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Larmor diamagnetism and Van Vleck paramagnetism in relativistic quantum theory:
The Gordon decomposition approach
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We consider a charged Dirac particle bound in a scalar potential perturbed by a classical magnetic field
derivable from a vector potentialA(r ). Using a procedure based on the Gordon decomposition of a field-
induced current, we identify diamagnetic and paramagnetic contributions to the second-order perturbation-
theory correction to the particle’s energy. In contradiction to earlier findings, based on the sum-over-states
approach, it is found that the resulting diamagnetic term isEd

(2)5(q2/2m)^C (0)ubA2C (0)&, whereC (0)(r ) is an
unperturbed eigenstate andb is the matrix associated with the rest-energy term in the Dirac Hamiltonian.
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I. INTRODUCTION

A nonrelativistic quantum-mechanical problem of a sp
1
2 particle of electric chargeq bound in a potentialV(r )
perturbed by a classical static magnetic field derivable fro
vector potentialA(r ) is frequently encountered in physics.
is well known @1–3# that if the perturbing magnetic field i
weak and the potentialA(r ) has no singularities, the first
order perturbation-theory correction to an unperturbed
ergy levelE(0) associated with an unperturbed wave functi
c (0)(r ) may be expressed in the form

E(1)5^c (0)uĤ (1)c (0)&, ~1.1!

and the second-order one in the form

E(2)5Ed
(2)1Ep

(2), ~1.2!

with the contributions given by

Ed
(2)5^c (0)uĤ (2)c (0)& ~1.3!

and

Ep
(2)52^c (0)uĤ (1)Ĝ(0)Ĥ (1)c (0)&. ~1.4!

Here Ĝ(0) is the generalized Green operator of the unp
turbed energy eigenproblem, associated with the energy l
E(0), and the particle-field interaction operatorsĤ (1) and
Ĥ (2) are

Ĥ (1)5
iq\

2m
@“•A~r !1A~r !•“#2

q\

2m
s•B~r ! ~1.5!

@with B(r )5curlA(r ) ands denoting the vector compose
of the Pauli matrices# and

Ĥ (2)5
q2

2m
A2~r !. ~1.6!
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The contributionEd
(2) is clearly positive and is called adia-

magnetic ~or Larmor! component ofE(2). If E(0) is the
ground-state energy ofĤ (0), the contributionEp

(2) is nega-
tive; it is called aparamagneticcomponent ofE(2) and is
usually associated with the name of Van Vleck@1,3#. It is to
be mentioned that since the vector potentialA(r ) is gauge
dependent, the splitting ofE(2) into Ed

(2) and Ep
(2) is not

unique. Still,E(2) andE(1) are gauge invariant.
Feneuille@4# and, more recently, Aucaret al. @5# ~cf. also

Ref. @6#! attempted to explain the origin of diamagnetis
within the framework of the Dirac relativistic quantum m
chanics. Considerations based on the sum-over-states
proach led these authors to the conclusion that diamagne
had to be attributed to the ‘‘redressing’’ of a relativistic pa
ticle by a perturbing magnetic field. It was claimed that
the relativistic theory the diamagnetic contribution to t
second-order energy expression was due to the nega
energy Dirac sea and was given by the following formula

E d
(2)5

q2

2m
^C (0)uA2C (0)&, ~1.7!

formally identical with its nonrelativistic counterpart~1.3!
@7#. HereC (0)(r ) is a four-component eigenfunction of th
zeroth-order~i.e., with the magnetic field switched off! Dirac
Hamiltonian.

