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Larmor diamagnetism and Van Vleck paramagnetism in relativistic quantum theory:
The Gordon decomposition approach
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We consider a charged Dirac particle bound in a scalar potential perturbed by a classical magnetic field
derivable from a vector potentig(r). Using a procedure based on the Gordon decomposition of a field-
induced current, we identify diamagnetic and paramagnetic contributions to the second-order perturbation-
theory correction to the particle’s energy. In contradiction to earlier findings, based on the sum-over-states
approach, it is found that the resulting diamagnetic teréis= (q%/2m)(¥ | BA2W(©))  whereW ()(r) is an
unperturbed eigenstate agdis the matrix associated with the rest-energy term in the Dirac Hamiltonian.

DOI: 10.1103/PhysRevA.65.032112 PACS nuntber03.65.Pm, 75.20-g, 31.30.Jv

. INTRODUCTION The contributionE{?) is clearly positive and is called dia-

magnetic (or Larmop component ofE®). If E© is the
A nonrelativistic quantum-mechanical problem of a spin-ground-state energy dii(?), the contributionE® is nega-
> particle of electric charge bound in a potentiaV(r)  ive: it is called aparamagneticcomponent ofE? and is
perturbed by a classical static magnetic field derivable from &g a|ly associated with the name of Van VIdak3). It is to
yector potentialA(r) is fre_quently enco.untered in phy_sics.. It he mentioned that since the vector potenAdt) is gauge
is well known[1-3] that if the perturbing magnetic field is dependent, the splitting 0E® into E? and E? is not
weak and the potentigh(r) has no singularities, the first- unique. Still,E@ andE® are gauge invariant P
order perturbation-theory correction to an unperturbed en- Fenéuille,[4] and, more recently, Aucat al ['5] (cf. also
ergy levelE(®) associated with an unperturbed wave functiong ¢ [6]) attempted to explain the origin of diamagnetism

#O(r) may be expressed in the form

E(1)=<¢(0)||:|(1)¢(0)>, (1.1
and the second-order one in the form
EQ=EP+ EgZ)’ (1.2
with the contributions given by
E@ = (4O 0y (1.3
and
Eéz): —(JOJADGOF D O, (1.9

Here G is the generalized Green operator of the unper
turbed energy eigenproblem, associated with the energy leve

E©, and the particle-field interaction operatars®) and
H® are

- gk qh
H(l)zﬁ[V~A(r)+A(r)~V]— >m@ B()

(1.9

[with B(r)=curlA(r) and o denoting the vector composed

of the Pauli matricelsand

2

within the framework of the Dirac relativistic quantum me-
chanics. Considerations based on the sum-over-states ap-
proach led these authors to the conclusion that diamagnetism
had to be attributed to the “redressing” of a relativistic par-
ticle by a perturbing magnetic field. It was claimed that in
the relativistic theory the diamagnetic contribution to the
second-order energy expression was due to the negative-
energy Dirac sea and was given by the following formula:

2
q
EP =5 (WO[AZY), 17

formally identical with its nonrelativistic counterpaft.3)
[7]. Here ¥ (O)(r) is a four-component eigenfunction of the
zeroth-ordefi.e., with the magnetic field switched pfirac
amiltonian.

In the present paper, we reconsider the problem of deter-
mining diamagnetic and paramagnetic contributions to the
second-order energy correction within the framework of the
single-particle Dirac theory. Our approach is entirely differ-
ent from that proposed in Refi$1,5]. Instead of utilizing the
sum-over-states scheme, we find a field-induced electric cur-
rent in a linear-response approximati@+-12 and identify
its diamagnetic and paramagnetic components. This is
achieved using an ingeniodsut, regrettably, not appreciated
enough procedure devised by Gordgt3-15 in the very

