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Abstract- The paper deals with the geometrically non-linear analysis of laminated composite beams, plates and
shells in the framework of the first-order transverse shear deformation (FOSD) theory. A central point of the
present paper is the discussion of the relevance of five- and six-parameter variants, respectively, of the FOSD
hypothesis for large rotation plate and shell problems. In particular, it is shown that the assumption of constant
through-thickness distribution of the transverse normal displacements is acceptable only for small and moderate
rotation problems. Implications inherent in this assumption that are incompatible with large rotations are
discussed from the point of view of the transverse normal strain-displacement relations as well as in the light of
an enhanced, accurate large rotation formulation based on the use of Euler angles. The latter one is implemented
as an updating process within a total Lagrangian formulation of the six-parameter FOSD large rotation plate and
shell theory. Numerical solutions are obtained by using isoparametric 8-node Serendipity-type shell finite
elements with reduced integration. The Riks-Wempner-Ramm arc-length control method is used to trace
primary and secondary equilibrium paths in the pre- and post-buckling range of deformation. A number of
sample problems of non-linear, large rotation response of composite laminated plate and shell structures are

presented including symmetric and asymmetric snap-through and snap-back problems.
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1. Introduction

The continuing interest in the accurate modelling of the large deflection behaviour of
composite laminated plates and shells has led to the substantiation of a vast number of
geometrically non-linear theories that differ (a) with respect to the consideration of transverse

shear strains, transverse normal strains, and higher-order effects, (b) with respect to the
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consideration of finite displacements and rotations, (c) with respect to the number of terms
retained in various strain-components, e.g. in variants for thin structures, shallow structures,
etc.

Consideration of finite displacements and rotations in plates and shells can be accomplished
in different levels, e.g. using (i) the von Karman-type non-linearity that accounts only for the
products and squares of the derivatives of the transverse deflection in the strain-displacement
relations; (ii) the non-linearity due to moderate rotations; (iii) the non-linearity due to
unrestricted, large rotations.

General shell theories, i.e. theories taking into account higher-order effects by assuming a
through-thickness distribution of the displacement field in the form of an arbitrary higher-
order series expansion, have been given by Librescu [1], [2] for unrestricted rotations, and by
Librescu and Schmidt [3] in the framework of moderate rotation shell theory. Third-order
transverse shear deformation (TOSD) theories based on a cubic representation of the
displacement field across the shell thickness have been proposed by Reddy [4] for von
Kérman-type non-linear plate theory and by Basar, Ding and Schultz [5] for large rotation
shell theory. First-order transverse shear deformation (FOSD) theories, i.e. theories assuming
a linear variation of the displacement field through the shell thickness have been derived for
unrestricted, large rotations by Habip [6], [7] and Habip and Ebcioglu [8], for moderate
rotations by Schmidt and Reddy [9], and for thin shells in the framework of von Karmén-type
non-linearity by Wempner [10] and Galimov [11], [12]. Geometrically non-linear equivalent
single layer theories assuming the FOSD or TOSD hypothesis for each individual layer of a
composite shell and reducing the number of kinematical variables by invoking interlayer
shear stress continuity conditions and zero shear traction boundary conditions on the upper
and lower bounding surfaces have been proposed by Librescu and Schmidt [13], Schmidt and
Librescu [14] (layerwise FOSD (zig-zag) theory), and Basar, Ding and Schultz [5] (layerwise

TOSD theory), among others.
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One of the earliest successful FEM computations for large deformations of laminated shells
was described in 1970 by Schmit and Monforton [15], who analysed sandwich plates and
cylindrical panels using the Kirchhoff-Love model for the outer faces combined with the
honeycomb sandwich core. The concept of degenerated shell elements was applied in [16]
within Updated Lagrangian formulation to analyze large deformations of a thin-walled
cylinder under internal pressure. Jun and Hong [17] used a very similar model to investigate
buckling of laminated cylindrical shells. Degenerated elements within Total Lagrangian
formulation were used in [18] and [19]. The Kirchhoff-Love model was applied in [20] for the
non-linear FE analysis of imperfect laminated shells. The FE formulation based on the
Marguerre shallow shell theory was presented for composite shells in [21]. The FOSD model
within the Moderate Rotation Theory was implemented in [22] and extended in [23]. The
refined von Karman TOSD theory for large deformation analysis of composite plates was
applied by Reddy [4].

Dennis and Palazotto [24] and Tsai et al. [25] proposed a large rotation formulation for
laminated shells based on the TOSD theory; however their approach did not include a proper
accumulation of rotations. Similar shortcomings characterize the FE implementations of the
FOSD large rotation theory of laminated shells described in [26 - 28].

Up to the authors’ knowledge, the first FE application for laminated shells in the range of
finite rotations was done by Basar et al. [5], who developed a layer-wise laminated shell
theory with the description of finite rotations based on the concept of Euler angles. A similar
way of the description of the rotation of the shell director was applied also by Brank et al. in
[29], where an effective non-linear formulation is presented for thin multilayered shells
assuming a linear distribution of the in-plane strains through the shell thickness and constant
transverse shear strains. The updated rotation formulation based on the Rodrigues formula
proposed for isotropic shells by Simo et al. [30] has been applied for laminated shells in

[31 - 35]. Carrera and Parisch [31] analysed large rotation problems for composite shells
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applying a so-called improved FOSD formulation. Basar et al. [32] performed finite rotation
analysis using the multi-director FE shell model. Assumed Natural Strain elements with the
zig-zag laminated shell model have been used in [33]. Vu-Quoc et al. [34] constructed an
elaborate multi-layered model, where the layer directors appear as a chain of rigid links.
Balah and Al-Ghamedy [35] presented a FE formulation of a four-node isoparametric shell
element based on a TOSD theory.

A quite popular tactic in the treatment of large rotation problems in the analysis of laminated
shells consists in the application of three-dimensional shell elements possessing only
translational degrees of freedom [36 —38]. Such an approach allows for using a simple
additive scheme for updating the displacement fields but, on the other hand, special
techniques should be applied to eliminate locking for thin shells. For this purpose, Kinkel et
al. [36] employed Assumed Natural Strain and Enhanced Assumed Strain displacement-based
shell elements. Kulikov and Plotnikova [37] applied shell elements based on the Hu-Washizu
mixed variational principle whereas Sze and Zheng [38] chose the hybrid-stress formulation.
A review of the FE implementations of large rotation analysis must not overlook also the
co-rotational formulations developed in [39 - 43]. The proposal of Pai and Palazotto [43] is
worthy of a particular notice. As they declared, their Total Lagrangian corotational
formulation should be capable to model large rotations and strains including even such second
order effect as a variation of the composite stiffness due to the change of fibre direction
during the deformation of a laminate.” As far as we know, their model has not been
confronted with any popular benchmark problem for large deformation of laminated shells.
However, the results of a corresponding geometrically-exact curved beam model [45] were
very promising and the team decided to tackle with the extremely challenging task of a

computer simulation of inflation of a tire [46] though the material properties were assumed as

 The effect of fibre rotation during deformation was investigated also by Wisnom [44].
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linear elastic. A much more advanced large strain model for laminated shells has been

proposed by Basar and co-workers [32, 47].