In the present paper, we reconsider the problem of de
mining diamagnetic and paramagnetic contributions to
second-order energy correction within the framework of
single-particle Dirac theory. Our approach is entirely diffe
ent from that proposed in Refs.@4,5#. Instead of utilizing the
sum-over-states scheme, we find a field-induced electric
rent in a linear-response approximation@8–12# and identify
its diamagnetic and paramagnetic components. This
achieved using an ingenious~but, regrettably, not appreciate
enough! procedure devised by Gordon@13–15# in the very
early days of relativistic quantum mechanics. Subsequent
of the decomposed current in a formula linking the seco
order energy correctionE (2) with a vector potential and the
induced current allows us to identify diamagnetic and pa
magnetic contributions to the former. Somewhat surprising
©2002 The American Physical Society12-1
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our procedure leads us to the conclusion thatE d
(2) is not

given by Eq.~1.7! but rather has the form

E d
(2)5

q2

2m
^C (0)ubA2C (0)&, ~1.8!

whereb is the matrix associated with the rest-energy term
the Dirac Hamiltonian@notice that both expressions~1.7! and
~1.8! have the same nonrelativistic limit#.

Searching through the literature of the subject, we fou
that our idea of applying the Gordon decomposition to de
mine diamagnetic and paramagnetic contributions to m
netic properties was anticipated by a similar idea of Py
who exploited it in the context of the theories of nucle
shielding@16–19# and hyperfine interaction@20#. There are,
however, two main differences between Pyper’s and
work. First, somewhat different physical problems are c
sidered. Second, different procedures are used: while P
used the sum-over-states approach performing decomp
tions of virtual transition currents between unperturbed
eigenstates of the zeroth-order Dirac Hamiltonian, we ap
the linear-response approach decomposing thefield-induced
current.

II. RELATIVISTIC THEORY OF FIRST- AND SECOND-
ORDER MAGNETIC CORRECTIONS TO ENERGY

A. Generalities

Consider a relativistic Dirac particle of electric chargeq
~for an electronq52e) bound in a field of force derivable
from a potentialV(r ) ~not necessarily of an electromagne
origin! and perturbed by a classical static magnetic fi
characterized by a real nonsingular vector potentialA(r ).
The time-independent wave equation for the particle has
form

@Ĥ2E#C~r !50 ~2.1!

with the Hamiltonian

Ĥ5ca•@2 i\“2qA~r !#1bmc21V~r !. ~2.2!

Herea andb are standard Dirac matrices. The Hamiltoni
Ĥ may be conveniently written as

Ĥ5Ĥ(0)1Ĥ(1), ~2.3!

where

Ĥ(0)52 ic\a•“1bmc21V~r !, ~2.4!

Ĥ(1)52qca•A~r !. ~2.5!

Henceforth, we shall assume that the magnetic field is we
which implies that the operatorĤ(1) may be treated as
small perturbation ofĤ(0). Then, if C (0)(r ) and E (0) are
particular eigensolutions to the zeroth-order Dirac eig
problem
03211
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@Ĥ(0)2E (0)#C (0)~r !50 ~2.6!

~for the sake of brevity, henceforth we shall assume that
eigenvalueE (0) is nondegenerate!, we may seek correspond
ing eigensolutions to the problem~2.1! in the form

C~r !5C (0)~r !1C (1)~r !1C (2)~r !1•••, ~2.7!

E5E (0)1E (1)1E (2)1•••. ~2.8!

From this, in the standard way we obtain equations

@Ĥ(0)2E (0)#C (1)~r !52@Ĥ(1)2E (1)#C (0)~r !, ~2.9!

@Ĥ(0)2E (0)#C (2)~r !52@Ĥ(1)2E (1)#C (1)~r !

1E (2)C (0)~r !, ~2.10!

which are to be supplemented by pertinent boundary co
tions. Imposing the constraints

^C (0)uC (0)&51, ^C (0)uC (1)&50, ~2.11!

from Eqs.~2.9! and ~2.10! we infer

E (1)5^C (0)uĤ(1)C (0)&, ~2.12!

E (2)5^C (0)uĤ(1)C (1)&. ~2.13!

