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Abstract- The paper deals with the geometrically non-linear analysis of laminated composite beams, plates and 

shells in the framework of the first-order transverse shear deformation (FOSD) theory. A central point of the 

present paper is the discussion of the relevance of five- and six-parameter variants, respectively, of the FOSD 

hypothesis for large rotation plate and shell problems. In particular, it is shown that the assumption of constant 

through-thickness distribution of the transverse normal displacements is acceptable only for small and moderate 

rotation problems. Implications inherent in this assumption that are incompatible with large rotations are 

discussed from the point of view of the transverse normal strain-displacement relations as well as in the light of 

an enhanced, accurate large rotation formulation based on the use of Euler angles. The latter one is implemented 

as an updating process within a total Lagrangian formulation of the six-parameter FOSD large rotation plate and 

shell theory. Numerical solutions are obtained by using isoparametric 8-node Serendipity-type shell finite 

elements with reduced integration. The Riks-Wempner-Ramm arc-length control method is used to trace 

primary and secondary equilibrium paths in the pre- and post-buckling range of deformation. A number of 

sample problems of non-linear, large rotation response of composite laminated plate and shell structures are 

presented including symmetric and asymmetric snap-through and snap-back problems.  

Keywords: composite laminates, multi-layered shells, finite elements, large rotations 

 

1. Introduction 

The continuing interest in the accurate modelling of the large deflection behaviour of 

composite laminated plates and shells has led to the substantiation of a vast number of 

geometrically non-linear theories that differ (a) with respect to the consideration of transverse 

shear strains, transverse normal strains, and higher-order effects, (b) with respect to the 
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consideration of finite displacements and rotations, (c) with respect to the number of terms 

retained in various strain-components, e.g. in variants for thin structures, shallow structures, 

etc. 

Consideration of finite displacements and rotations in plates and shells can be accomplished 

in different levels, e.g. using (i) the von Kármán-type non-linearity that accounts only for the 

products and squares of the derivatives of the transverse deflection in the strain-displacement 

relations; (ii) the non-linearity due to moderate rotations; (iii) the non-linearity due to 

unrestricted, large rotations. 

General shell theories, i.e. theories taking into account higher-order effects by assuming a 

through-thickness distribution of the displacement field in the form of an arbitrary higher-

order series expansion, have been given by Librescu [1], [2] for unrestricted rotations, and by 

Librescu and Schmidt [3] in the framework of moderate rotation shell theory. Third-order 

transverse shear deformation (TOSD) theories based on a cubic representation of the 

displacement field across the shell thickness have been proposed by Reddy [4] for von 

Kármán-type non-linear plate theory and by Başar, Ding and Schultz [5] for large rotation 

shell theory. First-order transverse shear deformation (FOSD) theories, i.e. theories assuming 

a linear variation of the displacement field through the shell thickness have been derived for 

unrestricted, large rotations by Habip [6], [7] and Habip and Ebcioglu [8], for moderate 

rotations by Schmidt and Reddy [9], and for thin shells in the framework of von Kármán-type 

non-linearity by Wempner [10] and Galimov [11], [12]. Geometrically non-linear equivalent 

single layer theories assuming the FOSD or TOSD hypothesis for each individual layer of a 

composite shell and reducing the number of kinematical variables by invoking interlayer 

shear stress continuity conditions and zero shear traction boundary conditions on the upper 

and lower bounding surfaces have been proposed by Librescu and Schmidt [13], Schmidt and 

Librescu [14] (layerwise FOSD (zig-zag) theory), and Başar, Ding and Schultz [5] (layerwise 

TOSD theory), among others. 
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One of the earliest successful FEM computations for large deformations of laminated shells 

was described in 1970 by Schmit and Monforton [15], who analysed sandwich plates and 

cylindrical panels using the Kirchhoff-Love model for the outer faces combined with the 

honeycomb sandwich core. The concept of degenerated shell elements was applied in [16] 

within Updated Lagrangian formulation to analyze large deformations of a thin-walled 

cylinder under internal pressure. Jun and Hong [17] used a very similar model to investigate 

buckling of laminated cylindrical shells. Degenerated elements within Total Lagrangian 

formulation were used in [18] and [19]. The Kirchhoff-Love model was applied in [20] for the 

non-linear FE analysis of imperfect laminated shells. The FE formulation based on the 

Marguerre shallow shell theory was presented for composite shells in [21]. The FOSD model 

within the Moderate Rotation Theory was implemented in [22] and extended in [23]. The 

refined von Kármán TOSD theory for large deformation analysis of composite plates was 

applied by Reddy [4].  

Dennis and Palazotto [24] and Tsai et al. [25] proposed a large rotation formulation for 

laminated shells based on the TOSD theory; however their approach did not include a proper 

accumulation of rotations. Similar shortcomings characterize the FE implementations of the 

FOSD large rotation theory of laminated shells described in [26 - 28]. 

Up to the authors’ knowledge, the first FE application for laminated shells in the range of 

finite rotations was done by Başar et al. [5], who developed a layer-wise laminated shell 

theory with the description of finite rotations based on the concept of Euler angles. A similar 

way of the description of the rotation of the shell director was applied also by Brank et al. in 

[29], where an effective non-linear formulation is presented for thin multilayered shells 

assuming a linear distribution of the in-plane strains through the shell thickness and constant 

transverse shear strains. The updated rotation formulation based on the Rodrigues formula 

proposed for isotropic shells by Simo et al. [30] has been applied for laminated shells in 

[31 - 35]. Carrera and Parisch [31] analysed large rotation problems for composite shells 
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applying a so-called improved FOSD formulation. Başar et al. [32] performed finite rotation 

analysis using the multi-director FE shell model. Assumed Natural Strain elements with the 

zig-zag laminated shell model have been used in [33]. Vu-Quoc et al. [34] constructed an 

elaborate multi-layered model, where the layer directors appear as a chain of rigid links. 

Balah and Al-Ghamedy [35] presented a FE formulation of a four-node isoparametric shell 

element based on a TOSD theory.  

A quite popular tactic in the treatment of large rotation problems in the analysis of laminated 

shells consists in the application of three-dimensional shell elements possessing only 

translational degrees of freedom [36 – 38]. Such an approach allows for using a simple 

additive scheme for updating the displacement fields but, on the other hand, special 

techniques should be applied to eliminate locking for thin shells. For this purpose, Kinkel et 

al. [36] employed Assumed Natural Strain and Enhanced Assumed Strain displacement-based 

shell elements. Kulikov and Plotnikova [37] applied shell elements based on the Hu-Washizu 

mixed variational principle whereas Sze and Zheng [38] chose the hybrid-stress formulation. 

A review of the FE implementations of large rotation analysis must not overlook also the 

co-rotational formulations developed in [39 - 43]. The proposal of Pai and Palazotto [43] is 

worthy of a particular notice. As they declared, their Total Lagrangian corotational 

formulation should be capable to model large rotations and strains including even such second 

order effect as a variation of the composite stiffness due to the change of fibre direction 

during the deformation of a laminate.† As far as we know, their model has not been 

confronted with any popular benchmark problem for large deformation of laminated shells. 

However, the results of a corresponding geometrically-exact curved beam model [45] were 

very promising and the team decided to tackle with the extremely challenging task of a 

computer simulation of inflation of a tire [46] though the material properties were assumed as 

                                                           
† The effect of fibre rotation during deformation was investigated also by Wisnom [44]. 
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linear elastic. A much more advanced large strain model for laminated shells has been 

proposed by Başar and co-workers [32, 47]. 

