0c ð38Þ

such that

V f lex-t ¼ k
2∑n ∑

N

i¼ 1
wignð~xiÞ v̂ �ΩðtÞð~y0i � ~yncÞ

jj v̂ �ΩðtÞð~y0i � ~yncÞ jj 3
ð~xi � ~xncÞ

" #2

ð39Þ

To simplify the force derivation, and for efficiency reasons, we
here assume xc to be constant, and thus ∂xc/∂x = ∂xc/∂y = ∂xc/
∂z = 0. The resulting force error is small (on the order ofO(1/N)
or O(mj/M) if mass-weighting is applied) and can therefore be
tolerated.With this assumption, the forcesFflex-t have the same form as
eq 37.
Flexible Axis 2 Alternative Potential. In our second variant,

slab segmentation is applied to Vrm2 (eq 24), resulting in a flexible
axis potential without radial force contributions (Figure 2C)

V f lex2 ¼ k
2 ∑

N

i¼ 1
∑
n
wignðxiÞ½ðv̂ � ðxi � xncÞÞ 3ΩðtÞðy0i � yncÞ�2

jj v̂ � ðxi � xncÞ jj 2 þ ε0

ð40Þ

with

rni :¼ ΩðtÞðy0i � yncÞ ð41Þ

sni :¼
v̂ � ðxi � xncÞ

jj v̂ � ðxi � xncÞ jj � ψiv̂ � ðxi � xncÞ ð42Þ

ψ
�
i :¼

1
jj v̂ � ðxi � xncÞ jj 2 þ ε0

ð43Þ

Wn
j :¼ gnðxjÞmj

∑
h
gnðxhÞmh

ð44Þ

Sn :¼ ∑
N

i¼ 1
wignðxiÞðsni 3 rni Þ

ψ
�
i

ψi
rni �

ψ�2
i

ψ3
i
ðsni 3 rni Þsni

" #
ð45Þ
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the force on atom j reads

Ff lex2j ¼ � k ∑
n
wjgnðxjÞðsnj 3 rnj Þ

ψ
�
j

ψj
rnj �

ψ�2
j

ψ3
j

ðsnj 3 rnj Þsnj
" #( )

�v̂ þ k

�
∑
n
Wn

j S
n

�
� v̂� k ∑

n
Wn

j

βnðxjÞ
σ2

1
ψj
snj 3 S

n

�
v̂

(

þ k
2 ∑

n
wjgnðxjÞ

βnðxjÞ
σ2

ψ
�
j

ψ2
j
ðsnj 3 rnj Þ2

�
v̂

(
ð46Þ

Applying transformation 38 yields a translation-tolerant ver-
sion of the flexible 2 potential, Vflex2-t. Again, assuming that
∂xc/∂x, ∂xc/∂y, and ∂xc/∂z are small, the resulting equations for
Vflex2-t and Fflex2-t are similar to those of Vflex2 and Fflex2.

4. GROMACS IMPLEMENTATION

For an efficient implementation, the following issues were
taken into account. GROMACS 4 distributes the atoms among
the parallel processors by domain-decomposing24 the simulation
box and assigning each domain to a processor. Depending on van
der Waals and Coulomb cutoff settings, positions of atoms near
the domain boundaries are communicated such that each processor
can compute the forces assigned to its domain. However, the
calculation of some of the proposed potentials and forces requires
atom positions not present on the local processor. For instance, the
pivot free potentials require the center ofmass of the rotation group,
while the flexible potentials require all N positions of the rotation

group. The required coordinates are therefore distributed to all
processors before the force calculations, which entails one extra
communication step in the rotation module. Further, repeated
expressions such as the last terms in eqs 18 and 28 are precalculated
whenever possible. For the efficient computation of the forces Fflex,
the inner sum of the last term of eq 37

∑
N

i¼ 1
wignðxiÞbni qni �

βnðxjÞ
σ2

½qni 3 ðxj � xncÞ�v̂
( )

ð47Þ

is rewritten as

sn �
βnðxjÞ
σ2

½sn 3 ðxj � xncÞ� 3 v̂ ð48Þ

such that the repeated terms

sn ¼ ∑
N

i¼ 1
wignðxiÞbni qni ð49Þ

are also precomputed for each relevant slab n and then used for the
calculation of each Fj term. Likewise, for F

flex2, the terms Sn (eq 45)
of eq 46 are precalculated.