Formally, a solution to Eq.~2.9! is

C (1)~r !52Ĝ (0)Ĥ(1)C (0)~r !. ~2.14!

where Ĝ (0) @possessing the propertyĜ (0)C (0)(r )50# is the
generalized Green operator for the zeroth-order Dirac Ham
tonianĤ(0), associated with the eigenvalueE (0) of the latter.
The operatorĜ (0) has an integral kernelG (0)(r ,r 8) which is
a solution to the equation

@Ĥ(0)2E (0)#G (0)~r ,r 8!5I d~r2r 8!2C (0)~r !C (0)†~r 8!
~2.15!

~hereI is the 434 unit matrix! supplemented by the sam
boundary conditions that have been imposed onC (0)(r ). On
substituting the solution~2.14! into Eq. ~2.13!, we find

E (2)52^C (0)uĤ(1)Ĝ (0)Ĥ(1)C (0)&. ~2.16!

In principle, at this stage the problem of finding the firs
and the second-order corrections toE (0) may be considered
as solved since Eq.~2.12! and, depending on the particula
computational technique used, either Eq.~2.13! or Eq.~2.16!
are suitable for computational purposes. Still, on a pur
aesthetic ground, one may be slightly dissatisfied with
above results. First, Eqs.~1.1! and~2.12! are only seemingly
similar since the operatorsĤ (1) and Ĥ(1) have completely
different structures@cf. Eqs.~1.5! and ~2.5!#. Second, while
in the nonrelativistic theory the second-order correction
the sum of the diamagnetic and paramagnetic parts@cf. Eqs.
~1.2!–~1.4!#, in the relativistic case the second-order corre
tion has the compact form~2.16! which is, but only superfi-
2-2
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cially @cf. again Eqs.~1.5! and~2.5!#, similar to the nonrela-
tivistic paramagnetic term~1.4!. Thus, it is natural to ask the
question: is it possible to transform the relativistic corre
tions ~2.12! and ~2.16! into expressions closely resemblin
their nonrelativistic counterparts? Below we shall show t
the answer to this question is affirmative.

B. The Gordon decomposition approach

At first we focus on the first-order correction. The starti
point is to rewrite Eq.~2.12! using the notion of the particle’s
current. According to the Dirac’s theory, the current in t
stateC (0)(r ) is

J(0)~r !5qcC (0)†~r !aC (0)~r !. ~2.17!

It is then evident from Eqs.~2.5!, ~2.12!, and~2.17! that

E (1)52E
R3

d3rA ~r !•J(0)~r !. ~2.18!

In the next step, following Gordon@13–15#, we rewrite Eq.
~2.17! in the form

J(0)~r !5 1
2 qcC (0)†~r !aC (0)~r !1 1

2 qcC (0)†~r !aC (0)~r !,
~2.19!

the unperturbed Dirac equation~2.6! in the form

C (0)~r !5
i\

mc
ba•“C (0)~r !1

E (0)2V~r !

mc2
bC (0)~r !,

~2.20!

and substitute Eq.~2.20! into the first term on the right-han
side of Eq.~2.19! and its Hermitian conjugate into the se
ond term. After some elementary movements exploit
properties of the Dirac matricesa andb, we arrive at

J(0)~r !5
q\

m
Im@C (0)†~r !b“C (0)~r !#

1
q\

2m
“3@C (0)†~r !bSC (0)~r !#, ~2.21!

whereS is the 434 matrix defined as

S5S s 0

0 s
D . ~2.22!

Now, substitution of the decomposed current~2.21! into Eq.
~2.18! leads, after elementary integration by parts, to the
pression

E (1)5^C (0)uĤb
(1)C (0)&, ~2.23!

where we have defined

Ĥb
(1)5

iq\

2m
b@“•A~r !1A~r !•“#2

q\

2m
bS•B~r !.

~2.24!
03211
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Comparison of Eqs.~1.1!, ~1.5!, ~2.23!, and ~2.24! shows
their remarkable similarity. Thus, in the case of the fir
order correction we have reached our goal.