 

The present paper deals with the geometrically non-linear analysis of beams, plates and shells 

in the framework of the FOSD theory. The considerations are limited to static problems of 

laminated shells assuming linear elastic material properties and small strains. Inertia forces, 

displacement follower loads, deformation dependent stiffness, change of thickness, damage 

problems of delamination or matrix cracking, as well as, thermal effects and geometrical 

imperfections are not included in the present formulation. In this context, the main focus of 

this paper is on the large rotation finite element analysis of laminated composite plate and 

shell structures with an arbitrary lamination scheme. In linear plate and shell theory the FOSD 

hypothesis is expressed in terms of five kinematical variables: two tangential mid-surface 

displacement components and two rotations of the mid-surface constitute a linear through-

thickness distribution of the tangential displacement field, whereas the transverse normal 

displacement of the mid-surface is considered constant across the thickness in order to 

accommodate the inextensibility of the director. A six-parameter theory with a linear through-

thickness distribution of the transverse normal displacement has to be considered only if the 

thickness change is to be taken into account. In the context of this paper the implications of 

these five- and six-parameter variants, respectively, of the FOSD hypothesis for non-linear 

plate and shell problems are discussed. An enhanced, accurate formulation of large rotations 

in plates and shells based on the use of Euler angles is derived. Based on this formulation it 

can be shown that the assumption of constant through-thickness distribution of the transverse 

normal displacements is acceptable only for small and moderate rotation problems, while 

large rotation problems require a six-parameter approach admitting at least a linear through-

thickness distribution of the transverse normal displacement even for inextensibility of the 

director. The accurate large rotation formulation is implemented as an updating process 
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within a total Lagrangian formulation of the six-parameter FOSD large rotation plate and 

shell theory based on the strain-displacement relations of Habip [6], [7] and Habip and 

Ebcioglu [8]. Numerical solutions are obtained by using isoparametric 8-node Serendipity-

type shell finite elements with reduced integration. The Riks-Wempner-Ramm arc-length 

control method is used to trace primary and secondary equilibrium paths in the pre- and post-

buckling range of deformation.  

In Section 2 of this paper the incremental Total Lagrangian formulation of the FOSD large 

rotation theory of composite shells and its finite element discretization is presented. First, in 

Section 2.1 some basic relations of 3-D kinematics and FOSD large rotation plate and shell 

theory are summarized. In Section 2.2 the five- and six-parameter variants of the FOSD 

hypothesis are discussed and an accurate formulation of large rotations in plates and shells is 

derived. In Section 2.3 the Total Lagrangian formulation of the theory is presented. Section 

2.4 gives a brief account of the constitutive equations. In Section 2.5 the finite element 

method discretization of the problem is given. Finally, Section 2.6 deals with the incremental 

equilibrium equations of the system and the solution and control methods applied. Section 3 

of this paper is devoted to numerical results. Numerical solutions are obtained by using 

isoparametric 8-node Serendipity-type shell finite elements with reduced integration. The 

Riks-Wempner-Ramm arc-length control method is used to trace primary and secondary 

equilibrium paths in the pre- and post-buckling range of deformation. A number of sample 

problems of non-linear, large rotation response of composite laminated plate and shell 

structures are presented including symmetric and asymmetric snap-through and snap-back 

problems. Various simplified non-linear beam, plate and shell theories are used for 

comparative analysis, like e.g. the FOSD refined von Kármán-type and moderate rotation 

theory in their respective range of applicability, as well as variants of the large rotation theory 
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proposed in literature using approximate strain-displacement relations or an approximate 

approach to large rotations only. 

2. Incremental Total Lagrangian Formulation of the First-Order Shear Deformation 
Large Rotation Theory FEM Analysis of Composite Shells 

2.1. Basic assumptions and nomenclature 

The motion of the 3-D shell-like body in space is considered assuming the existence of 

static effects only. According to the Total Lagrangian (TL) incremental formulation, we 

consider the following three configurations of the body (Fig. 1):  

 - the initial configuration 
0
C, at time 0; 

 - the actual configuration 
1
C, at time t; 

 - the searched configuration 
2
C, at time t+∆t. 

 

 

Fig. 1. Shell body motion in space 
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The respective configurations are characterized by left superscripts 0, 1, and 2. Thus, the 

position vector of an arbitrary point P of the configuration 
m
C is denoted by 

m
R; whereas the 

time instants 
0
t, 

1
t and 

2
t are used for the time variable equal 0, t and t+∆t, respectively.  

The position vector 
m
R can be represented as a function of general convected coordinates 

θ
i
 (i = 1, 2, 3) and the time variable:  

 )  (1) ,,,( 321 tmm θθθRR =

The coordinate system (θ
1
, θ

2
, θ

3
) is defined in such a way that θ

α
 (α = 1, 2) denote convected 

curvilinear surface coordinates of the shell mid-surface Ω, and θ
3
 is the thickness coordinate 

taking values from the interval (-h/2, h/2) with h standing for the initial shell thickness. In the 

undeformed configuration the coordinate θ
3 

is measured in the direction that is perpendicular 

to Ω.  

According to the first-order shear deformation (FOSD) Reissner-Mindlin theory it is 

assumed that straight lines normal to the undeformed shell midsurface remain straight after 

deformation, but not necessarily normal to the undeformed midsurface. Introducing position 

vectors of points on the mid-surface 
m
Ω (in the configuration 

m
C),  

 )  (2) ,( tmm αθrr =

one can write the FOSD hypothesis in the form 

 . (3) drR mmm 3θ+=

Here θ
3 m
d is the local position vector of a point in the shell space in the configuration 

m
C 

often called "director".  

With Eq. (3), the displacement vector 
m
V in configuration 

m
C  is 
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 . (4) 
)1(

3
)0(

0300 )()( VVndrrRRV
mm

mmmm θθ +=−+−=−=

The displacement vector 
m
V can be expressed in terms of components referred to the 

contravariant base vectors 
0
g

 i
, or to the covariant base vectors 

0
gi of the undeformed shell 

space as 

 , (5a) i
imi

i
mm VV ggV 00 ==

and similarly in terms of the components referred to the co- and contravariant base vector 

triads (
0
a

1 ,
 0
a

2 ,
 0
n) and (

0
a1,

 0
a2,

 0
n), respectively, of the undeformed shell mid-surface as 

  (5b) nanaV 0
3

00
3

0 υυυυ α
αα

α
mmmmm +=+=

From Eqs. (4) and (5) the FOSD hypothesis follows in the form 

 . (6) ),(),(),,( 21
)1(

321
)0(

321 θθυθθθυθθθυ i

m

i

m

i
m +=

The Green strain tensor in the shell space is given by 

 ( )
jk

m

i

km

ij
m

ji
m

ij
m VVVV ++= 2

1ε  (7) 

where 
i

(.)  is the covariant derivative with respect to the metric of the undeformed shell 

space, while 
m
V 

i
 and 

m
Vi  denote the contra- and covariant components of the displacement 

vector 
m
V referred to the base vector triads 

0
gi

 
and 

0
g

i 
, respectively. They can be related to 

the components 
m
υ 

i
 and 

m
υi referred to the reference surface base vector triads as 

 ( ) 3
3

3
3100 ,, υυυµυµ βα

β
α

β
β
αα

mmmmmmmm VVVV ===== − , (8) 

where  and  denote the components of the shifter tensor and its inverse. β
αµ0 ( α

βµ 10 − )
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Using Eq. (6) in the framework of FOSD theory the Green strain tensor components can be 

presented in the form of a power series expansion with respect to the thickness coordinate as 

follows: 

 • in-plane and bending terms: 

 , (9a) ( ) ),(),(),(),,( 21
)2(2321

)1(
321

)0(
321 θθεθθθεθθθεθθθε αβαβαβαβ

mmm
m ++=

 • transverse shear terms: 

 , (9b) ),(),(),,( 21
)1(

3
321

)0(

3
321

3 θθεθθθεθθθε ααα

mm
m +=

 • transverse normal terms: 

 ) . (9c) ,(),,( 21
)0(

33
321

33 θθεθθθε
m

m =

The above strain components are related to the kinematical variables  

and  by the following strain-displacement relations (see [6] – [7]) 

),( 21
)0(

θθυi

m

),( 21
)1(

θθυi

m

 
)0(

.