Moreover, for the flexible potentials, only significant contribu-
tions to V and F are computed, defined by a cutoff value of
gn(x) g gn

min with a default value gn
min = 0.001, which is checked

according to a simple distance criterion. Also, the atoms of the
rotation group are sorted according to their position along
the rotation vector such that for each slab n, a first and a last

Figure 4. F1-ATPase structure. In the upper left (right) corners, the full protein structure (R3β3δε) is shown in a side (top) view. Subunit color-coding
is R, red; β, green; γ, cyan; δ, magenta; and ε, orange. The central panel illustrates the initial orientation of the rotor domain (γδε) with respect to the
stator (R3β3); for the sake of simplicity, only the γ and two β subunits are shown. The 3-fold symmetry axis ofR3β3 that was used as a rotation axis inV

iso

is shown inmagenta. The red spheres and yellow arrows depict slab centers and local rotation axes as used by the flexible potentials. The left and right side
panels show the orientation of the rotor after 120� of enforced rotation using Viso and Vflex2, respectively. The two orange spheres denote harmonic
restraints applied to the N-terminal tags of the β subunits. This is to prevent co-rotation of the R3β3 stator in close resemblance to single-molecule force
probe experiments, in which the stator is immobilized by attaching the protein to the surface via His tags attached to one subunit type (usually the β
chains). Figure prepared with VMD.38
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index i between gn(xi) g gn
min "i ∈ [ifirst...ilast] is stored, and all

contributions outside that range can safely be ignored.
Special care has been taken for periodic boundary conditions.

Here, the appropriate periodic image for each of the particles
of the rotation group has to be chosen such that groups are not
split. For fixed axis rotation, each atom is put closest to its current
reference position. For the flexible and pivot-free radial motion
potentials, each atom is put next to its position at the previous
time step, thereby ensuring the integrity of all rotation fragments.

5. APPLICATION TO F1-ATP SYNTHASE

As a sample application of our flexible axis approach, and to
compare results obtained by fixed and flexible axis rotation, a
series of all-atom MD simulations was performed in which the γ
subunit of F1-ATPase was enforced to rotate with respect to its
stator part, R3β3 (Figure 4).

F1-ATPase is the soluble domain of the FoF1-ATP synthase, a
rotary motor protein that synthesizes ATP from ADP using the
electrochemical proton gradient across the membrane as its
energy source.26 The mitochondrial F1-ATPase is an oligomeric
protein consisting of nine polypeptide chains, R3β3γδε.

27 In
synthesis direction, F1-ATPase is driven by the membrane-
embedded proton-translocating Fo motor while the F1 mobile
subunit, γδε, rotates clockwise (seen from the membrane) within
the bearing formed by the hexagonally arrangedR andβ chains.28,26

The energy transmitted mechanically via the rotating subunit is
subsequently used at the catalytic sites of R3β3 for ATP synthesis.
To prevent co-rotation, the R3β3 hexamer is connected to the
membrane-embedded Fomotor by a peripheral linker stalk. Despite
numerous theoretical29�31 and simulation studies,15,32�36 the mo-
lecular mechanism of energy transmission between the rotor subunit
and the ligand binding sites in the stator is still not fully understood.37

Simulation Setup. The initial configuration of the F1 motor
was based on the X-ray structure of bovine F1-ATPase deter-
mined at 2.4 Å resolution39 (Protein Data Bank entry 1E79). The
covalently bound inhibitor as well as the glycerol and sulfate
molecules were removed, leaving only Mg 3ATP and Mg 3ADP
ligands in their respective binding sites. All crystal water mole-
cules were retained. Two five-residue-long loops missing from
the γ subunit were modeled with tCONCOORD.40 Protonation
states of ionizable groups were set according to the pKa shifts
calculated with the DelPhi41 interface of WhatIf.42 The protein
structure was solvated with 87 321 water molecules in a 16.7 �
13.8 � 13.8 nm rectangular unit cell. To neutralize the system
and to obtain physiological ionic strength, 261 Naþ and 216 Cl�

ions were added. The system was energy-minimized using the
steepest descent method in two stages. First, all heavy atoms
of the protein and the protein’s ligands were kept fixed; subse-
quently, all atoms in the system were allowed to relax.
All simulations were performed with GROMACS 4.024 in

which the potentials Viso, Vflex, and Vflex2 were implemented. For
convenience, we here also describe the newer 4.5 version, which
produces the same results for the Viso, Vflex, and Vflex2 potentials
but includes nine additional rotation potentials.
For the protein as well as its ligands and ions, the OPLS/AA