I:|(2)=q—A2(r). (1.6) early days of relativistic quantum mechani_cs._Subsequent use
2m of the decomposed current in a formula linking the second-
order energy correctio(?) with a vector potential and the
induced current allows us to identify diamagnetic and para-
*Electronic address: radek@mif.pg.gda.pl magnetic contributions to the former. Somewhat surprisingly,
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our procedure leads us to the conclusion th§t is not [H(©— @1y O)(r)=0 (2.6)

given by Eq.(1.7) but rather has the form
(for the sake of brevity, henceforth we shall assume that the

2 . (0) .
4 eigenvalueg'”’ is nondegeneratewe may seek correspond-
&4 )_ﬁ<q’(o)|13A2q’(o)>' (1.8 ing eigensolutions to the problef@.1) in the form
v =vOr)+ D)+ ¥@r)y+..., (2.7

whereg is the matrix associated with the rest-energy term in
the Dirac Hamiltoniarinotice that both expressiof&.7) and
(1.8 have the same nonrelativistic linhit

Searching through the literature of the subject, we foundzq, this, in the standard way we obtain equations
that our idea of applying the Gordon decomposition to deter-

=0y eWpe@q. ... (2.8

mine diamagnetic and paramagnetic contributions to mag- [HO— O D(r)= —[HD-gDwO)r), (2.9
netic properties was anticipated by a similar idea of Pyper

who exploited it in the context of the theories of nuclear [7'_‘((0)_5(0)]\1,(2)('.):_[7'_‘((1)_5(1)]\1,(1)('.)
shielding[16—19 and hyperfine interactiof20]. There are,

however, two main differences between Pyper’s and our +£@PO)(r)y, (2.10

work. First, somewhat different physical problems are con- . )
sidered. Second, different procedures are used: while Pyp#thich are to be supplemented by pertinent boundary condi-
used the sum-over-states approach performing decompodions. Imposing the constraints
tions of virtual transition currents between unperturbed (0)g, (O) _ (0)gr () _
eigenstates of the zeroth-order Dirac Hamiltonian, we apply (TOr®)=1, (FOIrH)=o, (219
the linear-response approach decomposingfitid-induced  fom Egs.(2.9 and (2.10 we infer
current
ED= (WO FHDg O (2.12
Il. RELATIVISTIC THEORY OF FIRST- AND SECOND-
ORDER MAGNETIC CORRECTIONS TO ENERGY E@ = (YO F Dy M)y, (2.13

A. Generalities Formally, a solution to Eq(2.9) is

Consider a relativistic Dirac particle of electric charge o
(for an electrong= —¢) bound in a field of force derivable Vv(r)=—GOHDYO (). (2.14
from a potentiaM(r) (not necessarily of an electromagnetic N .
origin) and perturbed by a classical static magnetic fieldvhereG(® [possessing the property{®¥(©)(r)=0] is the

characterized by a real nonsingular vector poteniét). generalized Green operator for the zeroth-order Dirac Hamil-
The time-independent wave equation for the particle has theonian#(?), associated with the eigenval§é® of the latter.
form The operatoG (©) has an integral kerngt ©)(r,r’) which is
N a solution to the equation
[H=&W(r)=0 (2.9
, o [HO—@1GO( r)=T8(r—r")—¥Or)¥OT(r")
with the Hamiltonian (2.15

H=ca-[ -1V —qA(r)]+Bmc+V(r). (2.2 (hereZ is the 4x4 unit matriy supplemented by the same
boundary conditions that have been imposedis(r). On
Here @ and B8 are standard Dirac matrices. The Hamiltoniansubstituting the solutiofi2.14) into Eq.(2.13), we find