Encouraged by the success achieved in the first-o
case, we shall attempt to apply a similar procedure in
second-order case. On substituting the perturbation exp
sion ~2.7! into the expression

J~r !5qcC†~r !aC~r !, ~2.25!

defining the particle’s current in the stateC(r ), and collect-
ing terms of the same order in the perturbation, we obta

J~r !5J(0)~r !1J(1)~r !1•••, ~2.26!

where

J(1)~r !52qc Re@C (0)†~r !aC (1)~r !# ~2.27!

is the induced current linear in the perturbation. Then fro
Eqs. ~2.5!, ~2.13!, and ~2.27! and from the reality ofE (2)

@implied by Eq.~2.16!#, it follows that

E (2)52 1
2 E

R3
d3rA ~r !•J(1)~r !. ~2.28!

The decomposition ofJ(1)(r ) analogous to that in Eq
~2.21! is achieved by performing the Gordon decompositi
of the currentJ(r ) and making use of Eq.~2.26!. After steps
completely analogous to those which have led us to
~2.21!, we arrive at

J~r !5
q\

m
Im@C†~r !b“C~r !#1

q\

2m
“3@C†~r !bSC~r !#

2
q2

m
A~r !C†~r !bC~r !. ~2.29!

Then the desired form ofJ(1)(r ) is obtained by substituting
the expansion~2.7! into Eq. ~2.29!, subtracting Eq.~2.21!
from the result, and retaining only first-order terms. Th
yields

J(1)~r !5Jd
(1)~r !1Jp

(1)~r ! ~2.30!

with

Jd
(1)~r !52

q2

m
A~r !C (0)†~r !bC (0)~r ! ~2.31!

and

Jp
(1)~r !5

q\

m
Im@C (1)†~r !b“C (0)~r !1C (0)†~r !b“C (1)~r !#

1
q\

m
“3Re@C (0)†~r !bSC (1)~r !#. ~2.32!

The above expressions for the induced currentsJd
(1)(r ) and

Jp
(1)(r ) are strikingly similar to the following expressions:
2-3
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jd
(1)~r !52

q2

m
A~r !c (0)†~r !c (0)~r !, ~2.33!

jp
(1)~r !5

q\

m
Im@c (1)†~r !“c (0)~r !1c (0)†~r !“c (1)~r !#

1
q\

m
“3Re@c (0)†~r !sc (1)~r !# ~2.34!

for induced diamagnetic@ jd
(1)(r )# and paramagnetic@ jp

(1)(r )#
currents derivable within the framework of the nonrelativ
tic Pauli theory@15#. Therefore, it seems judicious to identif
Jd

(1)(r ) and Jp
(1)(r ) as induced relativistic diamagnetic an

paramagnetic currents, respectively. Accordingly, from E
~2.28! and ~2.30! we have

E (2)5E d
(2)1E p

(2) , ~2.35!

where

E d
(2)52 1

2 E
R3

d3rA ~r !•Jd
(1)~r ! ~2.36!

and

E p
(2)52 1

2 E
R3

d3rA ~r !•Jp
(1)~r ! ~2.37!

are the diamagnetic and paramagnetic contributions toE (2),
respectively. If we define

Ĥb
(2)5

q2

2m
bA2~r !, ~2.38!

Eqs.~2.36! and ~2.38! imply that E d
(2) may be rewritten as

E d
(2)5^C (0)uĤb

(2)C (0)& ~2.39!

@cf. Eq. ~1.8!#. Similarly, after elementary integrations b
parts, Eqs.~2.37! and ~2.32! yield

E p
(2)5Rê C (0)uĤb

(1)C (1)&, ~2.40!

with Ĥb
(1) defined in Eq.~2.24!, or equivalently, after making

use of Eq.~2.14!,

E p
(2)52Rê C (0)uĤb

(1)Ĝ (0)Ĥ(1)C (0)&. ~2.41!