force field43,44 was used, and TIP4P45 was used for the water.
All production runs were carried out in the NPT ensemble at
300 K and 1 bar. Temperature and pressure were controlled
by Nos�e�Hoover46,47 (coupling constant τt = 0.5 ps) and
Parrinello�Rahman48,49 (τp = 2.0 ps) schemes, respectively.
To avoid severe density oscillations, the first 5 ns of the NPT

equilibration run were performed with Berendsen weak coupling50

for temperature and pressure. Periodic boundary conditions were
applied in 3D, and electrostatic forces were calculated with the
particle mesh Ewald (PME) method51,52 using a real-space cutoff
of 1 nm and an FFT grid density of 10 nm�1. Lennard-Jones
interactions were truncated at 1 nm. Covalent bond lengths in the
protein and ligand were constrained to their reference values with
P-LINCS.53 SETTLE was used to constrain the water geometry.54

Equations of motion were integrated using the leapfrog scheme with
a time step of 2 fs. Prior to enforcing the rotormovement, the system
was equilibrated for 10 ns at the target temperature and pressure.
During the first 1 ns of this run, all protein heavy atoms were
harmonically restrained to their initial positions.
To mimic the effect exerted on the F1 subunit by the rotation

of the Fo motor, a potential of the form Viso (eq 1), Vflex (34), or
Vflex2 (40) was applied during the production runs. All 272 CR
atoms of the γ subunit were chosen as a rotation group. The
longest principal axis of the R3β3 stator, i.e., the eigenvector of
the inertia tensor of R3β3 corresponding to the largest eigenva-
lue, was used as a rotation vector v. For the fixed variant, the pivot
vector u of the axis was placed at the center of mass of the R3β3
units, thus defining the 3-fold pseudosymmetry axis of the stator
subunit (Figure 4). For the flexible axis runs, a slab distance of
Δx = 1 nm, a Gaussian function cutoff of gn

min = 0.001, and ε0 =
0 nm2 were chosen. The γ reference positions were rotated
counter-clockwise around v at an angular rate of ω = 0.021�/ps
over 6 ns of the simulation time, yielding a 120� rotation of the
γδε domain. Due to its symmetry, this covers a complete
synthesis cycle, as also seen from the observed stepped motion
of the γδε domain.28 To examine the effect of the chosen spring
constant k, for each of the three potentials, five runs were
performed with k values ranging from 100 to 800 kJ/(mol 3 nm

2).
In each case, all heavy atoms of theN-terminal six-residue sequences
of each β subunit were harmonically restrained to their initial
positions using a force constant of 1500 kJ/(mol 3 nm

2).

Figure 5. GROMACS 4.5 performance for various rotation potentials
(colors) compared to a simulation without rotation. The system
comprises 401 152 atoms in total, of which 2116 are subjected to the
rotation potential. For the flexible potentials, slab distance Δx = 1 nm
and gn

min = 0.001 have been chosen. The thin black line denotes ideal
scaling.
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Additionally, for k = 600 kJ/(mol 3nm
2), a complete 360� rotation

of the γδε domain was simulated.
Performance.We demonstrate that, due to the optimizations

described in the implementation section, simulation performance is
nearly unaffected for typical setups such as the F1-ATPse system,
where only a small fraction of all atoms are subjected to a rotation
potential. The described ATPase example with the implemented
rotation types was benchmarked (Figure 5) on a cluster of Intel Xeon
L5430 nodes connected by a DDR Infiniband network. Each node
comprised eight processor cores running at 2.66 GHz. An Intel MPI
3.2.1 was used with the Intel 11.1 compiler and the FFTW 3.2 library.
For the benchmarks, Coulomb and van der Waals cutoffs were set to
0.9 nmand theFourier grid to 144� 120� 120points, yielding a grid
spacing of less than 0.12 nm in each dimension. Separation into long-
range (PME-only) and short-range (particle�particle) processes was
allowed.Theoptimal numberofPME-onlyprocesseswas derivedwith
the g_tune_pme55 tool using 2000 equilibration steps for the dynamic
load balancing, with run times taken from 2000 subsequent steps.
With theN = 272 CR atoms of the γ subunit as the rotation group,

none of the potentials significantly reduced the MD performance. To
be able to analyze the scaling behavior (Figure 5), the rotation group
was therefore enlarged to contain allN= 2116 atoms of theγ subunit.
As seen, the overall performance decreases only slightly compared to
the case without rotation. For the most computationally demanding
flexible potentials, on eight processors, a 2% decrease is seen and a 9%
decrease on 192 processors.