H may be conveniently written as

@ = (PO DGO L0y (), (2.16
= 74(0) 1 74(1)
H=HTHTH, 2.3 In principle, at this stage the problem of finding the first-
where and the second-order corrections&f’ may be considered
as solved since Ed2.12 and, depending on the particular
FO= _icha V+BmE+V(r) 2.4 computational technique used, either E2j13 or Eq.(2.16

are suitable for computational purposes. Still, on a purely
. aesthetic ground, one may be slightly dissatisfied with the
HW=—qca-A(r). (2.5 above results. First, Eq&L.1) and(2.12 are only seemingly
imi i g (1) (1)
Hehceforthj we shall assume thf\t the magnetic field is wealgli?élgms 'Qtiﬁciﬂfegffrégosﬁl_5)a2r?d7fz_5)?a¥ic%%rgf) l;;ﬁllg
which implies that the operatdk™ may be treated as a in the nonrelativistic theory the second-order correction is
small perturbation of{(?). Then, if ¥(O(r) and £ are  the sum of the diamagnetic and paramagnetic gaft<Eqgs.
particular eigensolutions to the zeroth-order Dirac eigen{1.2—(1.4)], in the relativistic case the second-order correc-
problem tion has the compact forrf2.16 which is, but only superfi-
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cially [cf. again Egs(1.5) and(2.5)], similar to the nonrela- Comparison of Eqgs(1.1), (1.5, (2.23, and (2.24 shows
tivistic paramagnetic terriL.4). Thus, it is natural to ask the their remarkable similarity. Thus, in the case of the first-
question: is it possible to transform the relativistic correc-order correction we have reached our goal.

tions (2.12 and (2.16 into expressions closely resembling  Encouraged by the success achieved in the first-order
their nonrelativistic counterparts? Below we shall show thattase, we shall attempt to apply a similar procedure in the

the answer to this question is affirmative.

B. The Gordon decomposition approach

At first we focus on the first-order correction. The starting

second-order case. On substituting the perturbation expan-
sion (2.7) into the expression

J(r)=qc¥(r)a¥(r), (2.25

point is to rewrite Eq(2.12) using the notion of the particle’s defining the particle’s current in the staf&(r), and collect-
current. According to the Dirac’s theory, the current in theing terms of the same order in the perturbation, we obtain

state?()(r) is
JO(r)=qc¥OT(r)a¥Or). (2.17)

It is then evident from Eqg2.5), (2.12, and(2.17) that

EM=— fRSd3rA(r)-J(°)(r). (2.18

In the next step, following Gordofl3—-15, we rewrite Eq.

(2.17) in the form

JO)=3qc¥ O (r) a¥ O (r)+ 3qc¥ O (r) a¥ (),

(2.19
the unperturbed Dirac equatid.6) in the form
if EO—v(r
vO(r)= Rﬂa. VIO(r)+ —()ﬁllf(o)(r),
(2.20

and substitute E¢(2.20 into the first term on the right-hand  J(r)=

Jr)=3Om)+IV(r)+- ., (2.26

where

JV(r)=29cREYOT(r)a¥M(r)] (2.27

is the induced current linear in the perturbation. Then from
Egs. (2.5, (2.13, and (2.27 and from the reality of(®
[implied by Eq.(2.16)], it follows that

5(2):_%f 3d3rA(r)'J(1)(r)- (2.28
R

The decomposition 08)(r) analogous to that in Eq.
(2.2)) is achieved by performing the Gordon decomposition
of the currentd(r) and making use of Eq2.26). After steps
completely analogous to those which have led us to Eq.
(2.21), we arrive at

(o[

Im[¥T(r)gvw qﬁv vi(r)gEw
MY BV (r)]+ 5 VX[V () BEW (1) ]

side of Eq.(2.19 and its Hermitian conjugate into the sec-
ond term. After some elementary movements exploiting q° )
properties of the Dirac matricas and 3, we arrive at oy AT Y (r). (2.29

f
20(r) = Tam[ O (1) YU O]
Qﬁ o)t 0
+ﬁv><[\p< T pEwO(r)], (2.2
where, is the 4x 4 matrix defined as
o
3= 0 o (2.22

Now, substitution of the decomposed curréa]) into Eq.