The present paper deals with the geometrically non-linear analysis of beams, plates and shells
in the framework of the FOSD theory. The considerations are limited to static problems of
laminated shells assuming linear elastic material properties and small strains. Inertia forces,
displacement follower loads, deformation dependent stiffness, change of thickness, damage
problems of delamination or matrix cracking, as well as, thermal effects and geometrical
imperfections are not included in the present formulation. In this context, the main focus of
this paper is on the large rotation finite element analysis of laminated composite plate and
shell structures with an arbitrary lamination scheme. In linear plate and shell theory the FOSD
hypothesis is expressed in terms of five kinematical variables: two tangential mid-surface
displacement components and two rotations of the mid-surface constitute a linear through-
thickness distribution of the tangential displacement field, whereas the transverse normal
displacement of the mid-surface is considered constant across the thickness in order to
accommodate the inextensibility of the director. A six-parameter theory with a linear through-
thickness distribution of the transverse normal displacement has to be considered only if the
thickness change is to be taken into account. In the context of this paper the implications of
these five- and six-parameter variants, respectively, of the FOSD hypothesis for non-linear
plate and shell problems are discussed. An enhanced, accurate formulation of large rotations
in plates and shells based on the use of Euler angles is derived. Based on this formulation it
can be shown that the assumption of constant through-thickness distribution of the transverse
normal displacements is acceptable only for small and moderate rotation problems, while
large rotation problems require a six-parameter approach admitting at least a linear through-
thickness distribution of the transverse normal displacement even for inextensibility of the

director. The accurate large rotation formulation is implemented as an updating process
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within a total Lagrangian formulation of the six-parameter FOSD large rotation plate and
shell theory based on the strain-displacement relations of Habip [6], [7] and Habip and
Ebcioglu [8]. Numerical solutions are obtained by using isoparametric 8-node Serendipity-
type shell finite elements with reduced integration. The Riks-Wempner-Ramm arc-length
control method is used to trace primary and secondary equilibrium paths in the pre- and post-

buckling range of deformation.

In Section 2 of this paper the incremental Total Lagrangian formulation of the FOSD large
rotation theory of composite shells and its finite element discretization is presented. First, in
Section 2.1 some basic relations of 3-D kinematics and FOSD large rotation plate and shell
theory are summarized. In Section 2.2 the five- and six-parameter variants of the FOSD
hypothesis are discussed and an accurate formulation of large rotations in plates and shells is
derived. In Section 2.3 the Total Lagrangian formulation of the theory is presented. Section
2.4 gives a brief account of the constitutive equations. In Section 2.5 the finite element
method discretization of the problem is given. Finally, Section 2.6 deals with the incremental
equilibrium equations of the system and the solution and control methods applied. Section 3
of this paper is devoted to numerical results. Numerical solutions are obtained by using
isoparametric 8-node Serendipity-type shell finite elements with reduced integration. The
Riks-Wempner-Ramm arc-length control method is used to trace primary and secondary
equilibrium paths in the pre- and post-buckling range of deformation. A number of sample
problems of non-linear, large rotation response of composite laminated plate and shell
structures are presented including symmetric and asymmetric snap-through and snap-back
problems. Various simplified non-linear beam, plate and shell theories are used for
comparative analysis, like e.g. the FOSD refined von Karman-type and moderate rotation

theory in their respective range of applicability, as well as variants of the large rotation theory
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proposed in literature using approximate strain-displacement relations or an approximate

approach to large rotations only.

2. Incremental Total Lagrangian Formulation of the First-Order Shear Deformation
Large Rotation Theory FEM Analysis of Composite Shells

2.1. Basic assumptions and nomenclature

The motion of the 3-D shell-like body in space is considered assuming the existence of
static effects only. According to the Total Lagrangian (TL) incremental formulation, we

consider the following three configurations of the body (Fig. 1):
.o .0 .
- the initial configuration C, at time 0;
. 1 .
- the actual configuration C, at time

.2 .
- the searched configuration C, at time ¢+A4¢.

Fig. 1. Shell body motion in space
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The respective configurations are characterized by left superscripts 0, 1, and 2. Thus, the
position vector of an arbitrary point P of the configuration "C is denoted by mB; whereas the

. . 0 1 2 . . .
time instants ¢, ¢ and ¢ are used for the time variable equal 0, ¢ and t+A4¢, respectively.

The position vector "R can be represented as a function of general convected coordinates

Oi (i=1, 2, 3) and the time variable:
"R=R(',6°,6""1) (D

The coordinate system (91, 92, 93) is defined in such a way that 0" (o =1, 2) denote convected
curvilinear surface coordinates of the shell mid-surface €2, and 93 is the thickness coordinate
taking values from the interval (-4/2, h/2) with h standing for the initial shell thickness. In the

undeformed configuration the coordinate & is measured in the direction that is perpendicular

to Q.

According to the first-order shear deformation (FOSD) Reissner-Mindlin theory it is
assumed that straight lines normal to the undeformed shell midsurface remain straight after

deformation, but not necessarily normal to the undeformed midsurface. Introducing position

vectors of points on the mid-surface "0 (in the configuration mC),
"r=r0“"1) (2)
one can write the FOSD hypothesis in the form
"R ="r+0"d. 3)

Here 6 d is the local position vector of a point in the shell space in the configuration "c

often called "director".

With Eq. (3), the displacement vector "V in configuration "C is
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m 0) m (1)

(
"V="R - "R="r-'r)+0°("d-n)= V+ 6’ V. 4)

The displacement vector "W can be expressed in terms of components referred to the

: 0 i , 0
contravariant base vectors & l, or to the covariant base vectors g; of the undeformed shell

Space as
mv:mI/I Ogi:mVi Ogi, (Sa)

and similarly in terms of the components referred to the co- and contravariant base vector

. 01020 0 0 0 . .
triads(a , a , m)and ( a,, a,, m), respectively, of the undeformed shell mid-surface as

a

"V="v, ‘a’+"v, ‘m="0v""a_+"v, ‘m (5b)

From Egs. (4) and (5) the FOSD hypothesis follows in the form

mo ml

(0 )
"v.(6',0%,0°) = v,(0'.,0)+ & v(0',0%). (6)
The Green strain tensor in the shell space is given by
+ ka

m 1 qm
5"—5( V.

g

m
g

i kaHA,') (7)

where (.)H[ is the covariant derivative with respect to the metric of the undeformed shell

space, while "' and "V; denote the contra- and covariant components of the displacement
. 0 0 i .
vector 'V referred to the base vector triads g; and gl , respectively. They can be related to

m i m .
the components o and u; referred to the reference surface base vector triads as
0 0, -1 3 3
mVa — ,Uf muﬂ, mVa:( U ); mUﬂ’ mV :ml/}:mu :mus’ (8)

where °4” and (0 ,u"l); denote the components of the shifter tensor and its inverse.
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Using Eq. (6) in the framework of FOSD theory the Green strain tensor components can be
presented in the form of a power series expansion with respect to the thickness coordinate as
follows:

e in-plane and bending terms:

m

(0)
" 5(0',6°,0°)= £,,(0',6°)+6

m

M m(2)
250,040 £,,(0.0%), (%)

e transverse shear terms:

" (0) "y
m8a3((91,92,(93)= €a3(91,(92)+(93 €a3(091,(92), (9b)
e transverse normal terms:
" O 1 2
"e,(0,07,0)= £,(0',0%). (9¢)

™ (0)
The above strain components are related to the kinematical variables v,

1

(6'.,0%)

m@a

and v,(0',0%) by the following strain-displacement relations (see [6] — [7])

M (0) Mmooy ™ (0) mo0) ™ (0) m o) ™ (0)
£,=1 + +1 +1 ‘ (10a)
o = 2| Paop Dpo |72 Poz Pps T3 P Pps