6. RESULTS

Evolution of the Rotor Angle. To verify that the proposed
methods properly control the motion of the rotary subunit, we

first determined the time evolution of the rotor angle θ. The
actual rotation angle θ(t) of the γ subunit was determined by a
mass-weighted root-mean-square deviation (RMSD) fit to the
initial (θ = 0�) configuration of the γ backbone. Figure 6 shows
θ(t) with respect to the R3β3 symmetry axis.
The results show that in all 6-ns-long enforced rotation runs

the rotor changes its orientation with respect to the stator by the
expected 120�. The angle increases nearly linearly with time, with
the slope reflecting the constant angular velocity of 0.021�/ps, at
which the reference is rotated. For fixed axis rotation, the subunit
closely follows the reference for all tested force constants k =
100�800 kJ/(mol 3 nm

2). In contrast, for both flexible variants, a
less regular evolution is observed, as indicated by the large
fluctuations of θ for k = 100 kJ/(mol 3 nm

2). These result from
conformational changes of the rotor that occur because the
flexible method allows for structural relaxations and adaptations
to the bearing. Additionally, at high rotation velocities, frictional
forces occur, which cause further conformational changes.
Movies illustrating the effect of the fixed and flexible axis

methods have been included within the Supporting Information.
In the movies, a Viso and a Vflex2 rotation potential with k = 600
kJ/(mol 3 nm

2) is applied to all CR atoms of the γ subunit.
For a quantitative comparison of the γ subunit internal

deformation, Figure 7 shows the time evolution of the RMSD
of the γ backbone atoms from their initial configuration. Relatively
small RMSD variations are observed for the fixed method, con-
firming nearly rigid-body like rotation. In contrast, both flexible
axis methods allow for structural rearrangements particularly for
small k values. A secondary structure analysis shows that for
the F1-ATPase flexibly rotating at 0.021�/ps the force constant k
should be 200 kJ/(mol 3 nm

2) or larger to preserve the rotor

Figure 6. Time evolution of the γ rotor angle with respect to the R3β3
symmetry axis for the F1-ATPase motor enforced to rotate in the
synthesis direction using the potentials Viso (A), Vflex (B), and Vflex2

(C) with spring constants k of 100�800 kJ/(mol 3 nm
2).

Figure 7. RMSD of the γ subunit backbone atoms with respect to the
X-ray structure as a function of time for the F1 motor driven to rotate in
the synthesis direction using the potentials Viso (A), Vflex (B), and Vflex2

(C) with spring constants k of 100�800 kJ/(mol 3 nm
2).

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


1389 dx.doi.org/10.1021/ct100666v |J. Chem. Theory Comput. 2011, 7, 1381–1393

Journal of Chemical Theory and Computation ARTICLE

coiled-coil conformation of the crystal structure (Figure 4). For
any of the rotation potentials, the force constant will depend on
the studied system and on the rotation rate. Generally, higher
rotation rates will require larger force constants that stabilize the
rotation group with the help of a stronger coupling to its reference.
Yet, the decrease in conformational freedom with increasing k
(Figure 7) shows that when using the flexible axis approach one can
optimize the tradeoff between structural flexibility and mechanical
resistance of the rotary subunit. Note that the 120� rotations, in
principle, cannot perfectly reproduce the starting configuration of
the F1-ATPase, as in our simulations the rotor motion is not
accompanied by occupancy changes of the active sites.
Because for the flexible potentials the local rotation axis adapts

dynamically, it is interesting to monitor the evolution of the F1
rotor angle θ also with respect to a variable axis. Figure 8 shows
the time dependence of θ computed in the same manner as
previously but now with the instantaneous (longest) principal
axis of the γ subunit used as the reference axis. Significantly
smoother variation of θwith time is seen in Figure 8 compared to
using a fixed symmetry axis (Figure 6B,C). This result illustrates
the ability of the flexible methods to adapt the rotation geometry
to the structure and conformational changes of the stator.
Torque Profiles. We will now characterize the different

rotation methods in terms of torque and energetics. Because
the efficiency of the chemomechanical energy transmission in the
F1-ATPase, when studied in single molecule measurements, is
close to 100%,28 and due to the implied tight coupling between the
mechanical reaction coordinate (e. g., the θ angle) and conforma-
tional changes in the catalytic subunit, thework necessary to enforce
a 120� rotation of F1-ATPase in the synthesis direction should
approach the free energy of ∼50�70 kJ/mol required for ATP
synthesis.26,37