Then the desired form aof*)(r) is obtained by substituting
the expansion2.7) into Eq. (2.29, subtracting Eq(2.20)
from the result, and retaining only first-order terms. This
yields

IO =3P (r)+3IM(r) (2.30

with

2
K== LAOTO(BYO() (23

(2.18 leads, after elementary integration by parts, to the exand

pression
g(l):<qf(0)|72[§31)\p(0)>, (2.23
where we have defined
R iqh (o1}
-1 . . - .
H 2m,B[V A(r)+A(r)-V] ZmBE B(r).
(2.29

I = %m[qfﬂﬁ(r)ﬁvw(m(r) + WO gV d(r)]

+ o VXRVOT(r)gzw®)(r)].

m

(2.32

The above expressions for the induced curre]éﬂ(r) and
Jél)(r) are strikingly similar to the following expressions:
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(vOrih=o, (2.44)

2
i©0=-LaAnu e, (233

is a solution to the inhomogeneous equation

01y = L 00 g O(0) + 4O (1) ¥ (1] [HO— O (r) = —[H)-£W1wO(r) (249

m
o subject to the same boundary conditions that have been im-
¥ xR PO (1) o D(1)] (2.34  posed or()(r). . o

m The expressiori2.39 differs from Eq.(1.7) obtained in

) . 1) (1) earlier works[4,5] based on the sum-over-states procedure.
for induced diamagnetig°(r)] and paramagnetig, ’(r)]  However, we believe that the physical character of our argu-
currents derivable within the framework of the nonrelat|V|S'mentation' based on the natural notion of the induced cur-
tlg:l)Paull theo(rg[lS]. Therefore, it seems judicious to identify rent, testifies in favor of our identification of the expression
Jg’(r) and J;”(r) as induced relativistic diamagnetic and (2,39 as the relativistic analog of the nonrelativistic Larmor

+

A\ MOST

paramagnetic currents, respectively. Accordingly, from Eqgsdiamagnetic tern1.3).

(2.28 and(2.30 we have

ED=eP+eQ), (2.39
where
ef)=-3 JR3d3rA(r)-J§1)(r) (2.36
and
ep= —%JR3d3rA(r).J§,1>(r) (2.37)

are the diamagnetic and paramagnetic contribution$(tg
respectively. If we define
q2

= 5= BAX(T),

(2.39
Egs.(2.36 and(2.38 imply that £{?) may be rewritten as

£@= (W(O)|ﬂ§;2)q’(0)> (2.39

[cf. Eq. (1.8)]. Similarly, after elementary integrations by

parts, Eqs(2.37) and(2.32) yield
EP=Re( WO HPwD), (2.40

with 7 defined in Eq(2.24), or equivalently, after making
use of Eq.(2.14),

£P=—ReWOIHPGOFOWO)  (2.47

For the sake of completeness, we observe that it is eviderli?at

from Eq. (2.41) and from the reality of£(?) that the latter
guantity may be rewritten in the form

With such an interpretation &f?, it seems judicious to
identify the paramagnetic correctid®.41) as the relativistic
analog of the nonrelativistic Van Vleck ter¢h.4). This point
of view is supported by the fact that since in the nonrelativ-
istic limit £?) and£{? tend toE® andE{?, respectively,
£ tends toE?). On the other hand, one might raise an
objection pointing out the evident asymmetry between the
right-hand sides of Eq92.41) and (1.4). Continuing, one
might argue that{?) should be still decomposed in the fol-
lowing way:

EP=£@+£®, (2.46
where
£@= — (WOFHNGOF(Pp ), (2.47)
£@)=— Re(WO| DGO HD —F{PTwO),
(2.48

and that€(? rather thans(?) is a right counterpart of the
nonrelativistic Van Vleck ternE(?. With such an interpre-
tation of £(7, which may be also rewritten in the form

EQ=(POITHPwD), (2.49
the term&() is a separate correction ©®) of a purely
relativistic origin, vanishing in the nonrelativistic limit.
It seems to us that the discussion Whetﬁézr) or 5&,21) is

the relativistic counterpart of the Van Vleck term is of an
academic character. Still, leaving aside interpretative ques-
tions, we observe that the decompositi@¥6 may be use-
ful in actual calculations. Therefore, below we shall show