For the sake of completeness, we observe that it is evid
from Eq. ~2.41! and from the reality ofE p

(2) that the latter
quantity may be rewritten in the form

E p
(2)5Rê C (0)uĤ(1)Cb

(1)&, ~2.42!

where

Cb
(1)~r !52Ĝ (0)Ĥb

(1)C (0)~r !, ~2.43!

obeying
03211
-

.

nt

^C (0)uCb
(1)&50, ~2.44!

is a solution to the inhomogeneous equation

@Ĥ(0)2E (0)#Cb
(1)~r !52@Ĥb

(1)2E (1)#C (0)~r ! ~2.45!

subject to the same boundary conditions that have been
posed onC (1)(r ).

The expression~2.39! differs from Eq.~1.7! obtained in
earlier works@4,5# based on the sum-over-states procedu
However, we believe that the physical character of our ar
mentation, based on the natural notion of the induced c
rent, testifies in favor of our identification of the expressi
~2.39! as the relativistic analog of the nonrelativistic Larm
diamagnetic term~1.3!.

With such an interpretation ofE d
(2) , it seems judicious to

identify the paramagnetic correction~2.41! as the relativistic
analog of the nonrelativistic Van Vleck term~1.4!. This point
of view is supported by the fact that since in the nonrelat
istic limit E (2) andE d

(2) tend toE(2) andEd
(2) , respectively,

E p
(2) tends toEp

(2) . On the other hand, one might raise a
objection pointing out the evident asymmetry between
right-hand sides of Eqs.~2.41! and ~1.4!. Continuing, one
might argue thatE p

(2) should be still decomposed in the fo
lowing way:

E p
(2)5E p1

(2)1E p2
(2) , ~2.46!

where

E p1
(2)52^C (0)uĤb

(1)Ĝ (0)Ĥb
(1)C (0)&, ~2.47!

E p2
(2)52Rê C (0)uĤb

(1)Ĝ (0)@Ĥ(1)2Ĥb
(1)#C (0)&,

~2.48!

and thatE p1
(2) rather thanE p

(2) is a right counterpart of the
nonrelativistic Van Vleck termEp

(2) . With such an interpre-
tation of E p1

(2) , which may be also rewritten in the form

E p1
(2)5^C (0)uĤb

(1)Cb
(1)&, ~2.49!

the termE p2
(2) is a separate correction toE (2) of a purely

relativistic origin, vanishing in the nonrelativistic limit.
It seems to us that the discussion whetherE p

(2) or E p1
(2) is

the relativistic counterpart of the Van Vleck term is of a
academic character. Still, leaving aside interpretative qu
tions, we observe that the decomposition~2.46! may be use-
ful in actual calculations. Therefore, below we shall sho
that E p2

(2) may be written in a simpler form, which does n

involve the generalized Green operatorĜ(0). To this end, we
observe that Eq.~2.15! may be rewritten as

G (0)~r ,r 8!5
i\

mc
ba•“G (0)~r ,r 8!1

E (0)2V~r !

mc2
bG (0)~r ,r 8!

1
1

mc2
bd~r2r 8!2

1

mc2
bC (0)~r !C (0)†~r 8!.

~2.50!
2-4
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Interchanging the variablesr↔r 8 and making use of the
property

G (0)†~r 8,r !5G (0)~r ,r 8!, ~2.51!

we transform Eq.~2.50! into

G (0)~r ,r 8!52
i\

mc
“8G (0)~r ,r 8!•ab

1
E (0)2V~r 8!

mc2
G (0)~r ,r 8!b1

1

mc2
bd~r2r 8!

2
1

mc2
C (0)~r !C (0)†~r 8!b. ~2.52!

After these preparatory steps, we rewrite Eq.~2.14! as

C (1)~r !5 1
2 qcE

R3
d3r 8G (0)~r ,r 8!a•A~r 8!C (0)~r 8!

1 1
2 qcE

R3
d3r 8G (0)~r ,r 8!a•A~r 8!C (0)~r 8!

~2.53!

and substitute Eqs.~2.52! and~2.20! into the first and second
integrals, respectively, on the right-hand side of Eq.~2.53!.
Further integration by parts of the term containi
“8G (0)(r ,r 8) yields

C (1)~r !52Ĝ (0)Ĥb
(1)C (0)~r !2

1

2mc2
bĤ(1)C (0)~r !