(1) (1) Mo 0 Zm (0) 0 Z,m (0)
1 1
gaﬂ ) (oa/} + @ﬂa 2 ba q)},ﬂ + bﬁ’ (ola +

10b
(roma o (o T O ’ (100)
2| Pazs Ppst Pps Pz | T 2| Pow Ppt P Pp
" () 0 ﬂm 1) 0 Am (€Y] Moy ™o moay " (1/)1
— 1 1 1
gaﬂ - 2 ba ¢/1,8+ B (0/10( +5 ¢a3 §0Q3+ 2 ¢la Qﬁ’ (IOC)
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oMo O may(mo ™ mayfmo ™
_ 1 1
2 65= Qut U+ U @, +7 Ul @3- U, |45 U] @5+ U, |, (104d)
may o moay "M ma O o)
— 1 1
2 6,5= U+ UV U,—5 Uy, @+ Uy U, +5 0y, ¢,. (10e)
m may M@ ma
Ey= U;+3 U L. (10f)
In the above relations the following abbreviations have been used:
" (n) " (n) 0 " (n)
¢aﬂ = Ua B baﬁ U3 4 (1 la)
m (n) m (n) m (]’1)
Puz= Uy, + b, v, (11b)
0 0 0 07 0 _al 0
by="a,, mn, by = D,gs (11c)
0 af _ 0ga 0.0 0 _ 0
a a“-"a”, a-=r,,. (11d)

Here ( )\ 5 and (), » denote the covariant and partial derivative with respect to the reference

surface coordinates while Obaﬁ and Obz are the covariant and mixed components of the

curvature tensor of the mid-surface, respectively.

In the strain-displacement relations (10) all non-linear terms have been marked by single

or double lines. For the fully non-linear theory accounting for arbitrarily large rotations all

terms have to be taken into account. We will call this theory FOSD 6-parameter large rotation

theory (LRT6). Terms marked by a double line can be dropped for moderate rotation theory
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(MRT), see [9]. All terms marked by a double or single line can be dropped for linear (small

deflection) theory.

2.2. Assumption of the inextensibility of the director

The straightforward interpretation of the director inextensibility assumed in the present

considerations results in the following equation:

g, =0. (12)

2.2.1. Simple realization of the director inextensibility resulting in pure 5-parameter theories

In literature most frequently in the FOSD hypothesis (6) only 5 parameters are considered

by putting

(1)

v, =0 (13a)

This leads to the FOSD hypothesis in the form

m (0) m (1)
"v,(0',0%,0° )= v,(0.,0)+0 v, (6,6, a=12
m ()

"0,(0',0%,0°)=0v,(0',0%)

(13b)

One can treat (13a) as a simple (approximate) realization of the constraint (12) seeing that,

" (l) m .
according to (10f), v, is equal to the linear (dominating) part of the component "¢ ... This

postulate leads to simplified strain-displacement relations for five-parameter theory that can

be easily obtained from Egs.(10) by invoking (13) (see e.g. [26 - 28]).

On the other hand, it is well known, that the hypothesis (13b) with only five kinematical
parameters is not capable of treating finite rotations (see e.g. [47]). Therefore in the following

an enhanced approach will be developed. For the purpose of comparison, however, in this
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paper we will also present results obtained with the five-parameter variant of the large
rotation theory based on (13) which will be called LRTS5. One should notice that the

(1) ™ (1)
parameters v, and v, are often interpreted as the rotations ¢, and ¢, about the mid-

surface base vectors ‘a, and ‘a,, respectively (see Fig. 2). However, we will show in

Chapter 2.2.2, that this holds true only for small and moderate rotations (e.g. linear, small
deflection analysis or non-linear analysis based on the refined von Karman theory or

moderate rotation theory (MRT)).

P, P,

Fig. 2. Rotation angles in FEM models

2.2.2. Enhanced interpretation of rotations

Looking for a more accurate formulation one can express the changes of the inextensible

director by using Euler angles (see e.g. [48]). One can assume that the transformation of any
vector from the initial configuration °C to the configuration "C can be achieved by two
subsequent rotations, first about the mid-surface base vector ’a, , then about “a,. With the

two rotation angles from Fig. 2, the matrix operators for such a conversion are as follows:
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1 0 0 cos("@,) 0 sin("¢,)
[t on]=[0 cos"e) sinC'e) | [wCed]=| 0 1 0 | 4
0 —sin("p,) cos("p,) —sin("p) 0 cos("g,)

and the rotation matrix for the whole transformation can be obtained as

cos(” @ ) —sin(" (2 )sin(” (02) sin("” (A )cos(” §02)
[#]=[% "o ] "o]=| 0 cos("g,) sin("g,) | (15)
—sin("p,) —cos("g)sin("p,)  cos(" @, )eos("p,)

In particular, this transformation can be used to describe the director "d introduced in (3), as
. 0 . . . . .
the image of the vector m obtained by performing subsequent rotations with the rotation

angles "¢, and "¢, about the mid-surface base vectors ‘@, and “a,,, respectively:
"d =sin(" ¢, Ycos("p,) ‘a' + sin("p,) ‘a’ + cos(" @, )cos("p,) ‘m . (16)
Now, turning back to the relation (4) for the displacement vector "'V in the configuration

m .
C, one obtains

(1)

V="d-"m =sin("¢, )cos("¢,)’a' +sin("p,)’a’+ (cos(’" @, )cos("@,)— 1) ‘m . (17)
It is obvious that for small and moderate values of the angles "¢, and "¢, one can assume that
sin("@,)="¢@, and cos("p,)=1. (18)

Thus for small and moderate rotations Eq. (17) yields

(1)

Vz"¢p 'a+"p,’a’+0’n. (19)
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Hence for the small or moderate rotation theory the kinematical hypothesis (13b) is justified,
however, as it was already pointed out, this approximation cannot be accepted for large
rotations. Therefore the exact relation (17) will be applied in the following derivations for the
numerical implementation of the large rotation theory based on the enhanced interpretation of
rotations.

For the purpose of the incremental description it is necessary to construct a corresponding

relation for the displacement increment. Starting with the Taylor series expansion of the

displacement vector at the configuration ’Cin the vicinity of the actual configuration IC, one

obtains

(1) (1)

2m o o

V=V+AV= V+ﬂ Ag, +ﬂ Ag, (20)
o, o9,

t t

where the higher-order terms were neglected. As a consequence the linearized incremental

relation reads

O

Aﬁl) COS(IQ )008(1%) _Sin(l¢1 )Sin(l%) A

Av, |= 0 cos('p,) [ Z} @1
1 . .

Av, —sin('p, )cos('p,)  —cos('p, )sin('p,) ’

Also, it is quite obvious that the exact relation that can be obtained taking advantage of

formula (17) reads:

o 2oy o

AV= V- V= (sin(zgo1 Yeos(C@, ) —sin(' ¢, )COS(I%)) ‘a' + (22)

+ (sin(zgo2 )—sin('¢, )) ‘a’+ (cos(zgo1 Yeos(Cp, ) —cos(‘g, ) cos(' g, )) ‘m
Assuming now the usual incremental decomposition *p,='¢p_+Ag, and additionally taking

sin(Ap,)=Agp, and cos(Agp,) =1 (23)
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one gets from (22) exactly the same relation as (21).