£(3) may be written in a simpler form, which does not

involve the generalized Green opera@f’. To this end, we
observe that Eg2.15 may be rewritten as

2)— O £/ (g (1) it EO@—v(r)
8p qu’ |H \II,B > (2.42 g(O)(r,r'):nga_vg(o)(r,r')+— BQ(O)(r,r’)
mc?
where
~ ~ 1 ' 1 (0) O) Ty
VP (r)=-GOHPwOr), (2.43 +m—C2B5(r—r )—m—czﬁ‘I’ (NWEH(r).
obeying (2.50
032112-4
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Interchanging the variables—r’ and making use of the Equation(2.56 may be still simplified. Indeed, since the
property matrix element ¥ ©@|#W ) is evidently real while, be-
GO 1y=gO(r 1), 2.51) cause of the easily proved relation

we transform Eq(2.50 into BHMD+(BHM)T=0, (2.57

the matrix element{¥ (| gH MW (©) is purely imaginary,

GOxr r’)=—zV’g(°)(r r')-aB
' mc ' Eq. (2.56 becomes

5(0)_V(rr) . , 1 , 1 ) i
+ Tg (r,r’)B+ Ew(r—r ) £@Q)=— mRe(«y(o>|H(ﬁ1>lg71{<1)q,<t>)>_ (2.58
— icz\lf(o)(r)‘lf(‘)”(r’)ﬁ. (2,52  This s the sought suitable expression for the corre&ﬁﬁl,
m

which does not contain the generalized Green opef@{®dr

Concluding this section, we mention that while the cor-
rections€™) and £® are gauge invariant, the decomposi-
tions (2.35 and(2.46 are not{cf. the remarks following Eq.
v(r)= %qchSdf*r'g<°>(r,r')a-A(r')qf(°>(r') (1.9)].

After these preparatory steps, we rewrite E2j14) as

Ill. AN EXAMPLE: CHARGED PARTICLE IN A CENTRAL
FIELD PERTURBED BY A UNIFORM
MAGNETIC FIELD

+%qcf L83 GOr e Ar)WO(r)
R

(2.53
, . ) As an example illustrating the above general discussion,
and substitute Eq$2.52 and(2.20) into the first and second ;e shall consider a Dirac particle bound in a central field of
integrals, respectively, on the right-hand side of EB53.  stentialv(r) perturbed by a statieniform magnetic field of
Flfrtr(‘g)r integration by parts of the term containing,q,ctionB directed along the axis of a coordinate system.
VIG(r,r') yields In the symmetric gauge, which we adopt here, the vector
potential of the magnetic field is

JUSIN 1 A
VD)= — COF DOy —— gf(Dy(0)
(0= =g D~ o Pt o A(r)=31BXr. (3.

We shall be interested in those solutions to the zeroth-order
(i.e., magnetic-field-free problem, associated with the
ground-stateenergy £(®), which are eigenfunctions of the
Inserting the above result into E€R.40), we arrive at projection of the total angular momentum on the field direc-
tion. Such solutions are of the form

+L(«p@)mﬂ(”qf@)w(o)(r). (2.54
2mc?

£@)= — (PO FIDGOF Dy (0
P g g PO)Q_1y(n,)

. . 2
QOO 1(ny) 32

(0) 1
! Re(W O 7D g Ty ) =y
2mc? 8 'h
HereM = *=1/2 is the magnetic quantum numbér,,(n,),
1 ~ - with n,=r/r, are spherical spinors while the real radial func-
— O F D Oy (0] gL (0) ey
+ chzReRlP | YO BRI )], tions POO(r) andQ®(r), normalized according to

(2.55

f dr[P@2(r)+ Q©®2(r)]=1, (3.3
The first term on the right-hand side of E.55 is seen to 0
be identical with€ (7 given by Eq.(2.47, hence, we infer
obey
1 N N
£4p=— mRe(‘I'(O)IH‘B”BH“)\I’(OB ME+V(r)—£©  chi(—didr—1) \[POr)
ch(dldr—1fr) —mE+V(r)—E@ /1 Q)