Figure 9 therefore compares the torque profiles along the
mechanical reaction coordinate θ (eq 53) for the three methods
considered above. As can be seen, for both flexible axis potentials,
the average torque along θ is about 5 times smaller than that for
the fixed axis potential. Assuming that for infinitely slow rotation
the (equilibrium) torque curve is smaller than the observed
torques, and, further, that this difference is due to dissipation or

other nonequilibrium effects, this result implies that the flexible
axis approach reduces the dissipated energy by at least a factor of
5 with respect to the fixed axis potential.
Integrated over 120�, the corresponding work is 5900 ( 300,

1400 ( 100, and 1490 ( 80 kJ/mol, for the fixed, flexible, and
flexible 2 potential, respectively. Due to the large angular velocity
applied as well as the resulting nonequilibrium nature of this
process, this work is still much larger than the free energy of ATP
synthesis but clearly shows the dramatic reduction by the flexible
axis method. For much lower velocities of 0.00042�/ps, the
integrated work reduces further to 350 ( 50 kJ/mol (data not
shown).
Already for the short simulations, the dependence of the torque

on the angular position of the rotor reveals details of the free energy
landscape governing the F1 rotation. In all simulationswith a flexible
axis potential (Figures 9 and 10), only small variations of the average
torque with respect to the rotor angle are observed. This suggests
that the underlying energy landscape is smooth and nearly linear,
which is in agreement with recent experiments.26,56 However, due

Figure 8. Time evolution of the angular position of the γ rotor
computed as the best-fit angle with respect to the γ longest principal
axis for the F1 motor enforced to rotate in the synthesis direction using
Viso (A) and Vflex2 (B).

Figure 9. The angular dependence of the driving torque for the γ
subunit enforced to rotate in the synthesis direction using Viso (fixed
axis), Vflex2 (flexible axis), and Vflex2 (flexible axis 2), using five different
spring constants k = 100�800 kJ/(mol 3 nm

2). All torque profiles were
smoothed using a running average window of 8�.

Figure 10. Evolution of the driving torque for the γ subunit enforced to
rotate in the synthesis direction using Viso (red) and Vflex2 (green) with
k = 600 kJ/(mol 3 nm

2) (A). RMSD of the γ rotor backbone atoms
(solid) and of the R3β3 stator backbone atoms (dotted) with respect to
their respective X-ray structure (B).
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to themuch larger angular velocity employed here, the torque values
calculated from our simulations are at least one order of magnitude
larger than the F1-generated torque measured under a viscous load
(40�50 pN 3nm).

28,56 In addition, the calculated torque profiles
indicate that the free energy landscape is steepest at θ ≈ 40�. The
increase of the torque for θ > 90� that shows up in the fixed type
points to shortcomings of this particular method, which will be
discussed in the next section.
Since in the simulations the motion along the mechanical

reaction coordinate is not synchronized with changes in chemical
occupancy of the stator binding sites, we do not expect the torque
to drop to zero after 120� of rotation. To examine how far
our nonequilibrium simulations are from the reversible limit,
Figure 10A shows torque profiles of full 360� rotations applying
Viso and Vflex2 with k = 600 kJ/(mol 3 nm

2). As can be seen, the
torque determined for the fixed axis case increases strongly,
whereas for the flexible case, after a small increase up to θ≈ 40�,
the torques decrease toward considerably smaller values. This
result underscores that the flexible potential perturbs the system
to a much lesser extent, such that it remains much closer to
equilibrium than for a fixed axis rotation.
The fixed axis potential induces structural changes almost

exclusively in the bearing (stator in Figure 10B) while in the
flexible axis case, the structural changes are distributed rather
equally among the rotating subunit and its bearing. Moreover, in
the flexible axis case, both structures nearly approach the starting
structure (θ = 0�) at the end of a whole 360� turn with an RMSD
below 2.5 Å, which is not seen for the fixed axis simulation.
Origin of Differences in Energetics of Fixed and Flexible