Consequently we obtain a numerical formulation based on the increments of 5 parameters
similar as in the LRTS5 formulation. Nevertheless, it should be stressed that the approximated
relation (21) is used only during the increment and the order of such an approximation is
within the range of the usual linearization approximation applied in the incremental
Lagrangian formulation. It is important that after the increment is performed the new

configuration must be updated according to the exact relation

2] [ty ]

|| cos(Ap)  —sin(Ap, )sin(Ap,)  sin(Ag, Jeos(Ag,) ||| [0

v, |= 0 cos(Ap,) sin(Ag, ) v, |-|0]. (24)
23) —sin(Agp, ) —cos(Ap, )sin(Ap,) cos(Ag, )cos(Ap,) 13)+1 :

. 3

It is necessary to note that the transformation based on the Euler angles yields a unique result
only for angles from the interval (-7/2; 7/2) (see e.g. [48]), however in the present
formulation this restriction applies only to the increments of the rotations and not to the total
rotations (see also [49]).

It is essential to understand also that the updating process as described by (24) is applied in
every equilibrium iteration before the balanced forces are established. Such a strategy
accompanied by a suitable incremental-iterative procedure with a flexible size of load
increment guaranties the desired accuracy of the analysis.

One should remember that the 6 parameters which are necessary to describe the displacement

™ (0) (1)
vector 'V as given in Eq.(4) ( v, and v, , i =1, 2, 3) must be continuously stored and

updated during the analysis. It is quite obvious that such a formulation is not a real “six-
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parameter theory”, neither a “five-parameter theory”, therefore in the present paper it will be

referred to as the “LRT56” formulationi.

2.3. Total Lagrangian formulation

The virtual work principle states equilibrium between the internal virtual work, 6/7j, and

2 2
the external virtual work, &W,, in configuration C. Within the Total Lagrangian formulation

. . .2 . .
[51] the internal virtual work in C that is yet to be determined can be represented as the
. . o .0
integral in the known, initial configuration C

2 (n) () 1 (0 (n)
U | LS N 25
n=0

e} n=0

where the n-th order stress resultants obtained in the pre-integration through the shell

thickness are

h
2

g?v = [257(0°) ‘waer. (26)

h

Here ;S™ are the components of the second Piola-Kirchhoff stress tensor, ,¢,, denote the

. 0 .
components of the Green-Lagrange strain tensor, and « stands for the determinant of the
. . o .0
shifter tensor in the initial configuration C.

. .. . .2
The incremental decomposition of the stress tensor in the configuration C can be expressed

for the stress resultants as

A similar treatment of large rotations was applied for isotropic shells in [50] and for composite shells in [5]

and [29].
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() m ()
L= L'+ L. (27)

2.4. Constitutive relations

A typical composite shell made of orthotropic fibre-reinforced material can be analysed as
a layered structure, with the fibres of the reinforcement in each lamina placed in the surfaces
parallel to the shell mid-surface. It is assumed that the orthogonal system of the material axes
(a, b, ¢) in each lamina is introduced in such a way that the g-axis is aligned with the direction
of the reinforcement whereas the c-axis is normal to the shell mid-surface. The transverse
isotropic material properties (E, = E. and v, = v,) together with the inextensibility of the
director postulated throughout this report allow writing the 3-D incremental constitutive

relation for an individual lamina in the material axes:

0 S”” 0 8aa
08" 0€ms
oSab :[Cm] 2084 - (28)
oS . 2,8,
0 SCQ 2 0 8ca
with the constitutive matrix
Ea Vab Ea O O 0
1 - Vab Vba 1 - Vab Vba
Vab Ea Eb O O 0
[C. 1= 1=VisVhe | 1=V (29)
0 0 G, 0
0 0 0 | kG,
L 0 0 0 0 kG, ]

The set of well known engineering constants (E;, v;; and Gjy) in (29) is supplemented by the

shear correction factor k, which is taken here to be equal to 3 6
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The transformation of stress and strain vectors between the material axes (a, b, ¢) and

12 3
coordinate system (6 , 0 , 6 ) can be illustrated by the relations

0€aa 0€1 oS oS
0€bp 0€n 0S¥ 0S"
2,6, :[T]' 2,8, and 0S" :[T]T oS (30)
208, 285 0S” 08"
208, 2085 oS’ 08"
with the transformation matrix
[cos?(er,) | sin’(a,) | Lsin(2a,) 0 0 |
sin’(a,) | cos’(a,) | —1sin2a,) 0 0
[T]=|sin(2a,) | —sin(2a,) = cos(2a,) 0 0 (31)
0 0 0 cos(e,) | sin(e,)
0 0 0 —sin(a,) | cos(a,) |

. . . . 1 .
where the ply orientation angle, oy, is measured between the a-axis and the 6 —axis as shown

in Fig. 3.
=it
0 &
A @6(\
e
* b O

\
\ @ a

Fig. 3. Ply orientation angle

After the transformation the incremental constitutive relation for an individual lamina in the

12 3
coordinate system (6 , 0 , 6 ) reads:

A\ MOST
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oS 0€n
0S* 062
oS = [C] 2,8, (32)
0S% 2065
oS 2,85
where
T
[c]=[r] [c,]7] (33)

Performing the pre-integration of the 3-D constitutive relations through the thickness of the

whole shell one obtains the 2-D constitutive relation

S|=[H1|,E}. (34)

The detailed structure of the constitutive relation (34) can be found in [23].

With (34) and (27) the internal work (25) expression can be re-written as

oW, = (632, L +280,5 )L +538,, B £, + 4676, B 12, O (35)

0

apyd a . . . .
where H and =7 represent appropriate components of the constitutive matrix [H].

2.5. Finite element method discretization of the problem

Using the isoparametric formulation, the geometry described by the position vector can be

interpolated inside each finite element as follows:

"R(r,s) = ]%E(Nk (r.5) "1t )+ 6° %E(N,( (r.s) "d"), (36)
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k. .. . .
where ' ® is the position vector of the node k, with » and s standing for the element natural
coordinates, N, represents the shape function associated with node £, and, finally, NNE means

the number of nodes of the element.

The displacement field can be interpolated in an analogous way as the geometry:

"V(r,s) =1§€‘(Nk(r,s) '"(3“}493 %E(Nk(r,s) ’"%)Ik] (37)

k=1

For the sake of the simplified notation in the following derivations a specific substitution has

been introduced

(0)
"u,="v, for M=i=123

l
M

. (38)
"uy="v, for N-3=j=123

With (38) one can construct a quite general form of the strain-displacement relations given in

(9) and (10)
’(;,gij =By, "ty 5 Gyp ijQ "up muQ > (39

where Bjjs and Gyjp stand for two linear operators. Note that here an index notation has been
applied because the matrix notation, which was used in our previous paper [23], will not be

useful for some of the following transformations.

With (17) and (37) the displacement components u; can be expressed by the nodal

displacement parameters as
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NNE

muM(r,s):Z{Nk(r,s)’"q]@} for M =1,2,3
k=1

NNE

()= (N, (r,9)sin("g¥ ) cos("g})}

NNE ?

"y (r,s) = Z N (r,9)sin("¢}))

(40)

NNE

"ug(r,8) = > (N, (r,5)cos("g} ) cos("gl) -1

k . .
where mq; represent the corresponding displacement parameters at the node k. One should

note that due to the use of the exact formula (17) the six displacement parameters are
expressed in (40) as a non-linear function of five nodal parameters, while the use of the
simplified variant (19) would lead to linear relations only.

The derivatives of the strain tensor components with respect to the nodal displacement

. 1 .
parameters at the actual configuration, C, will be calculated next as

og; ou . Ou
6q; =B, ﬁﬂ;’“’ G u,,ﬁ, (41)
e, 0’u Ou, ou
— 9% =B +G,.G,. u,)]—M_ . . pPZoM 42
aqR an ( M ikP " jkM P) aqR an ikP = jkM an aqR ( )

At this stage one should notice that due to the non-linear (trigonometric) relation introduced
in (40), the second derivative of the displacement with respect to the nodal displacement
parameter does not vanish, in contrast to the simplified formulation LRTS where the second

derivative of the linear relation (19) is zero.