)0(

2
1

)0(

3

)0(

32
1

)0()0(

2
1

)0(
λ
βλαβαβααβαβ ϕϕϕϕϕϕε

mmmmmmm

++







+= , (10a) 

  











++








++

+







+−








+=

)0(

.

)1()1(

.

)0(

2
1

)1(

3

)0(

3

)1(

3

)0(

32
1

)0(
0

)0(
0

2
1

)1()1(

2
1

)1(

λ
βλα

λ
βλααββα

λα
λ
βλβ

λ
αβααβαβ

ϕϕϕϕϕϕϕϕ

ϕϕϕϕε

mmmmmmmm

mmmmm

bb

, (10b) 

  
(1)

.

(1)

2
1

(1)

3

(1)

32
1

(1)
0

(1)
0

2
1

(2)

  λ
βλαβαλα

λ
βλβ

λ
ααβ ϕϕϕϕϕϕε

mmmmmmm

bb ++







+−= , (10c) 
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  







++








−+++=

(1)(0)

3

(1)

32
1

(1)(0)

3

(1)

32
1

(0)(1)(1)(0)

3

(0)

3     2 αλαλλα
λ

ααα υϕυυϕυϕυυϕε
mmmmmmmmmmm

, (10d) 

  
(0)(1)

,32
1

(1)

,3

(1)

3

(0)(1)

,32
1

(1)(1)(1)

,3

(1)

3   2 λ
αλα

λ
αλαλ

λ
αα ϕυυυϕυυυυε ⋅⋅ ++−+=

mmmmmmmmmm

. (10e) 

 
(1)(1)

2
1

(1)

333 k

m
k

mmm

υυυε += . (10f) 

In the above relations the following abbreviations have been used: 

 
(n)

3
0

(n)(n)

υυϕ αββααβ

mmm

b−= , (11a) 

  , (11b) 
(n)

0
(n)

3

(n)

3 , λ
λ
ααα υυϕ

mmm

b+=

  (11c) ,, 0000
,

00
λβ

αλα
ββααβ babb =⋅= na

 . (11d) αα
βααβ ,, 00000 raaa =⋅=a

Here ( ) β  and  denote the covariant and partial derivative with respect to the reference 

surface coordinates while 0  and  are the covariant and mixed components of the 

curvature tensor of the mid-surface, respectively. 

( ) β,

αβb α
βb0

In the strain-displacement relations (10) all non-linear terms have been marked by single 

or double lines. For the fully non-linear theory accounting for arbitrarily large rotations all 

terms have to be taken into account. We will call this theory FOSD 6-parameter large rotation 

theory (LRT6). Terms marked by a double line can be dropped for moderate rotation theory 
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(MRT), see [9]. All terms marked by a double or single line can be dropped for linear (small 

deflection) theory. 

2.2. Assumption of the inextensibility of the director 

The straightforward interpretation of the director inextensibility assumed in the present 

considerations results in the following equation: 

 . (12) 033 =εm

2.2.1. Simple realization of the director inextensibility resulting in pure 5-parameter theories 

In literature most frequently in the FOSD hypothesis (6) only 5 parameters are considered 

by putting  

 0  (13a) 
(1)

3 =υ
m

This leads to the FOSD hypothesis in the form  

  (13b) 
),(),,(

2,1),,(),(),,(

21
)0(

3
321

3

21
)1(

321
)0(

321

θθυθθθυ

αθθυθθθυθθθυ ααα

m
m

mm
m

=

=+=

One can treat (13a) as a simple (approximate) realization of the constraint (12) seeing that, 

according to (10f),  is equal to the linear (dominating) part of the component m
ε33. This 

postulate leads to simplified strain-displacement relations for five-parameter theory that can 

be easily obtained from Eqs.(10) by invoking (13) (see e.g. [26 - 28]).  

(1)

3υ
m

On the other hand, it is well known, that the hypothesis (13b) with only five kinematical 

parameters is not capable of treating finite rotations (see e.g. [47]). Therefore in the following 

an enhanced approach will be developed. For the purpose of comparison, however, in this 
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paper we will also present results obtained with the five-parameter variant of the large 

rotation theory based on (13) which will be called LRT5. One should notice that the 

parameters  and  are often interpreted as the rotations ϕ
(1)

1υ
m (1)

2υ
m

2
0a

1 and ϕ2 about the mid-

surface base vectors  and , respectively (see Fig. 2). However, we will show in 

Chapter 2.2.2, that this holds true only for small and moderate rotations (e.g. linear, small 

deflection analysis or non-linear analysis based on the refined von Kármán theory or 

moderate rotation theory (MRT)). 

1
0a

 

 

Fig. 2. Rotation angles in FEM models 

 

2.2.2. Enhanced interpretation of rotations 

Looking for a more accurate formulation one can express the changes of the inextensible 

director by using Euler angles (see e.g. [48]). One can assume that the transformation of any 

vector from the initial configuration 0C to the configuration mC can be achieved by two 

subsequent rotations, first about the mid-surface base vector , then about 0 . With the 

two rotation angles from Fig. 2, the matrix operators for such a conversion are as follows: 

1
0a 2a
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 . (14) [ ] [ ]
















−
=

















−
=

)cos(0)sin(
010

)sin(0)cos(
)(

)cos()sin(0
)sin()cos(0

001
)(

11

11

12

22

2221

ϕϕ

ϕϕ
ϕ

ϕϕ
ϕϕϕ

mm

mm

m

mm

mmm RR

and the rotation matrix for the whole transformation can be obtained as 

 . (15) [ ] [ ][ ]
















−−

−
==

)cos()cos()sin()cos()sin(
)sin()cos(0

)cos()sin()sin()sin()cos(
)()(

21211

22

21211

2112

ϕϕϕϕϕ
ϕϕ

ϕϕϕϕϕ
ϕϕ

mmmmm

mm

mmmmm

mm RRR

In particular, this transformation can be used to describe the director 
m
d introduced in (3), as 

the image of the vector 
0
n obtained by performing subsequent rotations with the rotation 

angles mϕ2 and mϕ1 about the mid-surface base vectors  and , respectively:  1
0a 2

0a

 . (16) naad 0
21

20
2

10
21 )cos()cos()sin()cos()sin( ϕϕϕϕϕ mmmmmm ++=

Now, turning back to the relation (4) for the displacement vector mV in the configuration 

mC, one obtains 

 . (17) ( ) naandV 0
21

20
2

10
21

0
)1(

1)cos()cos()sin()cos()sin( −++=−= ϕϕϕϕϕ mmmmmm
m

It is obvious that for small and moderate values of the angles mϕ1 and mϕ2 one can assume that 

 . (18) 1)cos(and)sin( ≅≅ ααα ϕϕϕ mmm

Thus for small and moderate rotations Eq. (17) yields 

 . (19) naaV 020
2

10
1

)1(

0++≅ ϕϕ mm
m
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Hence for the small or moderate rotation theory the kinematical hypothesis (13b) is justified, 

however, as it was already pointed out, this approximation cannot be accepted for large 

rotations. Therefore the exact relation (17) will be applied in the following derivations for the 

numerical implementation of the large rotation theory based on the enhanced interpretation of 

rotations. 