Axis Rotation.When using a simple fixed axis rotation potential,
the rotating part behaves like a rigid body. In combination with

the fixed axis, this behavior can cause unphysical close contacts
and strong torques between the rotor and the bearing, whichmay
cause extensive artificial structural changes of the bearing. The
flexible axis approach, in contrast, keeps the system closer to the
equilibrium for two reasons. First, the self-adjusting local rotation
axis ensures an overall optimal position of the pivot; second, the
built-in flexibility allows for structural relaxation of the rotating
part and thus locally minimizes sterical hindrances. As the F1-
ATPase motor components are strongly coupled and leave only
little room for the rotating subunit inside the bearing, both
reasons allow for the necessary tight adaption of the γ rotor to
the R3β3 bearing.
To quantify this effect, Figure 11 displays the enforced

conformational changes of the bearing, in terms of stator RMSD
with respect to its X-ray structure as a function of time for the R2

subunit. This subunit was chosen because it interacts most
closely with the γ rotor throughout the whole runs. It is evident
that the structural changes induced in R2 are considerably larger
for fixed axis rotation than for the flexible potentials. Secondary
structure analysis reveals that in the former case the structural
motifs exposed to the center of theR3β3 hexamer are distorted by
the rotating γ subunit. Also in Figure 4 one can notice partial
disruption of the helices in the C-terminal part of the β3 subunit
(the bottom part of β on the left side of γ, red dashed circle)
when it is pressed upon by the rotor driven to rotate around the
fixed axis. The torque increase for angles θ > 90� (Figure 9, left,
and Figure 10) reflects this effect, which is mainly due to
wrapping of the β3 C-terminal domain around the γ subunit.

7. CONCLUSIONS

We have developed, implemented, and tested a new method
to enforce the rotation of protein subunits that allows for (i) a
flexible rotation axis and (ii) structural adaptions of the rotated
subunit to its environment. For γ subunit rotation in F1-ATPase,
we have shown that our flexible axis method reduced the frictional
dissipation of the γ subunit within theR3β3 bearing by more than a
factor of 5. As a result, also the induced torque was 5-fold smaller
compared to the one using a fixed axis.

Concerning the use of the flexible axis potentials developed
here, we should like to point out two possible caveats. The first
caveat is due to the fact that, while the pivot vector is free to adapt
flexibly, the orientation of the direction vector is fixed. For
systems where the subsystem subjected to the rotation potential
is embedded within a curved “bearing”, the flexible adaptation
will work properly only as long as the angle between the orientations
of the bearing axis and the direction vector is not too large, i.e., for
not too strong bending of the bearing. In extreme cases such as a
complete U-shaped bearing, artificial structural changes of the
bearing similar to those induced by fixed axes may occur. This
problem can be addressed by subdividing the system into several
parts and using a separate flexible rotation axis for each of these
parts, with orientation vectors locally adapted to the respective part
of the bearing.

The second caveat regards the proper choice of the slab
thickness. If chosen too small, only a few atoms will be assigned
to each slab, thus compromising the averaging that defines the
pivot vector of each slab. In contrast, if chosen too large, the slabs
might stretch over regions that would require changing pivot
vectors, in which case the enforced rotation would induce, albeit
to a lesser extent, the artifacts caused by fixed axis approaches.

Figure 11. RMSDof theR3 subunit backbone atoms with respect to the
X-ray structure when driving γ subunit rotation using Viso (A) and Vflex2

(B). For comparison, the corresponding RMSD evolution for five
independent free MD runs is also shown (C).
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Obviously, in the limit of just a single slab covering the complete
rotating subsystem, the fixed axis potential is recovered.

With these limitations and caveats in mind, our flexible axis
potentials are applicable to a broad range of quite diverse biomo-
lecular systems, processes, and functions. Apart from mimicking
molecular rotary motors, it can also serve to restrain the orientation
of a protein or ligand, or, in combination with umbrella sampling, to
calculate the preferred orientation of transmembrane proteins or
membrane-active agents within a lipid bilayer. Further, the method
is expected to yield more accurate free energy profiles along circular
reaction coordinates via umbrella sampling. In the long run, our
flexible axis approachmight prove useful for the study and design of
synthetic nanodevices with rotating elements, such as those con-
sidered for molecular nanotechnology.57

’APPENDIX: USING GROMACS FOR ENFORCED RO-
TATION SIMULATIONS

All methods and potentials described in this paper have been
implemented into GROMACS and will be part of the next major
release. For immediate use, the rotation repository branch should
be checked out from the GROMACS git repository. See www.
gromacs.org for how to access the repository.