The derivatives given above are used in the linearized expression for the variation of the

strain tensor components

o,

) o' (e,
% gy )
qs

04 Oqr

5(e;) =

s Aq, (43)
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and for the strain increment

Ag; =" Agy,

Now the expression for the internal virtual work can be presented as

zéwizaq{ ( DL+ 2%a IL“3j°dQ:|+
o aq;

+5q5 [580,/; H”’W +4ag“3 = ang %dQ |Ag, +
K a%‘ a% oq,
KO
0’
+@S (gaﬂ) lLtZﬁ' 26 (8a3) lLa3 OdQ AqT+
s 0q 0qy 04 0q;
KO
0’ 2 0
+5qs (‘9aﬂ)Haﬂxs 26 48 (£03) zap 98 "0 g, Aq,
oo\ 05 0qr oq, 04504, 0qy

1 -1
WK str

or in the compact form

oW, = 5| (Fy + (K @sr+ K Dst)Agy + (KD siw Agy Ag
JS

where the notation marked in (45) has been used.

(44)

(45)

(46)

According to the commonly accepted FEM terminology the particular entities of (46) can be

named as follows

. . 1
e ,F, stands for the components of the balanced forces vector in the configuration C,

WF}:
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e Ksr represents the first part of the incremental stiffness matrix containing the
constitutive stiffness term and the initial displacement stiffness term, [éKu ];

o K95 denotes the components of the geometrical stiffness matrix, [OIK& ];

e  K"sx symbolizes the additional object, which according to Kleiber [52] one can
call “the second-order stiffness matrix”; the product (OlK D Aq, AqR) can be
understood as component of the vector {J(lq,Aq)}, containing additional terms,

which are non-linear with respect to the displacement increments {Aq}.

The matrix form of (46) reads

2ow, = (o ({{F 1+ (0K, DK, ) aa}+ 3 a.aa))) (47)

Adopting the external virtual work in its most general form as

oW, = {oq) R}, (48)

with {éR} standing for the vector of nodal forces due to the loads acting in the configuration

C, one can obtain together with (47) the incremental equilibrium equations as

(3, J i, ) faa}= TR} . aap). (49)

This is a standard form of the incremental equation of the quasi-static motion of the structure
and most of the terms have been efficiently explained by the extended formula (45). However,

the geometrical stiffness matrix needs an additional comment. With (42) the expression for

the components ;K'? . can be written in a more detailed form as
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Oou, Ou @ ou, Ou N
PM(}L'B+ZGakPG3kMPM0‘L3]°dQ+

oqs 0qr oqs 0qr
OIK(GI)ST

1 - (G)
oK ST = 0.[ [GakP Gﬁ'kM
o)

(50)

84, 04, dq; g, °

1 (G2
K Psr

: 2
* j ((BaﬁM Gur GﬂkM luP) 7y olLaﬁ +2(Ba3M +Gop Gipg 1”P) 0ty ILQS] °dQ
‘0

where the geometrical stiffness matrix is split into two parts. The first part of the geometrical

stiffness matrix, |K'“" . is a “regular” geometrical stiffness matrix that is present in every

standard TL formulation. However, the additional part, denoted as |K'%*,, results from a

ST »
non zero value of the second displacement derivative taken with respect to the nodal
displacement parameters, which appears in the first term of (42). As it was shown earlier, the
non-zero value of that derivative is characteristic for the LRT56 formulation utilizing the

trigonometric relation (17), while for the LRT5 formulation based on the linearized relation

(19) this derivative vanishes and, as a consequence, the ,K'“”,, part does not appear in

LRTS5. Up to the authors’ knowledge, the essential role of that additional part of the
geometrical stiffness matrix was indicated for the first time for the non-linear analysis of
beams by Frey and Cescotto in [53] (see also [54] for axisymmetric shells, [50] for the
degenerated shell finite elements and [55] for the generalized formulation for finite elements

with rotational degrees of freedoms).

2.6. Incremental equilibrium equations of the system

A standard aggregation of equilibrium equations (49) for all finite elements results in the

following incremental equilibrium equation for the whole FE model:

'K Au="R- 'F-J('uw,Aun), (51)
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. . . 1 .
where Awm is the global vector of displacement increments, K denotes the global incremental
2 2 1
stiffness matrix, R is the global load vector in configuration C, F stands for the global
1
vector of balanced forces in the actual configuration C.

Due to the existence of the non-linear term J(lu, Awm) in (51), the iteration process of the
standard Newton-Raphson method is employed to solve this equation. Additionally, the
Riks-Wempner-Ramm arc-length control method [56] has been implemented in the present

algorithm to allow for tracing also complex equilibrium paths.

3. Numerical examples

3.1. Instability of clamped-hinged circular arch subjected to point load

We start with a relatively simple problem of a circular arch made of isotropic material
subjected to a point load at the crown. Its big advantage is the availability of the analytical
solution given in [57] for the highly non-linear response with no restrictions imposed on the
magnitudes of the deflections and rotations. This example allows testing the ability of the
proposed algorithm to analyze problems with very large rotations and to examine the
influence of different terms in the strain-displacement relations.

The arch geometry is characterized by the subtending angle « = 215 degrees as presented in

Fig. 4.

Fig. 4. Clamped-hinged arch, & = 215 degrees
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In Fig. 5 the graph of the normalized vertical displacement, w/R of the crown point is
presented versus the dimensionless load PR*/EI (with R being the radius of the arch, P the
vertical force acting at the crown, E the Young’s modulus and I the moment of inertia of the
cross-sectional area). The corresponding graph of the normalized horizontal displacement,
w/R of the crown point versus the dimensionless load PR¥/EI is given in Fig. 6. The analysed

model of the arch consists of twenty 8-URI elements.
11.0

1 ;).g ] /&\ 71
8.0 . /
| wid T /

— J
a 6.0 ] LRT56 i
% 50 A LRT5 i
! g —— MRT5

S _ L
o] 4.0 - - Nash 2D [58]
?é 3.0 4+ Li[59] H
S .

2.0 %% Range of <& DaDeppo & Schmidt [57] ]

moderate rotations
1.0 =
0.0
-
_1 .0 T T T T T T T T T

0.00 0.25 0.50 0.75 1.00 1.25 150 1.75 2.00 2.25
Normalized displacement w/R

Fig. 5. Normalized downward displacement at the crown for the 215 degrees arch

The results obtained with LRT56 agree very well with the analytical solution as far as
it was given in [57]. Since the present analysis goes far beyond the limit point an additional
reference solution obtained with a degenerated beam type element [58] has been provided for
the sake of comparison and again a very good agreement has been obtained in the entire post-
buckling range (see Fig. 5 and Fig. 6). The arch was analysed also in [59] by Li who gave just
eight points of the equilibrium path in the pre-buckling range and one separate point after the
snap-through took place. Those points correspond quite well with the LRT56 solution (see
Fig. 5 and Fig. 6) but in the vicinity of the limit point Li's solution [59] shows differences

with LRT56 and with the analytical solution of DaDeppo and Schmidt [57] as well. The
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MRTS5 model provides excellent results in the range of validity of the theory as marked on
Fig. 5. In this example the importance of the proper updating procedure of the rotations is
manifested by the big discrepancy of the LRTS5 solution where not only quantitative
differences can be observed, but even a qualitatively different response of the structure is

predicted (see Fig. 5 and Fig. 6). The range of acceptable accuracy of the LRT5 approach is

only slightly bigger than that of MRTS.