1
1

2mc2
^C (0)ubĤ(1)C (0)&C (0)~r !. ~2.54!

Inserting the above result into Eq.~2.40!, we arrive at

E p
(2)52^C (0)uĤb

(1)Ĝ (0)Ĥb
(1)C (0)&

2
1

2mc2
Rê C (0)uĤb

(1)bĤ(1)C (0)&

1
1

2mc2
Re@^C (0)uĤb

(1)C (0)&^C (0)ubĤ(1)C (0)&#.

~2.55!

The first term on the right-hand side of Eq.~2.55! is seen to
be identical withE p1

(2) given by Eq.~2.47!, hence, we infer

E p2
(2)52

1

2mc2
Rê C (0)uĤb

(1)bĤ(1)C (0)&

1
1

2mc2
Re@^C (0)uĤb

(1)C (0)&^C (0)ubĤ(1)C (0)&#.

~2.56!
03211
Equation ~2.56! may be still simplified. Indeed, since th
matrix element̂ C (0)uĤb

(1)C (0)& is evidently real while, be-
cause of the easily proved relation

bĤ(1)1~bĤ(1)!†50, ~2.57!

the matrix element̂ C (0)ubĤ(1)C (0)& is purely imaginary,
Eq. ~2.56! becomes

E p2
(2)52

1

2mc2
Rê C (0)uĤb

(1)bĤ(1)C (0)&. ~2.58!

This is the sought suitable expression for the correctionE p2
(2) ,

which does not contain the generalized Green operatorĜ (0).
Concluding this section, we mention that while the co

rectionsE (1) and E (2) are gauge invariant, the decompos
tions ~2.35! and~2.46! are not@cf. the remarks following Eq.
~1.6!#.

III. AN EXAMPLE: CHARGED PARTICLE IN A CENTRAL
FIELD PERTURBED BY A UNIFORM

MAGNETIC FIELD

As an example illustrating the above general discuss
we shall consider a Dirac particle bound in a central field
potentialV(r ) perturbed by a staticuniformmagnetic field of
inductionB directed along thez axis of a coordinate system
In the symmetric gauge, which we adopt here, the vec
potential of the magnetic field is

A~r !5 1
2 B3r . ~3.1!

We shall be interested in those solutions to the zeroth-o
~i.e., magnetic-field-free! problem, associated with th
ground-stateenergyE (0), which are eigenfunctions of the
projection of the total angular momentum on the field dire
tion. Such solutions are of the form

CM
(0)~r !5

1

r S P(0)~r !V21M~nr !

iQ (0)~r !V11M~nr !
D . ~3.2!

HereM561/2 is the magnetic quantum number,VkM(nr),
with nr5r /r , are spherical spinors while the real radial fun
tions P(0)(r ) andQ(0)(r ), normalized according to

E
0

`

dr@P(0)2~r !1Q(0)2~r !#51, ~3.3!

obey

S mc21V~r !2E (0) c\~2d/dr21/r !

c\~d/dr21/r ! 2mc21V~r !2E (0)D S P(0)~r !

Q(0)~r !
D 50

~3.4!

subject to the vanishing boundary conditions forr→0 and
r→`.
2-5
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Although the energy levelE (0) is twofold degenerate with
respect to the magnetic quantum numberM, we observe that
the perturbation~2.5! does not mix states with differentM.
Therefore we may directly apply the results of Sec. II
determine the first and the second-order corrections toE (0).

We begin with the first-order correction. In the particul
case considered in this section, the ‘‘non-Gordon’’ Eq.~2.12!
takes the form

E M
(1)52 1

2 qcB^CM
(0)u~r3a!zCM

(0)& ~3.5!

or, after utilizing the explicit form~3.2! of the unperturbed
eigenfunction and after some angular momentum algebr

E M
(1)5

4M

3
qcBE

0

`

dr rP (0)~r !Q(0)~r !. ~3.6!