For the purpose of the incremental description it is necessary to construct a corresponding 

relation for the displacement increment. Starting with the Taylor series expansion of the 

displacement vector at the configuration 2C in the vicinity of the actual configuration 1C, one 

obtains 

 2
2

)1(

1
1

)1(
)1(1)1()1(1)1(2

ϕ
ϕ

ϕ
ϕ

∆
∂
∂

+∆
∂
∂

+≅∆+=

tt

VV
VVVV  (20) 

where the higher-order terms were neglected. As a consequence the linearized incremental 

relation reads 

  (21) 








∆
∆

















−

−

−
=





















∆

∆

∆

2

1

2
1

1
1

2
1

2
1

1
1

2
1

1
1

2
1

1
1

)1(

3

)1(

2

)1(

1

)sin()cos(
)cos(

)sin()sin(

)cos()sin(
0

)cos()cos(

ϕ
ϕ

ϕϕ
ϕ

ϕϕ

ϕϕ

ϕϕ

υ

υ

υ

Also, it is quite obvious that the exact relation that can be obtained taking advantage of 

formula (17) reads: 

 . (22) ( )
( ) ( na

aVVV
0

2
1

1
1

2
2

1
220

2
1

2
2

10
2

1
1

1
2

2
1

2
)1(1)1(2)1(

)cos()cos()cos()cos()sin()sin(

)cos()sin()cos()sin(

ϕϕϕϕϕϕ

ϕϕϕϕ

−+−+

+−=−=∆

)

Assuming now the usual incremental decomposition and additionally taking ααα ϕϕϕ ∆+=12

  (23) 1)cos(and)sin( ≅∆∆≅∆ ααα ϕϕϕ
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one gets from (22) exactly the same relation as (21).  

Consequently we obtain a numerical formulation based on the increments of 5 parameters 

similar as in the LRT5 formulation. Nevertheless, it should be stressed that the approximated 

relation (21) is used only during the increment and the order of such an approximation is 

within the range of the usual linearization approximation applied in the incremental 

Lagrangian formulation. It is important that after the increment is performed the new 

configuration must be updated according to the exact relation  

 . (24) 










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


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


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
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






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+
















∆∆∆∆−∆−
∆∆

∆∆∆∆−∆
=






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












1
0
0

1)cos()cos()sin()cos()sin(
)sin()cos(0

)cos()sin()sin()sin()cos(

)1(

3

1

)1(

2

1

)1(

1

1

21211

22

21211

)1(

3

2

)1(

2

2

)1(

1

2

υ

υ

υ

ϕϕϕϕϕ
ϕϕ

ϕϕϕϕϕ

υ

υ

υ

It is necessary to note that the transformation based on the Euler angles yields a unique result 

only for angles from the interval (-π/2; π/2) (see e.g. [48]), however in the present 

formulation this restriction applies only to the increments of the rotations and not to the total 

rotations (see also [49]).  

It is essential to understand also that the updating process as described by (24) is applied in 

every equilibrium iteration before the balanced forces are established. Such a strategy 

accompanied by a suitable incremental-iterative procedure with a flexible size of load 

increment guaranties the desired accuracy of the analysis. 

One should remember that the 6 parameters which are necessary to describe the displacement 

vector 
m
V as given in Eq.(4) ( and , i =1, 2, 3) must be continuously stored and 

updated during the analysis. It is quite obvious that such a formulation is not a real “six- 

(0)
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υ
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parameter theory”, neither a “five-parameter theory”, therefore in the present paper it will be 

referred to as the “LRT56” formulation‡.  

 

2.3. Total Lagrangian formulation 

The virtual work principle states equilibrium between the internal virtual work, 
2
δWi, and 

the external virtual work, 
2
δWe, in configuration 

2
C. Within the Total Lagrangian formulation 

[51] the internal virtual work in 
2
C that is yet to be determined can be represented as the 

integral in the known, initial configuration 
0
C 

   (25) ,2W 0
1

0n

(n)

3
2
0

(n)
32

0

2

0n

(n)
2
0

(n)
2
0i

2

0

Ω







+= ∫ ∑∑

Ω ==

dLL α
α

αβ
αβ εδεδδ

where the n-th order stress resultants obtained in the pre-integration through the shell 

thickness are 

  ( ) 3032
0

(n)
2
0

2

2

θµθ dSL nijij

h

h
∫
−

= . (26) 

Here  are the components of the second Piola-Kirchhoff stress tensor,  denote the 

components of the Green-Lagrange strain tensor, and 

mnS2
0 mnε2

0

0
µ stands for the determinant of the 

shifter tensor in the initial configuration 
0
C.  

The incremental decomposition of the stress tensor in the configuration 
2
C can be expressed 

for the stress resultants as  

                                                           
‡ A similar treatment of large rotations was applied for isotropic shells in [50] and for composite shells in [5] 

and [29]. 
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 . (27) 
(n)

ij
0

(n)
j1

0

(n)
j2

0 LLL ii +=

2.4. Constitutive relations 

A typical composite shell made of orthotropic fibre-reinforced material can be analysed as 

a layered structure, with the fibres of the reinforcement in each lamina placed in the surfaces 

parallel to the shell mid-surface. It is assumed that the orthogonal system of the material axes 

(a, b, c) in each lamina is introduced in such a way that the a-axis is aligned with the direction 

of the reinforcement whereas the c-axis is normal to the shell mid-surface. The transverse 

isotropic material properties (Eb = Ec and νab = νac) together with the inextensibility of the 

director postulated throughout this report allow writing the 3-D incremental constitutive 

relation for an individual lamina in the material axes:  

 . (28) [ ]



























=



























ca

bc

ab

bb

aa

m

ca

bc

ab

bb

aa

S
S
S
S
S

ε
ε
ε

ε
ε

0

0

0

0

0

0

0

0

0

0

2
2
2C

with the constitutive matrix  

 [ ]



























−−

−−

=

ca

bc

ab

baab

b

baab

aab

baab

aab

baab

a

m

G
G

G

EE

EE

κ
κ

νννν
ν

νν
ν

νν

0000
0000
0000

000
11

000
11

C . (29) 

The set of well known engineering constants (Ei, νij and Gij) in (29) is supplemented by the 

shear correction factor κ, which is taken here to be equal to 5/6.  
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The transformation of stress and strain vectors between the material axes (a, b, c) and 

coordinate system (θ
1
, θ

 2
, θ

 3
) can be illustrated by the relations  

  (30) [ ] [ ]















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0
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0
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0
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0

0

0

0

0

 =         and         

2
2
2

2
2
2 TT

ε
ε
ε

ε
ε

ε
ε
ε

ε
ε

with the transformation matrix  

 [ ]























−

−
−

=

)cos()sin(000
)sin()cos(000

00)2cos()2sin()2sin(
00)2sin()(cos)(sin
00)2sin()(sin)(cos

2
122

2
122

kk

kk

kkk

kkk

kkk

αα
αα

ααα
ααα

ααα

T  (31) 

where the ply orientation angle, αk, is measured between the a-axis and the θ
1
–axis as shown 

in Fig. 3. 