+ LRe[(xp<°>|7%z<1>qr<0>><«p(o>| BHOW )], (3.4
2mé? p

subject to the vanishing boundary conditions fer0 and
(2.56 r—oo,
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Although the energy level (¥ is twofold degenerate with
respect to the magnetic quantum numbkrwe observe that
the perturbation(2.5) does not mix states with differemmd.
Therefore we may directly apply the results of Sec. Il to
determine the first and the second-order correctior&(¢h

PHYSICAL REVIEW A 65 032112

1( PO(I)Q (N )

m’(r)=3zqc Z aKMr iQE(l)(r)Qme(nr)

(3.13

ere

We begin with the first-order correction. In the particular
case considered in this section, the “non-Gordon” Ej12 _ b,y
takes the form M=l fﬁ dne 2 () (N X ) Q4 g(Ny).
EW=—2acB(¥R|(rx @) (35 (319

or, after utilizing the explicit form(3.2) of the unperturbed Th2e cI:oeLﬂmentsaKM do no; \(amslh only fore=—1 or x=
eigenfunction and after some angular momentum algebra, +2- In these two cases their values are

4M

4M % -
Ef\,,l)=chBf drrPO(r)Q(r). (3.6) -5 for k=-1,
° awm=y 5 (3.15
Alternatively, we might compute the correctiéij’ from the -3 for k=+2,

Gordon formula(2.23, which in the present case becomes

(notice thatai,\,I is independent oM). To enforce the or-

EP=- (Zi_8<qf§\j’)|lg(/§z+ 3 ,) W), (3.77  thogonality constraint in E¢(2.11), we require
m

whereA, is thezth component of the orbital angular momen- fo dr[PO(NHPH(N+Q(nQ%)(r)]=0. (3.16

tum operator

On substituting the expansid8.13 into Eq.(2.9), after em-
ploying the angular momentum algebra, we arrive at the in-

homogeneous radial system

A=—irxVv, (3.9
After utilizing Eq. (3.2), Eq. (3.7) yields

2M ghB ([ (= 1 ME+V(r) —E©@  chi(—didr+«ir) | [ PO(r)
1)
SF\A)_—T - (fo dr[P(O)Z(r)_Q(O)Z(f)]+E), ch(d/dr+ x/r) —ch+V(r)—5(°) Qil)(l’)
39 QO)| PO
or equivalently, in virtue of the normalization condition =T PO(r) te QO(r) O~ 1 (3.17)

(3.3,
with eM=—3£{M/2MqcB, which is to be solved subject to
e _ 4M qhB fwdr P©2(p)— 1 . (310 the vanishing boundary conditions for-0 andr —c. With
M 3 m\Jo 4 the knowledge of the radial functior®)(r) and Q')(r),

Eq. (3.12 becomes
Equations(3.6) and (3.9 [or Eq. (3.10] provide two alter-

native methods for evaluating{}’. In the nonrelativistic
limit either from Eq.(3.9) or from Eq.(3.10, one infers the
well-known result

@)= _1q2c2R2 E

k=—1+2
+QO(r)PM(r)]. (3.18

To find £, we may use the Gordon approach as well. In
the particular case considered here, the diamagnetic contri-

Having computed the first-order correction, we turn to thePution (2.39 is

aiMf:drr[P@)(mQ&”(r)

C—x ﬁB
ey - —MqT. (3.1

Downloaded from mostwiedzy.pl
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problem of evaluating the second-order one. We wish to o282
avoid utilizing the generalized Green function. In the non- EP= 5 (W) 8(r2— 22w () (3.19
Gordon approach this means we have to use m

E@=—1qcB(¥|(rx a), V), (3.12 and is easily evaluated to be

qZBZ

which is the specialized form of E¢.13 and requires solv- @) _ J‘” 2r>(0)2/ 1\ ~(0)2
EF="1gm |, ArPIPOAN QAN (320

ing directly the inhomogeneous equatith9) for WM (r).
(Here and below we do not put the subsciiptin second-
order energy corrections since, as we shall see, they are imvhich in the nonrelativistic limit yields the well-known re-
dependent oM.) To this end, we decompose sult