Alternatively, we might compute the correctionE M
(1) from the

Gordon formula~2.23!, which in the present case become

E M
(1)52

q\B

2m
^CM

(0)ub~L̂z1Sz!CM
(0)&, ~3.7!

whereL̂z is thezth component of the orbital angular mome
tum operator

L̂52 i r3“. ~3.8!

After utilizing Eq. ~3.2!, Eq. ~3.7! yields

E M
(1)52

2M

3

q\B

m S E
0

`

dr@P(0)2~r !2Q(0)2~r !#1
1

2D ,

~3.9!

or equivalently, in virtue of the normalization conditio
~3.3!,

E M
(1)52

4M

3

q\B

m S E
0

`

dr P(0)2~r !2
1

4D . ~3.10!

Equations~3.6! and ~3.9! @or Eq. ~3.10!# provide two alter-
native methods for evaluatingE M

(1) . In the nonrelativistic
limit either from Eq.~3.9! or from Eq.~3.10!, one infers the
well-known result

E M
(1) →

c→`

2M
q\B

m
. ~3.11!

Having computed the first-order correction, we turn to t
problem of evaluating the second-order one. We wish
avoid utilizing the generalized Green function. In the no
Gordon approach this means we have to use

E (2)52 1
2 qcB^CM

(0)u~r3a!zCM
(1)&, ~3.12!

which is the specialized form of Eq.~2.13! and requires solv-
ing directly the inhomogeneous equation~2.9! for CM

(1)(r ).
~Here and below we do not put the subscriptM in second-
order energy corrections since, as we shall see, they ar
dependent ofM.! To this end, we decompose
03211
e
o
-

in-

CM
(1)~r !5 1

2 qcB(
k

akM

1

r S Pk
(1)~r !VkM~nr !

iQk
(1)~r !V2kM~nr !

D ,

~3.13!

where

akM5 i R
4p

d2nrVkM
† ~nr !~nr3s!zV11M~nr !.

~3.14!

The coefficientsakM do not vanish only fork521 or k5
12. In these two cases their values are

akM5H 2
4M

3
for k521,

2
A2

3
for k512,

~3.15!

~notice thatakM
2 is independent ofM ). To enforce the or-

thogonality constraint in Eq.~2.11!, we require

E
0

`

dr@P(0)~r !P21
(1)~r !1Q(0)~r !Q21

(1)~r !#50. ~3.16!

On substituting the expansion~3.13! into Eq.~2.9!, after em-
ploying the angular momentum algebra, we arrive at the
homogeneous radial system

S mc21V~r !2E (0) c\~2d/dr1k/r !

c\~d/dr1k/r ! 2mc21V~r !2E (0)D S Pk
(1)~r !

Qk
(1)~r !

D
5r S Q(0)~r !

P(0)~r !
D 1e (1)S P(0)~r !

Q(0)~r !
D dk,21 , ~3.17!

with e (1)523E M
(1)/2MqcB, which is to be solved subject to

the vanishing boundary conditions forr→0 andr→`. With
the knowledge of the radial functionsPk

(1)(r ) and Qk
(1)(r ),

Eq. ~3.12! becomes

E (2)52 1
4 q2c2B2 (

k521,12
akM

2 E
0

`

dr r @P(0)~r !Qk
(1)~r !

1Q(0)~r !Pk
(1)~r !#. ~3.18!

To find E (2), we may use the Gordon approach as well.
the particular case considered here, the diamagnetic co
bution ~2.39! is

E d
(2)5

q2B2

8m
^CM

(0)ub~r 22z2!CM
(0)& ~3.19!

and is easily evaluated to be

E d
(2)5

q2B2

12mE
0

`

dr r 2@P(0)2~r !2Q(0)2~r !#, ~3.20!

which in the nonrelativistic limit yields the well-known re
sult
2-6
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E d
(2) →

c→`q2B2

12mE
0

`

dr r 2P(0)2~r !. ~3.21!