 

Fig. 3. Ply orientation angle 

After the transformation the incremental constitutive relation for an individual lamina in the 

coordinate system (θ
1
, θ

 2
, θ

 3
) reads:  
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  (32) [ ]
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where  

 [ ] [ ] [ ][ ]TCTC m
T  =  (33) 

Performing the pre-integration of the 3-D constitutive relations through the thickness of the 

whole shell one obtains the 2-D constitutive relation  

 { } [ ]{ }EHS 00 = . (34) 

The detailed structure of the constitutive relation (34) can be found in [23]. 

With (34) and (27) the internal work (25) expression can be re-written as  

   (35) ( ) ΩΞ+Η++= ∫
Ω

dLLi
0

303
2
00

2
0

31
03

2
0

1
0

2
0

2

0

42W β
αβ

αχδ
αβχδ

αβ
α

α
αβ

αβ εεδεεδεδεδδ

where Η
αβχδ

 and Ξ
αβ

 represent appropriate components of the constitutive matrix [H]. 

 

2.5. Finite element method discretization of the problem 

Using the isoparametric formulation, the geometry described by the position vector can be 

interpolated inside each finite element as follows:  

 , (36) ( ) (∑∑
==

+=
NNE

k

km
k

NNE

k

km
k

m srNsrNsr
1
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1

),(),(),( drR θ )
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where 
m
r

k
 is the position vector of the node k, with r and s standing for the element natural 

coordinates, Nk represents the shape function associated with node k, and, finally, NNE means 

the number of nodes of the element.  

The displacement field can be interpolated in an analogous way as the geometry: 

 . (37) ∑∑
==









+




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
=

NNE

k

km
k

NNE

k

km
k

m srNsrNsr
1

)1(
3

1

)0(

),(),(),( VVV θ

For the sake of the simplified notation in the following derivations a specific substitution has 

been introduced 

 . (38) 
3,2,13

3,2,1
)1(

)0(

==−=

===

jNforu

iMforu

j
m

N
m

i
m

M
m

υ

υ

With (38) one can construct a quite general form of the strain-displacement relations given in 

(9) and (10)  

 Q
m

P
m

jkQikPM
m

ijMij
m uuGGuB 2

1
0 +=ε  , (39) 

where BijM and GkjP stand for two linear operators. Note that here an index notation has been 

applied because the matrix notation, which was used in our previous paper [23], will not be 

useful for some of the following transformations.  

With (17) and (37) the displacement components uI can be expressed by the nodal 

displacement parameters as 
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 , (40) 
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k
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m
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qqsrNsru

qsrNsru

qqsrNsru

MforqsrNsru

where 
m
qI

k
 represent the corresponding displacement parameters at the node k. One should 

note that due to the use of the exact formula (17) the six displacement parameters are 

expressed in (40) as a non-linear function of five nodal parameters, while the use of the 

simplified variant (19) would lead to linear relations only. 

The derivatives of the strain tensor components with respect to the nodal displacement 

parameters at the actual configuration, 
1
C, will be calculated next as 

 
R

M
PjkMikP

R

M
ijM

R

ij

q
uuGG

q
uB

q ∂
∂

+
∂
∂

=
∂
∂ 1ε

, (41) 

 ( )
R

M

Q

P
jkMikP

QR

M
PjkMikPijM

QR

ij

q
u

q
uGG

qq
uuGGB

qq ∂
∂

∂
∂

+
∂∂

∂
+=

∂∂
∂ 2

1
2 ε

. (42) 

At this stage one should notice that due to the non-linear (trigonometric) relation introduced 

in (40), the second derivative of the displacement with respect to the nodal displacement 

parameter does not vanish, in contrast to the simplified formulation LRT5 where the second 

derivative of the linear relation (19) is zero.  

The derivatives given above are used in the linearized expression for the variation of the 

strain tensor components  

 TS
TS

ij
S

S

ij
ij qq

qq
q

q
∆

∂∂
∂

+
∂
∂

≅ δ
ε

δ
ε

εδ
)(

)(
2

2
0 , (43) 
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and for the strain increment 

 S
S

ij
ij q

q
∆

∂
∂

≅∆
ε

ε , (44) 

Now the expression for the internal virtual work can be presented as  
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 (45) 

or in the compact form  

  (46) ( )
















∆∆+∆++=
44 344 21

S
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SSi

J
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0
)(1

0
)(1

0
1
0

2 W δδ

where the notation marked in (45) has been used.  

According to the commonly accepted FEM terminology the particular entities of (46) can be 

named as follows 

•  stands for the components of the balanced forces vector in the configuration SF1
0

1
C, 

{ }F1
0 ; 
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•  represents the first part of the incremental stiffness matrix containing the 

constitutive stiffness term and the initial displacement stiffness term, 

ST
UK )(1

0

[ ]uK1
0 ; 

•  denotes the components of the geometrical stiffness matrix, ST
GK )(1

0 [ ]gK1
0 ; 

•  symbolizes the additional object, which according to Kleiber [52] one can 

call “the second-order stiffness matrix”; the product 

STR
IIK )(1

0

( )RTSTR
II qqK ∆∆)(1

0  can be 

understood as component of the vector { }),(1 qqJ ∆ , containing additional terms, 

which are non-linear with respect to the displacement increments . { }q∆

The matrix form of (46) reads 

 { } { } [ ] [ ]( ){ } { }( )),(W 11
0

1
0

1
0

2 qqJqKKFq ∆+∆++= gu
T

i δδ   . (47) 

Adopting the external virtual work in its most general form as 

 { } { }Rq 2
0

2 W T
e δδ = , (48) 

with { }R2
0  standing for the vector of nodal forces due to the loads acting in the configuration 

2
C, one can obtain together with (47) the incremental equilibrium equations as  

 [ ] [ ]( ){ } { } { } { }),(11
0

2
0

1
0

1
0 qqJFRqKK ∆−−=∆+ gu . (49) 

This is a standard form of the incremental equation of the quasi-static motion of the structure 

and most of the terms have been efficiently explained by the extended formula (45). However, 

the geometrical stiffness matrix needs an additional comment. With (42) the expression for 

the components  can be written in a more detailed form as 1 ( )
0

G
STK
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 (50) 

where the geometrical stiffness matrix is split into two parts. The first part of the geometrical 

stiffness matrix,  is a “regular” geometrical stiffness matrix that is present in every 

standard TL formulation. However, the additional part, denoted as 0 , results from a 

non zero value of the second displacement derivative taken with respect to the nodal 

displacement parameters, which appears in the first term of (42). As it was shown earlier, the 

non-zero value of that derivative is characteristic for the LRT56 formulation utilizing the 

trigonometric relation (17), while for the LRT5 formulation based on the linearized relation 

(19) this derivative vanishes and, as a consequence, the 0  part does not appear in 

LRT5. Up to the authors’ knowledge, the essential role of that additional part of the 

geometrical stiffness matrix was indicated for the first time for the non-linear analysis of 

beams by Frey and Cescotto in [53] (see also [54] for axisymmetric shells, [50] for the 

degenerated shell finite elements and [55] for the generalized formulation for finite elements 

with rotational degrees of freedoms).  