032112-6


http://mostwiedzy.pl

Downloaded from mostwiedzy.pl

A\ MOST

LARMOR DIAMAGNETISM AND VAN VLECK . ..

q

Cen2R2 o
8(2)c—> 5 dr r2P@2(r)
d 12m J, '

(3.2)

In turn, the paramagnetic components, according to Egs.

(2.49 and(2.58), are

ghB -
£ =~ 5 (PWIBAAZ )W), (322

q°hB? .
EQ =~ —R(UP|(A+2)(rxa),¥Q).
8m-c
(3.23
The contributions (2 is readily found to be
2 2
g°hB® (=
£@= J’ drrPOr)Q©r), 3.2

b2 1om2c ) (NQ™(r) (3.24

which obviously vanishes in the nonrelativistic limit. To find

£, we decompose
v - LB a,t e ()
AR 2m A T M iQW(N QL ()

(3.29

with the coefficientsa,,, given by Eq.(3.15 and with the
constraint

fxdr[P(ﬁ%h(r)P(O)(rHle,ll(r)Qw)(r)]:o
0
(3.26

enforcing the orthogonality conditiof2.44). Substitution of
this expansion into the inhomogeneous equat#45 fol-

lowed by application of Eq(3.9) gives the following differ-
ential systems obeyed by the radial functidd§)(r) and

Qa(r):
<m02+V(r)—€(°)

ch(—d/dr—1/r) ) P ()
chi(d/dr—1/r)

—m+ V(=@ QG (r)

(|<[?>—1)P<0>(r))
: (3.27)

15+ 1QO(r)

ch(—d/dr+2r) ) P o(r)
—m+V(r) =@\ QP ,(r)

m+V(r)—£©
ch(d/dr+2/r)

_ [0 )
__(Q(O)(r) , (3.29
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where for brevity we have denoted

O [ “qrrp©@2ry— 0©2 =2 [ dr PO2(r)—
I'g Jo dr[P™4(r)—Q%™4(r)] ZJo dr P™4(r)—1.
(3.29

Equations(3.27) and (3.28 are to be solved subject to the
vanishing boundary conditions for—0 andr — . Once the
solutionsP)(r) and Q4)(r) have been found, from Egs.

(3.22, (3.25, (3.15, and(3.26 we obtain

20%h°%B2? (=

2)_

55)1)— WJO dr[P(O)(r)P(ﬁfll(r)
+1QO(NQYY (N1 (3.30

In the nonrelativistic limit the right-hand sides of E¢3.27)
and (3.28 vanish. In conjunction with the constrai(®.26)
this implies that in this limit both equations have only trivial
solutions. From this we infer thaf(;'—c—=0 (notice that
this result is specific for the example considered here

IV. CONCLUSIONS

We have presented the method, based on the Gordon de-
composition of the field-induced current, for determination
of diamagnetic and paramagnetic contributions to the
second-order energy correction within the framework of the
relativistic quantum theory based on the Dirac equation. Our
results contradict earlier findings that the diamagnétar-
mor) contribution is given by Eq(1.7). Instead, we have
found that this contribution is given by E¢L.8). We have
also analyzed the paramagndti@an Vleck) contribution and
found that it may be naturally split into two parts, one of
which has a purely relativistic origin and vanishes in the
nonrelativistic limit while the second one tends in the same
limit to the nonrelativistic Van Vleck term. These inferences
are in a qualitative agreement with those obtained by Pyper
[16—19 in the context of the nuclear-shielding theory. The
results presented by the latter author in R&B] justify the
supposition that a procedure analogous to that described in
the present work should be applicable to many-electron sys-
tems within the framework of the Dirac-Hartree-Fock for-
malism, at least at the single-determinantal level.
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