In turn, the paramagnetic components, according to E
~2.49! and ~2.58!, are

E p1
(2)52

q\B

2m
^CM

(0)ub~L̂z1Sz!CbM
(1) &, ~3.22!

E p2
(2)52

q2\B2

8m2c
Rê CM

(0)u~L̂z1Sz!~r3a!zCM
(0)&.

~3.23!

The contributionE p2
(2) is readily found to be

E p2
(2)5

q2\B2

12m2c
E

0

`

dr rP (0)~r !Q(0)~r !, ~3.24!

which obviously vanishes in the nonrelativistic limit. To fin
E p1

(2) , we decompose

CbM
(1) ~r !5

q\B

2m (
k521,12

akM

1

r S Pbk
(1)~r !VkM~nr !

iQbk
(1)~r !V2kM~nr !

D
~3.25!

with the coefficientsakM given by Eq.~3.15! and with the
constraint

E
0

`

dr@Pb,21
(1) ~r !P(0)~r !1Qb,21

(1) ~r !Q(0)~r !#50

~3.26!

enforcing the orthogonality condition~2.44!. Substitution of
this expansion into the inhomogeneous equation~2.45! fol-
lowed by application of Eq.~3.9! gives the following differ-
ential systems obeyed by the radial functionsPbk

(1)(r ) and
Qbk

(1)(r ):

S mc21V~r !2E (0) c\~2d/dr21/r !

c\~d/dr21/r ! 2mc21V~r !2E (0)D S Pb,21
(1) ~r !

Qb,21
(1) ~r !

D
5S ~ I b

(0)21!P(0)~r !

~ I b
(0)11!Q(0)~r !

D , ~3.27!

S mc21V~r !2E (0) c\~2d/dr12/r !

c\~d/dr12/r ! 2mc21V~r !2E (0)D S Pb,12
(1) ~r !

Qb,12
(1) ~r !

D
52S 0

Q(0)~r !
D , ~3.28!
p-

03211
s.

where for brevity we have denoted

I b
(0)5E

0

`

dr@P(0)2~r !2Q(0)2~r !#52E
0

`

dr P(0)2~r !21.

~3.29!

Equations~3.27! and ~3.28! are to be solved subject to th
vanishing boundary conditions forr→0 andr→`. Once the
solutionsPbk

(1)(r ) and Qbk
(1)(r ) have been found, from Eqs

~3.22!, ~3.25!, ~3.15!, and~3.26! we obtain

E p1
(2)5

2q2\2B2

9m2 E
0

`

dr@P(0)~r !Pb,21
(1) ~r !

1 1
4 Q(0)~r !Qb,12

(1) ~r !#. ~3.30!

In the nonrelativistic limit the right-hand sides of Eqs.~3.27!
and ~3.28! vanish. In conjunction with the constraint~3.26!
this implies that in this limit both equations have only trivi
solutions. From this we infer thatE p1

(2)→c→`0 ~notice that
this result is specific for the example considered here!.

IV. CONCLUSIONS

We have presented the method, based on the Gordon
composition of the field-induced current, for determinati
of diamagnetic and paramagnetic contributions to
second-order energy correction within the framework of
relativistic quantum theory based on the Dirac equation. O
results contradict earlier findings that the diamagnetic~Lar-
mor! contribution is given by Eq.~1.7!. Instead, we have
found that this contribution is given by Eq.~1.8!. We have
also analyzed the paramagnetic~Van Vleck! contribution and
found that it may be naturally split into two parts, one
which has a purely relativistic origin and vanishes in t
nonrelativistic limit while the second one tends in the sa
limit to the nonrelativistic Van Vleck term. These inferenc
are in a qualitative agreement with those obtained by Py
@16–19# in the context of the nuclear-shielding theory. Th
results presented by the latter author in Ref.@16# justify the
supposition that a procedure analogous to that describe
the present work should be applicable to many-electron s
tems within the framework of the Dirac-Hartree-Fock fo
malism, at least at the single-determinantal level.
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