1 ( 1)G

1 ( 2)G

1 ( 2)G

0 STK

STK

STK

2.6. Incremental equilibrium equations of the system 

A standard aggregation of equilibrium equations (49) for all finite elements results in the 

following incremental equilibrium equation for the whole FE model:  

 , (51) ),(1121 uuJFRuK ∆−−=∆
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where ∆u is the global vector of displacement increments, 
1
K denotes the global incremental 

stiffness matrix, 
2
R is the global load vector in configuration 

2
C, 

1
F stands for the global 

vector of balanced forces in the actual configuration 
1
C.  

Due to the existence of the non-linear term J(
1
u, ∆u) in (51), the iteration process of the 

standard Newton-Raphson method is employed to solve this equation. Additionally, the 

Riks-Wempner-Ramm arc-length control method [56] has been implemented in the present 

algorithm to allow for tracing also complex equilibrium paths. 

3. Numerical examples  

3.1. Instability of clamped-hinged circular arch subjected to point load 

We start with a relatively simple problem of a circular arch made of isotropic material 

subjected to a point load at the crown. Its big advantage is the availability of the analytical 

solution given in [57] for the highly non-linear response with no restrictions imposed on the 

magnitudes of the deflections and rotations. This example allows testing the ability of the 

proposed algorithm to analyze problems with very large rotations and to examine the 

influence of different terms in the strain-displacement relations.  

The arch geometry is characterized by the subtending angle   = 215 degrees as presented in 

Fig. 4.  

 
 

Fig. 4. Clamped-hinged arch,  = 215 degrees 
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In Fig. 5 the graph of the normalized vertical displacement, w/R of the crown point is 

presented versus the dimensionless load PR2/EI (with R being the radius of the arch, P the 

vertical force acting at the crown, E the Young’s modulus and I the moment of inertia of the 

cross-sectional area). The corresponding graph of the normalized horizontal displacement, 

u/R of the crown point versus the dimensionless load PR2/EI is given in Fig. 6. The analysed 

model of the arch consists of twenty 8-URI elements. 

 
Fig. 5. Normalized downward displacement at the crown for the 215 degrees arch 

 

The results obtained with LRT56 agree very well with the analytical solution as far as 

it was given in [57]. Since the present analysis goes far beyond the limit point an additional 

reference solution obtained with a degenerated beam type element [58] has been provided for 

the sake of comparison and again a very good agreement has been obtained in the entire post-

buckling range (see Fig. 5 and Fig. 6). The arch was analysed also in [59] by Li who gave just 

eight points of the equilibrium path in the pre-buckling range and one separate point after the 

snap-through took place. Those points correspond quite well with the LRT56 solution (see 

Fig. 5 and Fig. 6) but in the vicinity of the limit point Li's solution [59] shows differences 

with LRT56 and with the analytical solution of DaDeppo and Schmidt [57] as well. The 
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MRT5 model provides excellent results in the range of validity of the theory as marked on 

Fig. 5. In this example the importance of the proper updating procedure of the rotations is 

manifested by the big discrepancy of the LRT5 solution where not only quantitative 

differences can be observed, but even a qualitatively different response of the structure is 

predicted (see Fig. 5 and Fig. 6). The range of acceptable accuracy of the LRT5 approach is 

only slightly bigger than that of MRT5.  

 

 
Fig. 6. Normalized horizontal displacement at the crown for the 215 degrees arch 

 

Quite recently Kapania and Li [60] presented their solution of the problem obtained with 

geometrically exact curved beam elements. As far as it is possible to recognize from the 

figure given in [60] one can observe an excellent agreement of their solution with the LRT56 

results (see Table 1 for a comparison of the limit load points).  

It should be mentioned that the main purpose of the presented example was to test the 

behaviour of the numerical model although the authors are aware that the response of a real 
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structure can differ from the presented solution due to a possible contact between the 

deformed beam and the support in the post-buckling region (see [61]).  

 

Table 1.  
Comparison of limit load points for the clamped-hinged 215 degrees arch 

Model Max. limit point Min. limit point 

LRT56 8.9712 -0.7304 

NASH2D [58] 
(3-noded isotropic beam element) 

 
8.9718 

 
-0.7306 

Kapania and Li [60] 
(4-noded curved beam element) 

 
8.9727 

 
-0.7360 

DaDeppo and Schmidt [57] 
(analytical) 

 
8.97 

 
- 

 

 

3.2. Clamped laminated shallow arch under point load 

The symmetrical buckling of the shallow circular laminated arch considered next has been 

analysed earlier in [18] by means of degenerated shell elements. The geometry of the 

analysed arch is presented in Fig. 7 with R=100 in, h=2 in, β = 0.707 and the width of the 

arch is taken as equal to 1 in. Due to the symmetry of the problem half of the arch has been 

modelled with five 8-URI elements. The material properties used are Ea = 25·106 psi, 

Eb = 1·106 psi, Gac = 5·105 psi, Gac = 5·105 psi, Gbc = 5·105 psi and νab = 0.25. The arch consists 

of two layers, each layer has the same thickness 1 in and is made of the same orthotropic 

material, but a different ply orientation has been used in each layer. The ply lay-up for the 

considered example is (0, 90), i.e. in the bottom layer the material axis a coincides with the θ
1
 

axis of the shell coordinate system, whereas in the upper layer the material axes are rotated by 

90 degrees (see Fig. 3).  
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Fig. 7. Clamped shallow laminated arch 

 

The obtained results are presented in Fig. 8 as the equilibrium paths in the space of the 

non-dimensional load parameter, 2 210 /P PR Eβ π= I , and the central vertical deflection w.  

 

 Fig. 8. Central vertical deflection for the clamped laminated arch 

Looking at the evident differences in the responses obtained with the MRT5, LRT5 and the 

LRT56 models one can conclude that the considered example deals with finite rotations. The 

range of moderate rotations ends before the load parameter reaches the value 6 and, 

consequently, the MRT5 solution does not predict the snap-through instability, which is 

evident in both the large rotation formulations, LRT5 and LRT56. However, the lack of the 
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proper treatment of the rotations in the LRT5 approach is manifested by the overestimation of 

the maximum load level, and total disagreement with LRT56 in the post-buckling path. The 

maximum load level predicted by the LRT56 model agrees quite well with the reference 

solution [18] but the further part of their post-buckling path differs from the LRT56 response. 

To allow for the final verification of the obtained results additional computations have been 

performed for the analysed arch with the layered beam degenerated element with finite 

rotations (modified program NASH2D [58]) and a very good agreement has been obtained in 

the entire post-buckling range with the LRT5/6 solution. 

 

3. 3. Asymmetric cross-ply simply supported plate strip 

We consider a simply supported asymmetric laminate (0/90) as shown in Fig. 9 assuming 

the following data: a = 9.0 in, b = 1.5 in, h = 0.04 in, E1 = 2.0 x 107 lb/in2, ν12 = 0.30, 

E2 = 1.4 x 106 lb/in2, G12 = G23 = G13 = 0.7 x 106 lb/in2.  

 

 

Fig. 9. Cylindrical bending of composite plate strip  

 

This example was initially investigated by Sun and Chin [62], who presented large 

deflection cylindrical bending results of a pinned composite plate obtained with the von 

Kármán plate theory. Reddy [4], who analysed this problem with his Higher-Order Shear 

Deformation Theory, showed that really large deflections could be obtained for the simply 
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supported plate. Başar et al. [5] repeated this analysis using the Third-Order Shear 

Deformation Theory and fully non-linear formulation for finite rotations.  