1.0 — LRT56
10.0 + —— LRT5
9.0 T — - MRT5
8.0 \ - - Nash 2D [58]
' \ 4+ Li[59] %>
g 7.0 &  DaDeppo & Schmidt [57]
£ oo \ I ——a—
E 5.0 \ ! /
é 4.0 \ /5'/*/6/
S 4
g 3.0 4/ /
S e /
1.0 \ /
0.0 e /
o T~/

-0.2 0.0 0.2 0.4 0.6 0.8
Normalized displacement u/R

Fig. 6. Normalized horizontal displacement at the crown for the 215 degrees arch
Quite recently Kapania and Li [60] presented their solution of the problem obtained with
geometrically exact curved beam elements. As far as it is possible to recognize from the
figure given in [60] one can observe an excellent agreement of their solution with the LRT56
results (see Table 1 for a comparison of the limit load points).
It should be mentioned that the main purpose of the presented example was to test the

behaviour of the numerical model although the authors are aware that the response of a real
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structure can differ from the presented solution due to a possible contact between the

deformed beam and the support in the post-buckling region (see [61]).

Table 1.

Comparison of limit load points for the clamped-hinged 215 degrees arch

Model Max. limit point Min. limit point
LRTS56 8.9712 -0.7304
NASH2D [58]

(3-noded isotropic beam element) 8.9718 -0.7306
Kapania and Li [60]

(4-noded curved beam element) 8.9727 -0.7360
DaDeppo and Schmidt [57]

(analytical) 8.97 -

3.2. Clamped laminated shallow arch under point load

The symmetrical buckling of the shallow circular laminated arch considered next has been
analysed earlier in [18] by means of degenerated shell elements. The geometry of the
analysed arch is presented in Fig. 7 with R=100 in, h=2 in, # =0.707 and the width of the
arch is taken as equal to 1 in. Due to the symmetry of the problem half of the arch has been
modelled with five 8-URI elements. The material properties used are E,=25-10° psi,
Ep=1-10° psi, G = 5-10° psi, G = 5-10° psi, Gpe= 5-10° psi and v,, = 0.25. The arch consists
of two layers, each layer has the same thickness 1 in and is made of the same orthotropic

material, but a different ply orientation has been used in each layer. The ply lay-up for the
considered example is (0, 90), i.e. in the bottom layer the material axis a coincides with the 01

axis of the shell coordinate system, whereas in the upper layer the material axes are rotated by

90 degrees (see Fig. 3).
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Fig. 7. Clamped shallow laminated arch

The obtained results are presented in Fig. 8 as the equilibrium paths in the space of the

non-dimensional load parameter, P =10PR* 3/ z*EI , and the central vertical deflection w.

12 1 1 1 1
—— MRT5 %
10 ——  LRT5 /.
—  LRT56 //. 4
. & NASHL-2D P
| — e - Liao&Reddy[18] | | {2}
Iy

~ .
Sl w | md
\<>§gQ 1

Load parameter, (10 PR 6/x El)
(@]

0 5 10 15 20 25 30 35 40 45
Central deflection, (in)

Fig. 8. Central vertical deflection for the clamped laminated arch

Looking at the evident differences in the responses obtained with the MRT5, LRTS and the
LRT56 models one can conclude that the considered example deals with finite rotations. The
range of moderate rotations ends before the load parameter reaches the value 6 and,
consequently, the MRTS5 solution does not predict the snap-through instability, which is

evident in both the large rotation formulations, LRT5 and LRT56. However, the lack of the
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proper treatment of the rotations in the LRTS approach is manifested by the overestimation of
the maximum load level, and total disagreement with LRT56 in the post-buckling path. The
maximum load level predicted by the LRT56 model agrees quite well with the reference
solution [18] but the further part of their post-buckling path differs from the LRT56 response.
To allow for the final verification of the obtained results additional computations have been
performed for the analysed arch with the layered beam degenerated element with finite
rotations (modified program NASH2D [58]) and a very good agreement has been obtained in

the entire post-buckling range with the LRT5/6 solution.

3. 3. Asymmetric cross-ply simply supported plate strip

We consider a simply supported asymmetric laminate (0/90) as shown in Fig. 9 assuming
the following data: a=9.0in, b=1.5in, h=0.04in, E;=2.0x 10’ lb/inz, vi2 = 0.30,

E,=1.4x 10° Ib/in%, G2 = Ga3 = G153 = 0.7 x 10° 1b/in®.

Xx
simply supported

free edge

trititeneg o

\ 90°

simply supported

free edge

Fig. 9. Cylindrical bending of composite plate strip

This example was initially investigated by Sun and Chin [62], who presented large
deflection cylindrical bending results of a pinned composite plate obtained with the von
Karman plate theory. Reddy [4], who analysed this problem with his Higher-Order Shear

Deformation Theory, showed that really large deflections could be obtained for the simply
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supported plate. Basar et al. [5] repeated this analysis using the Third-Order Shear
Deformation Theory and fully non-linear formulation for finite rotations.
Due to the dual symmetry of the analysed structure, a quarter of the plate is modelled with

nine 8-URI elements. The results obtained with the LRT56 approach are shown in Fig. 10.

6.0
5.0 MRT5 +—¢
1
= = = LRT5 T 7/

0 — LRT56 o+ /Z
& -
T 4  Reddy[4] ' T
2
2 { Basaretal. [5] 1 7/
E /
9 4
= V4
8 20 ’ o
& i

4
1.0 ek + —
.0 — moderate rotations LI PPt
I S
]
0.0 4% -
0.0 50.0 100.0

Normalized transverse deflection (v/h)

Fig. 10. Normalized central deflection of the plate strip under pressure load

Our LRTS56 results agree very well with those of Basar et al. [5] what allows for the
conclusion that in this example the refined representation of the transverse shear strains does
not improve the accuracy of the solution. Both solutions are quite different from the results of
Reddy [4], which is due to the fact that his model based on the von Kéarman-type plate theory
is not capable of dealing with large rotations. Reddy's solution [4] gives an acceptable
prediction of the strip deflection only for the range w/h < 10, whereas our MRTS model is
capable of dealing with bigger deflections (w/h < 17), which are a little beyond the range of

moderate rotations marked in Fig. 10. It is interesting that using the full non-linear strain-
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displacement relations but without the proper updating of the rotations (model LRTS5) one

cannot obtain better results than with MRTS5.

3. 4. Clamped laminated cylindrical panel under point load

We consider a deep cylindrical laminated (0/90/0/90);s panel (Fig. 11) as analysed by Tsai et
al. [25] with the following data: R=12in, L=5.5in, B=0.5, h=4-0.01in,
E;1=2046:10°psi,  E»n=4.092-10°psi,  v2=0313,  Gip=Gy3=2.53704-10° psi,

Gy = 1.26852-10° psi.

clamped

clamped 5

Fig. 11. Clamped laminated cylindrical panel under point load

The central deflection of the panel is shown in Fig. 12 versus the central load. One can notice
that the buckling load level predicted with the present approach (LRT56) is in a quite good
agreement with the solution given in [25]. Very similar results for the pre-buckling range
have been also obtained with the LRTS5 and MRTS5 models. However, big differences
appeared in the post-buckling range of the equilibrium path. The LRT56 solution is much
closer to the reference solution [25] than the two other models but the difference is still
significant. According to Tsai et al. [25], their model differs from the LRT56 in two aspects:
1) the transverse shear stress distribution is parabolic through the shell thickness; 2) linear

strain-displacement relations are assumed for the transverse shear strains. To allow for more
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adequate comparison of the results we have repeated the analysis with the modified model m-

LRT56 created by dropping all non-linear terms in the transverse shear strains of LRT56.