To use one of these potentials, the particles i that are to be
subjected to rotation potentials are defined via index groups
rot_group0, rot_group1, etc., in the grompp preprocessor mdp
input file. The reference positions yi

0 are read from a file provided
to grompp. If no such file is found, xi(t = 0) are used as reference
positions and written to file such that they can be used for
subsequent setups. All parameters of the potentials such as k, ε0,
etc. (Table 1) are provided via input file parameters; rot_type
selects the type of the potential. The option rot_massw allows
one to choose whether or not to use mass-weighted averaging.
Table 2 summarizes observables that are written to additional
output files, which are described below.

Angle of Rotation Groups: Fixed Axis. For fixed axis rota-
tion, the average angle θav(t) of the group relative to the
reference group is determined via the distance-weighted angular

deviation of all rotation group atoms from their reference
positions

θav ¼
∑
N

i¼ 1
riθi

∑
N

i¼ 1
ri

ð50Þ

Here, ri is the distance of the reference position to the rotation
axis, and the difference angles θi are determined from the atomic
positions, projected onto a plane perpendicular to the rotation
axis through pivot point u (see eq 7 for the definition of ^)

cos θi ¼ ðyi � uÞ^ 3 ðxi � uÞ^
jj ðyi � uÞ^ 3 ðxi � uÞ^jj ð51Þ

The sign of θav is chosen such that θav > 0 if the actual structure
rotates ahead of the reference.

Angle of Rotation Groups: Flexible Axis. For flexible axis
rotation, two outputs are provided, the angle of the entire
rotation group and separate angles for the segments in the slabs.
The angle of the entire rotation group is determined by an
RMSD fit of xi to the reference positions yi

0 at t = 0, yielding θfit as
the angle by which the reference has to be rotated around v̂ for
the optimal fit

RMSDðxi,ΩðθfitÞy0i Þ¼! min ð52Þ
To determine the local angle for each slab n, both reference
and actual positions are weighted with the Gaussian function of
slab n, and θfit(t,n) is calculated as in eq 52 from the Gaussian-
weighted positions.
For all angles, the input option rot_fit_method controls

whether a normal RMSD fit is performed or whether for the fit
each position xi is put at the same distance to the rotation axis as
its reference counterpart yi

0. In the latter case, the RMSD
measures only angular differences, not radial ones.

Table 1. Parameters Used by the Various Rotation Potentials Defined Abovea

parameter k v̂ u ω ε0 Δx gn
min

grompp input k vec pivot rate eps slab_dist min_gauss

unit variable name eq [(kJ)/(mol 3 nm
2)] [-] [nm] [deg/ps] [nm2] [nm] [-]

fixed axis:

isotropic Viso 1 X X X X - - -

�pivot-free Viso-pf 4 X X - X - - -

parallel motion Vpm 8 X X X X - - -

�pivot-free Vpm-pf 12 X X - X - - -

radial motion Vrm 13 X X X X - - -

�pivot-free Vrm-pf 18 X X - X - - -

radial motion2 Vrm2 19 X X X X X - -

�pivot-free Vrm2-pf 24 X X - X X - -

flexible axis:

flexible Vflex 34 X X - X - X X

�transl. tol. Vflex-t 39 X X - X - X X

flexible2 Vflex2 40 X X - X X X X

�transl. tol. Vflex2-t X X - X X X X
aX’s indicate which parameter is actually used.
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Angle Determination by Searching the Energy Minimum.
Alternatively, for rot_fit_method=potential, the angle of the
rotation group is determined as the angle for which the rotation
potential energy is minimal. Therefore, the used rotation poten-
tial is additionally evaluated for a set of angles around the current
reference angle. In this case, the rotangles.log output file contains
the values of the rotation potential at the chosen set of angles,
while rotation.xvg lists the angle with minimal potential energy.

Torque. The torque τ(t) exerted by the rotation potential is
calculated for fixed axis rotation via

τðtÞ ¼ ∑
N

i¼ 1
riðtÞ � f^i ðtÞ ð53Þ

where ri(t) is the distance vector from the rotation axis to xi(t)
and fi

^(t) is the force component perpendicular to ri(t) and v̂. For
flexible axis rotation, torques τn are calculated for each slab using
the local rotation axis of the slab and the Gaussian-weighted
positions.
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