Due to the dual symmetry of the analysed structure, a quarter of the plate is modelled with 

nine 8-URI elements. The results obtained with the LRT56 approach are shown in Fig. 10.  

 

Fig. 10. Normalized central deflection of the plate strip under pressure load 

 

Our LRT56 results agree very well with those of Başar et al. [5] what allows for the 

conclusion that in this example the refined representation of the transverse shear strains does 

not improve the accuracy of the solution. Both solutions are quite different from the results of 

Reddy [4], which is due to the fact that his model based on the von Kármán-type plate theory 

is not capable of dealing with large rotations. Reddy's solution [4] gives an acceptable 

prediction of the strip deflection only for the range w/h < 10, whereas our MRT5 model is 

capable of dealing with bigger deflections (w/h < 17), which are a little beyond the range of 

moderate rotations marked in Fig. 10. It is interesting that using the full non-linear strain-
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displacement relations but without the proper updating of the rotations (model LRT5) one 

cannot obtain better results than with MRT5. 

3. 4. Clamped laminated cylindrical panel under point load 

We consider a deep cylindrical laminated (0/90/0/90)s panel (Fig. 11) as analysed by Tsai et 

al. [25] with the following data: R = 12 in, L =5.5 in, β = 0.5, h = 4·0.01 in, 

E11 = 20.46·106 psi, E22 = 4.092·106 psi, ν12 = 0.313, G12 = G13 = 2.53704·106 psi, 

G23 = 1.26852·106 psi. 

 

Fig. 11. Clamped laminated cylindrical panel under point load 

 

The central deflection of the panel is shown in Fig. 12 versus the central load. One can notice 

that the buckling load level predicted with the present approach (LRT56) is in a quite good 

agreement with the solution given in [25]. Very similar results for the pre-buckling range 

have been also obtained with the LRT5 and MRT5 models. However, big differences 

appeared in the post-buckling range of the equilibrium path. The LRT56 solution is much 

closer to the reference solution [25] than the two other models but the difference is still 

significant. According to Tsai et al. [25], their model differs from the LRT56 in two aspects: 

1) the transverse shear stress distribution is parabolic through the shell thickness; 2) linear 

strain-displacement relations are assumed for the transverse shear strains. To allow for more 
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adequate comparison of the results we have repeated the analysis with the modified model m-

LRT56 created by dropping all non-linear terms in the transverse shear strains of LRT56.  

 

Fig. 12. Central deflection of the clamped laminated cylindrical panel under point load 

 

Almost no difference between the results of m-LRT56 and LRT56 can be observed (see Fig. 

13) what can support the opinion of Tsai et al. [25] that non-linear terms in the transverse 

shear strains are insignificant in the considered example. However, the m-LRT56 solution 

still is different from that given in [25]. In the second attempt the m-LRT5 model based on the 

LRT5 approach (i.e. dropping all non-linear terms in the transverse shear strains of LRT5) has 

been applied and this time the obtained results were almost identical with those of Tsai et al. 

[25]. The conclusions are the following:  

a) similarly as in the LRT5 model, the formulation applied in [25] does not perform a 

proper updating of rotations; 
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b) the proper updating of the rotational degrees of freedom for thin composite shells can 

be more essential for the accuracy of the solution than the refined representation of the 

transverse shear strains. 

 

 

Fig. 13. Additional comparative study for the clamped cylindrical panel  

 

An additional support for the above conclusions can be found in Table 2 where the 

snap-through loads calculated for the clamped cylindrical panel with different models are 

recorded.  

 

One can observe a gradual decrease of the snap-through load with the increase of the accuracy 

of the applied model - from 44.13 lb for MRT5, through 43.64 lb (LRT5), to 43.06 lb for 

LRT56. The limit load given by Tsai et al. [25] is even lower - its level is equal to 42.4 lb§ 

what is very close to the value of 42 lb obtained in the m-LRT5 model where all nonlinear 
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terms were omitted for the transverse shear strains. However, it is worth to notice that the 

difference between the snap-through load estimated with the models m-LRT56 and LRT5 is 

insignificant. 

 

Table 2.  
Comparison of limit load for the clamped cylindrical panel  

Model snap-through load [lb] 

MRT5 44.13 

LRT5 43.64 

LRT56 43.06 

Tsai et al. [25]  42.4 

m-LRT5 42.00 

m-LRT56 43.13 
 

3. 5. Stretching of an open cylinder 

This example serves in the literature as one of the most demanding tests for the finite 

rotation analysis of isotropic shells (see e.g. [29], [63], [64] and [65]). Recently also a 

composite variant of this example has been proposed by Masud et al. [41]. The short cylinder 

(see Fig. 14) is loaded by two opposite stretching forces in its middle section; the ends of the 

cylinder are free. The geometry of the shell is characterized by the following data: 

R = 4.953 in, L =5.175 in, β = 0.5, h = 0.094 in. Due to the symmetry of the problem, only 

one octant of the cylinder is modelled with a regular mesh of 8x10 8-URI shell elements. 

The results obtained for the isotropic variant (E = 10500 ksi and ν = 0.3125) are presented 

in Fig.15 together with the reference solutions of Sansour & Bednarczyk [63], Chroscielewski 

[64] and Masud et al. [41]. The LRT56 solution is in a quite good agreement with the results 

of [63] and [64], while the solution given in [41] remains noticeably different.  

 

                                                                                                                                                                                     
§ This value was measured at the graph in [25]. 
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Fig. 14. Stretching of a short cylinder  

 

 

Fig. 15. Radial deflections at points A and B for the isotropic cylinder  

 

The next computations for the stretching of the free end cylinder are performed following 

Masud et al. [41] for the laminated shell (0/90) with the following material properties 
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E11 = 30500 ksi, E22 = 10500 ksi, G12 = G13 = G23 = 4000 ksi  and ν12 = 0.3125.** The geometry 

of the shell remains the same as given in Fig. 14. The radial displacement of the loaded point 

A calculated with the LRT56 approach are compared in Fig. 16 with the reference solution 

[41] using different density of the mesh. 

 

 

Fig. 16. Radial deflections at the point A for the composite cylinder  

 

One can notice that differences between the reference solutions for 256 and 384 element 

appear at a quite low load level, whereas the differences between 5x8 and 10x16 meshes of 

the LRT56 model are visible only in the vicinity of the snap-through region. Increasing the 

density of the mesh in the LRT56 approach from 10x16 to 15x24 elements resulted in almost 

                                                           
** Please notice, that the metric units used in [41] have been replaced here by USCS units to obtain more 

reasonable data. 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


I.Kreja & R.Schmidt: Large rotations in first-order shear deformation FE analysis of laminated shells   page 39 

no change of the response. In contrary to [41], using the dense meshes in the LRT56 model a 

larger value of the snap-trough load is obtained than for the coarse mesh (5x8).  

Interesting observations can be made when the LRT56 solution for the stretching of the 

composite cylinder is compared with the results of LRT5, MRT5 and MRT56†† models (see 

Fig.  17). One can notice that the snap-through phenomenon is not manifested in the MRT5 or 

LRT5 results and both those models give stiffer response than the LRT56 approach or [41]. It 

is remarkable that the MRT56 model provides better estimation of the wA displacement than 

the LRT5 approach. One can conclude that inclusion of additional terms in the LRT equations 

is not as much significant for the current example as the proper treatment of the rotational 

degrees of freedom. 