I N MRT5 !
— — LRT5 !
200 i
LRT56 ,
1 &L 20 Tsai et al. [25] f !

q

160 ﬂ'
A

120 P\ \<~ - !

| j x - /

80 9??, AN 3=

40

RN
N
<>\ _ /V
>
0 0.5 1 1.5 2 25 3

N
Central deflection [in]

Force P [Ib]

<><><><>

T T T

Fig. 12. Central deflection of the clamped laminated cylindrical panel under point load

Almost no difference between the results of m-LRT56 and LRT56 can be observed (see Fig.
13) what can support the opinion of Tsai et al. [25] that non-linear terms in the transverse
shear strains are insignificant in the considered example. However, the m-LRT56 solution
still is different from that given in [25]. In the second attempt the m-LRT5 model based on the
LRTS approach (i.e. dropping all non-linear terms in the transverse shear strains of LRT5) has
been applied and this time the obtained results were almost identical with those of Tsai et al.
[25]. The conclusions are the following:

a) similarly as in the LRT5 model, the formulation applied in [25] does not perform a

proper updating of rotations;
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b) the proper updating of the rotational degrees of freedom for thin composite shells can
be more essential for the accuracy of the solution than the refined representation of the

transverse shear strains.

240 I I
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Fig. 13. Additional comparative study for the clamped cylindrical panel

An additional support for the above conclusions can be found in Table 2 where the
snap-through loads calculated for the clamped cylindrical panel with different models are

recorded.

One can observe a gradual decrease of the snap-through load with the increase of the accuracy
of the applied model - from 44.13 1b for MRTS5, through 43.64 1b (LRTS), to 43.06 1b for
LRT56. The limit load given by Tsai et al. [25] is even lower - its level is equal to 42.4 1b$

what is very close to the value of 42 Ib obtained in the m-LRTS model where all nonlinear
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terms were omitted for the transverse shear strains. However, it is worth to notice that the
difference between the snap-through load estimated with the models m-LRT56 and LRTS is

insignificant.

Table 2.

Comparison of limit load for the clamped cylindrical panel
Model snap-through load [1b]
MRTS5 44.13

LRTS5 43.64

LRT56 43.06

Tsai et al. [25] 42.4
m-LRTS 42.00
m-LRT56 43.13

3. 5. Stretching of an open cylinder

This example serves in the literature as one of the most demanding tests for the finite
rotation analysis of isotropic shells (see e.g. [29], [63], [64] and [65]). Recently also a
composite variant of this example has been proposed by Masud et al. [41]. The short cylinder
(see Fig. 14) is loaded by two opposite stretching forces in its middle section; the ends of the
cylinder are free. The geometry of the shell is characterized by the following data:
R=4.953in, L=5.1751n, f=0.5, h=0.094 in. Due to the symmetry of the problem, only
one octant of the cylinder is modelled with a regular mesh of 8x10 8-URI shell elements.

The results obtained for the isotropic variant (E = 10500 ksi and v=0.3125) are presented
in Fig.15 together with the reference solutions of Sansour & Bednarczyk [63], Chroscielewski
[64] and Masud et al. [41]. The LRT56 solution is in a quite good agreement with the results

of [63] and [64], while the solution given in [41] remains noticeably different.

§ This value was measured at the graph in [25].
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Free end

Free end

Fig. 14. Stretching of a short cylinder

40 8
— LRT56
< Sansour & Bednarczyk [63]
o Chroscielewski [64]
X Masud et al. [41]

30
)
‘o |
o
g 20 w,
o
(I

10

a ‘%/CX/

0 1 2 3 4 5
Deflection [in]

Fig. 15. Radial deflections at points A and B for the isotropic cylinder

The next computations for the stretching of the free end cylinder are performed following

Masud et al. [41] for the laminated shell (0/90) with the following material properties
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E11=30500 ksi, Ez; = 10500 ksi, Gj2= Gi3= G23=4000 ksi and v;=0.3125."* The geometry
of the shell remains the same as given in Fig. 14. The radial displacement of the loaded point
A calculated with the LRT56 approach are compared in Fig. 16 with the reference solution

[41] using different density of the mesh.

40

—— LRT5/6, 8-URI, mesh 5x 8

30 — = LRT5/6, 8-URI, mesh 10 x 16
= = = LRT5/6, 8-URI, mesh 15 x 24
—2A— Masud et al. [41], 256 elements
1 —>— Masud et.al. [41], 384 elements

Force P [10 Ib]

Point A displacement [in]

Fig. 16. Radial deflections at the point A for the composite cylinder

One can notice that differences between the reference solutions for 256 and 384 element
appear at a quite low load level, whereas the differences between 5x8 and 10x16 meshes of
the LRT56 model are visible only in the vicinity of the snap-through region. Increasing the

density of the mesh in the LRT56 approach from 10x16 to 15x24 elements resulted in almost

** Please notice, that the metric units used in [41] have been replaced here by USCS units to obtain more

reasonable data.
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no change of the response. In contrary to [41], using the dense meshes in the LRT56 model a

larger value of the snap-trough load is obtained than for the coarse mesh (5x8).

Interesting observations can be made when the LRT56 solution for the stretching of the
composite cylinder is compared with the results of LRTS5, MRTS5 and MRT56" models (see
Fig. 17). One can notice that the snap-through phenomenon is not manifested in the MRTS or
LRTS results and both those models give stiffer response than the LRT56 approach or [41]. It
is remarkable that the MRT56 model provides better estimation of the w, displacement than
the LRTS5 approach. One can conclude that inclusion of additional terms in the LRT equations
is not as much significant for the current example as the proper treatment of the rotational

degrees of freedom.

* [ I R
| | —— LRT56, mesh 10x 16 " ,
—>X— Masud et al. [41], 384 elements | !
— - LRT5 mesh10x 16 / ,
30 — — MRT5, mesh 10 x 16 * 7
= = = MRT 56, mesh 10 x 16 I / /
— i }
) %R,
- /
= 20 Iy 4 |
o . y
o ]/ ¢
s %
L .4/ //
10 7
/
| P~
0 x x
0 0.5 1 1.5 2 2.5 3

Point A displacement [in]

Fig. 17. Displacement at the point A for different models of the composite cylinder

Tt The MRT56 model consists of the MRT equations with the enhanced updating of rotations (analogous as used
in the LRT56 approach).

page 39


http://mostwiedzy.pl

A\ MOST

L.Kreja & R.Schmidt: Large rotations in first-order shear deformation FE analysis of laminated shells

The magnitude of the snap-through load for the stretching of the composite cylinder can be
increased by 10% just by changing the order of the laminates from (0/90) to (90/0) as it is

shown in Fig. 18.

40
Laminate layout:
30 - — = (0/90)
— (90/0)

Force P [10 Ib]
N
o

=

0 0.5 1 1.5 2 25 3 3.5 4 4.5
Displacement [in]

Fig. 18. Influence of the lamina sequence on the composite cylinder response in the stretching test

3. 6. Pinched hemispherical shell with 18° hole

In the last example we consider the probably most popular benchmark tests for finite
rotation analysis of isotropic shells (see e.g. [30], [41], [49], [63] - [67]). The hemispherical
shell with an 18 degree hole under two inward and two outward forces is presented in Fig. 19.
The radius is R = 10 in and the thickness is h = 0.04 in. For the isotropic case the material
properties are E = 6825-10% psi and v= 0.3. Due to the double symmetry of the problem only

one quarter of the shell is analysed with appropriate boundary conditions.
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Fig. 19. Large deformation of a hemispherical shell with 18 degree hole

The numerical study has shown that a mesh of 12x12 elements 8-URI (regularly distributed in
spherical coordinates) provides a convergent solution. The radial displacements of the shell
computed within the LRT56 approach at the points subjected to the stretching and pinching
forces, respectively, are presented in Fig. 20 together with selected reference solutions [30],
[66] and [67]. An excellent agreement of results can be observed in Fig. 20 for the inward as

well as for the outward deflection.

° | |

inward deflection

outward deflection

Radial displacement [in]
N

2 LRT56 mesh 12x12 -
O Simo et al [30]
A A Stander et al. [66]
-+ Chroscielewski et al. [67]
O T T % T % T % T
0 40 80 120 160 200
Force P [Ib]

Fig. 20. Radial deflections of the isotropic hemispherical shell with 18 degree hole
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Following the inspiration given in the previous example a composite variant of the
hemispherical shell with 18 degree hole is considered next. To keep the analysed problem as
realistic as possible the material data have been adopted from the paper by Tsai et al. [25]
(compare Example 3.2): E;; = 20.46-10° psi, Es,=4.092-10° psi, Gi,= G3= 2.53704-10° psi,
Gy3= 1.26852-10° psi and v;;=0.313. To obtain a similar range of deflections as for the
isotropic case the shell thickness has been increased to h =0.08 in. Keeping in mind the
hemispherical geometry of the analysed shell it was assumed that the fibre reinforcement
(material axis 1 of the composite) is running in the circumferential direction (parallel to the
equator). One should remember that the generating lines (meridians) do not keep the interval
(distance) — in the considered example the length of the bottom edge of the shell is 3.24 times
the length of the upper edge. The results of the LRT56 computations performed for the
composite hemisphere are presented in Figures 21 and 22 together with the solutions
computed with models RVKS, MRTS, LRTS and m-LRTS5. Since no reference solutions for
the analysed problem are available in literature, the comparative calculations have been
carried out in the MSC/NASTRAN computer code using QUAD4 elements in co-rotational
formulation [68].

The graphs of the outward and inward radial deflections of the panel are shown in Fig. 21 in
and in Fig. 22, respectively. The inward deflection is almost twice as big as the outward
displacement, and differences among curves obtained for RVKS, MRTS5, LRTS and LRT56
models are much more significant in the second graph. However, the responses for the inward
deflection obtained with MRTS5 and LRTS5 approaches are surprisingly similar. A very good
agreement between the LRT56 model and the MSC/NASTRAN solution can be observed in
both figures (Fig. 21 and Fig.22) and also in Table 3 presenting the values of the radial

deflection for the load level P=160 1b.
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Outward radial displacement [in]

Inward radial displacement [in]

8 1

— — — RVK5

1] —  MRT5

— . LRT5 (mesh 12x12 8-URI)
6 — — LRT56

x  m-LRT5

. o MSC/NASTRAN (20x20 QUAD4)
X x X X X XX

xx X%
4 X XX
X ®
XXXX O_eO@’QS.:eOG;O/:)‘?.
1 x 0T - T = -
x 50T =
? %@%&/Of '
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0 40 80 120 160

Force P [Ib]

Fig. 21. Outward radial deflection of the composite hemispherical shell
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Fig. 22. Inward radial deflection of the composite hemispherical shell
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Table 3.

Radial deflections of the composite hemispherical shell under P=160 1b

Model Outward deflection [in] Inward deflection [in]
RVKS5 3.389 5.608

MRT5 3.627 4.908

LRT5 2.946 4.901

LRT56 3.627 7.082
MSC/NASTRAN 3.611 7.061
m-LRT5S 4.813 11.798"

 this deflection is greater than the radius because one quarter of the shell has been used in the analysis

The influence of the circular fibre reinforcement on the response of the composite
hemispherical shell is investigated in the following parametric study. It was assumed that all
material parameters take the same values as before, except of E;;=n - Ey, where n is the
orthotropy ratio assuming values from the range (5 - 30). Such an assumption corresponds to
increasing circular fibre reinforcement. The graph of the inward deflection calculated with the

LRT56 model for different values of the orthotropy ratio is presented in Fig. 23. A gradual

increase of the shell stiffness can be observed for increasing orthotropy ratio.

160
i / n=25
orthotropy ratio
/ —
120 n=EH/E22 ' 7 n=20
/
| ) / n=15
' /
2 g0 / /
o .7
3 | A
L<I:.) S e - / n=5
. - _ - / /
7~ —_ - T _— /
7 P - {/ - _— /
LT ET =
0 *%Z T T T T T
0 1 2 3 4 5 6 7

Inward deflection [in]

Fig. 23. Inward deflection of the hemispherical shell for different orthotropy ratio

page 44


http://mostwiedzy.pl

A\ MOST

L.Kreja & R.Schmidt: Large rotations in first-order shear deformation FE analysis of laminated shells

A similar observation can be made in Fig. 24 where the values of the inward and outward
deflections of the hemispherical shell are presented as a function of the orthotropy ratio, n, for

the constant load level P = 60 1b.

8

(0]

inward deflection

N

Radial displacement [in]
N

I I
outward deflection

5 10 15 20 25 30
Orthotropy ratio, n

Fig. 24. Deflections for P = 60 1b as function of the orthotropy ratio

4. Conclusions

In this paper, an enhanced, accurate FE formulation of composite laminated shells undergoing
large rotations based on the use of Euler angles is derived in the framework of the FOSD
hypothesis. The main emphasis is put (a) on the exact treatment of large rotations in an
incremental total Lagrangian formulation, (b) on the relevance of five- and six-parameter
variants, respectively, of the FOSD hypothesis for large rotation plate and shell problems, (c)
on the consequences of using approximate strain-displacement relations or an approximate

approach to large rotations only.

Applying the six-parameter FOSD hypothesis and the concept of Euler angles to express the
changes of the inextensible shell director, a numerical formulation based on the increments of
five parameters only is developed. Using the obtained exact relations it can be shown that the

five-parameter FOSD hypothesis, i.e. the assumption of constant through-thickness
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distribution of the transverse normal displacements, is acceptable only for small and moderate
rotation problems, while large rotation problems require a six-parameter approach admitting
at least a linear through-thickness distribution of the transverse normal displacement even for
inextensibility of the director. This leads to the conclusion that for large rotation shell analysis
finite element methods based on five-parameter theories, which can be found even in recent
literature, cannot be accepted. In fact, the theoretically observed shortcomings of five-
parameter large rotation shell theories mentioned above become also evident in comparative
finite element analysis, where often not only quantitative differences can be observed, but

even a qualitatively different structural response is predicted.

Additionally, the comparative non-linear finite element analysis of various sample problems
of non-linear, large rotation response of composite laminated plate and shell structures,
including symmetric and asymmetric snap-through and snap-back problems, is extended to
large rotation theories proposed in literature that use approximate strain-displacement
relations or an approximate approach to large rotations only. From the obtained results, it can
be concluded that the proper updating procedure of the rotations is of utmost importance as
soon as the range of moderate rotations is exceeded. Additionally, approaches that use
approximate strain-displacement relations by neglecting all non-linear terms in the transverse

shear strain-displacement relations cannot be confirmed.

Finally, the authors take the liberty to point out again that the scope of the paper is limited to
small strain static problems of elastic laminated shells of a perfect geometry. However, the
sequel paper is under preparations which will deal with the buckling of laminated panels

under axial compression including geometrical imperfections and thermal effects.
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