 

Fig. 17. Displacement at the point A for different models of the composite cylinder  

                                                           
†† The MRT56 model consists of the MRT equations with the enhanced updating of rotations (analogous as used 

in the LRT56 approach). 
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The magnitude of the snap-through load for the stretching of the composite cylinder can be 

increased by 10% just by changing the order of the laminates from (0/90) to (90/0) as it is 

shown in Fig. 18.  

 

 

Fig. 18. Influence of the lamina sequence on the composite cylinder response in the stretching test 

 

3. 6. Pinched hemispherical shell with 18° hole 

In the last example we consider the probably most popular benchmark tests for finite 

rotation analysis of isotropic shells (see e.g. [30], [41], [49], [63] - [67]). The hemispherical 

shell with an 18 degree hole under two inward and two outward forces is presented in Fig. 19. 

The radius is R = 10 in and the thickness is h = 0.04 in. For the isotropic case the material 

properties are E = 6825·104 psi and ν = 0.3. Due to the double symmetry of the problem only 

one quarter of the shell is analysed with appropriate boundary conditions.  
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Fig. 19. Large deformation of a hemispherical shell with 18 degree hole  

The numerical study has shown that a mesh of 12x12 elements 8-URI (regularly distributed in 

spherical coordinates) provides a convergent solution. The radial displacements of the shell 

computed within the LRT56 approach at the points subjected to the stretching and pinching 

forces, respectively, are presented in Fig. 20 together with selected reference solutions [30], 

[66] and [67]. An excellent agreement of results can be observed in Fig. 20 for the inward as 

well as for the outward deflection.  

 

Fig. 20. Radial deflections of the isotropic hemispherical shell with 18 degree hole  
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Following the inspiration given in the previous example a composite variant of the 

hemispherical shell with 18 degree hole is considered next. To keep the analysed problem as 

realistic as possible the material data have been adopted from the paper by Tsai et al. [25] 

(compare Example 3.2): E11 = 20.46·106 psi, E22 = 4.092·106 psi, G12 = G13 = 2.53704·106 psi, 

G23 = 1.26852·106 psi and ν12 = 0.313. To obtain a similar range of deflections as for the 

isotropic case the shell thickness has been increased to h = 0.08 in. Keeping in mind the 

hemispherical geometry of the analysed shell it was assumed that the fibre reinforcement 

(material axis 1 of the composite) is running in the circumferential direction (parallel to the 

equator). One should remember that the generating lines (meridians) do not keep the interval 

(distance) – in the considered example the length of the bottom edge of the shell is 3.24 times 

the length of the upper edge. The results of the LRT56 computations performed for the 

composite hemisphere are presented in Figures 21 and 22 together with the solutions 

computed with models RVK5, MRT5, LRT5 and m-LRT5. Since no reference solutions for 

the analysed problem are available in literature, the comparative calculations have been 

carried out in the MSC/NASTRAN computer code using QUAD4 elements in co-rotational 

formulation [68]. 

The graphs of the outward and inward radial deflections of the panel are shown in Fig. 21 in 

and in Fig. 22, respectively. The inward deflection is almost twice as big as the outward 

displacement, and differences among curves obtained for RVK5, MRT5, LRT5 and LRT56 

models are much more significant in the second graph. However, the responses for the inward 

deflection obtained with MRT5 and LRT5 approaches are surprisingly similar. A very good 

agreement between the LRT56 model and the MSC/NASTRAN solution can be observed in 

both figures (Fig. 21 and Fig.22) and also in Table 3 presenting the values of the radial 

deflection for the load level P=160 lb.  
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Fig. 21. Outward radial deflection of the composite hemispherical shell  

 

 

Fig. 22. Inward radial deflection of the composite hemispherical shell  
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Table 3.  
Radial deflections of the composite hemispherical shell under P=160 lb 

Model Outward deflection [in] Inward deflection [in] 

RVK5 3.389 5.608 

MRT5 3.627 4.908 

LRT5 2.946 4.901 

LRT56 3.627 7.082 

MSC/NASTRAN 3.611 7.061 

m-LRT5 4.813 11.798*) 

*) this deflection is greater than the radius because one quarter of the shell has been used in the analysis 

The influence of the circular fibre reinforcement on the response of the composite 

hemispherical shell is investigated in the following parametric study. It was assumed that all 

material parameters take the same values as before, except of E11 = n · E22, where n is the 

orthotropy ratio assuming values from the range (5 - 30). Such an assumption corresponds to 

increasing circular fibre reinforcement. The graph of the inward deflection calculated with the 

LRT56 model for different values of the orthotropy ratio is presented in Fig. 23. A gradual 

increase of the shell stiffness can be observed for increasing orthotropy ratio.  

 

Fig. 23. Inward deflection of the hemispherical shell for different orthotropy ratio  
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A similar observation can be made in Fig. 24 where the values of the inward and outward 

deflections of the hemispherical shell are presented as a function of the orthotropy ratio, n, for 

the constant load level P = 60 lb. 

 

Fig. 24. Deflections for P = 60 lb as function of the orthotropy ratio  

 

4. Conclusions  

In this paper, an enhanced, accurate FE formulation of composite laminated shells undergoing 

large rotations based on the use of Euler angles is derived in the framework of the FOSD 

hypothesis. The main emphasis is put  (a) on the exact treatment of large rotations in an 

incremental total Lagrangian formulation, (b) on the relevance of five- and six-parameter 

variants, respectively, of the FOSD hypothesis for large rotation plate and shell problems, (c) 

on the consequences of using approximate strain-displacement relations or an approximate 

approach to large rotations only. 

Applying the six-parameter FOSD hypothesis and the concept of Euler angles to express the 

changes of the inextensible shell director, a numerical formulation based on the increments of 

five parameters only is developed. Using the obtained exact relations it can be shown that the 

five-parameter FOSD hypothesis, i.e. the assumption of constant through-thickness 
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distribution of the transverse normal displacements, is acceptable only for small and moderate 

rotation problems, while large rotation problems require a six-parameter approach admitting 

at least a linear through-thickness distribution of the transverse normal displacement even for 

inextensibility of the director. This leads to the conclusion that for large rotation shell analysis 

finite element methods based on five-parameter theories, which can be found even in recent 

literature, cannot be accepted. In fact, the theoretically observed shortcomings of five-

parameter large rotation shell theories mentioned above become also evident in comparative 

finite element analysis, where often not only quantitative differences can be observed, but 

even a qualitatively different structural response is predicted.  

Additionally, the comparative non-linear finite element analysis of various sample problems 

of non-linear, large rotation response of composite laminated plate and shell structures, 

including symmetric and asymmetric snap-through and snap-back problems, is extended to 

large rotation theories proposed in literature that use approximate strain-displacement 

relations or an approximate approach to large rotations only. From the obtained results, it can 

be concluded that the proper updating procedure of the rotations is of utmost importance as 

soon as the range of moderate rotations is exceeded. Additionally, approaches that use 

approximate strain-displacement relations by neglecting all non-linear terms in the transverse 

shear strain-displacement relations cannot be confirmed. 

Finally, the authors take the liberty to point out again that the scope of the paper is limited to 

small strain static problems of elastic laminated shells of a perfect geometry. However, the 

sequel paper is under preparations which will deal with the buckling of laminated panels 

under axial compression including geometrical imperfections and thermal effects. 
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