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Lattice filter based autoregressive spectrum estimation with
joint model order and estimation bandwidth adaptation

Maciej NiedZzwiecki, Michat Meller and Damian Chojnacki

Abstract— The problem of parametric, autoregressive model
based estimation of a time-varying spectral density function of a
nonstationary process is considered. It is shown that estimation
results can be considerably improved if identification of the
autoregressive model is carried out using the two-sided doubly
exponentially weighted lattice algorithm which combines results
yielded by two one-sided lattice algorithms running forward in
time and backward in time, respectively. It is also shown that the
model order and the most appropriate estimation bandwidth
can be efficiently selected using the suitably moditied Akaike’s
final prediction error criterion.

I. INTRODUCTION

The exponentially weighted normalized lattice/ladder al-
gorithm developed by Lee, Morf and Friedlander [1], further
denoted as EWLMEF, allows for efficient identification of
time-varying autoregressive models. Very good parameter
tracking capabilities and model stability guarantee make the
EWLMF algorithm a very good candidate for autoregressive
model based parametric spectrum estimation of nonstationary
processes [2]. When spectral analysis is carried out off-line,
based on the entire signal history, the reduced-bias two-
sided (noncausal) estimation schemes offer both qualitative
and quantitative improvements over the one-sided (causal)
solutions. In this paper we propose a two-sided doubly
exponentially weighted lattice algorithm, further denoted as
E2WLMEF, obtained by combining results yielded by two
one-sided EWLMEF algorithms running forward in time and
backward in time, respectively. Two methods of merging
the forward and backward estimation results are proposed
and evaluated. Paralleling the results obtained in [3] for
Yule-Walker estimators, it is shown that two decisions that
strongly affect quality of the autoregressive spectral estimates
— selection of the model order and the choice of the appropri-
ate estimation bandwidth — can be made based on the suitably
modified Akaike’s final prediction error (FPE) criterion. In
particular, we prove that minimization of the FPE statistic is
equivalent to minimization of the mean-square log spectral
distortion measure evaluated for gain normalized spectra.

II. PRELIMINARIES

Spectral density function of a stationary autoregressive
(AR) process of order 1. governed by

Ti

y(t) =Y ainy(t — i) + en(t) = @n (H)otn + enlt) s
i=1
varfe, (t)] = pn
where «, = [al,n,...,an,n]T denotes the vector of AR

coefficients, w,,(t) = [y(t — 1),...,y(t — n)]T denotes the
regression vector made up of m past signal samples, and

{en(t)} denotes white noise, can be expressed in the form
Pn-
Sn (W) = e (2)
71( ‘ ( ! a")Iz

where w € [—r, 7] denotes normalized angular frequency,
j =21 g

n

Lol .
a,)=1- 2 a;nz .

=1

Az,

The so-called parametric estimate of Sy, (w) can be obtained

by replacing in (2) the true model parameters p,, and o,

with their estimates based on the available data record.
When the analyzed AR pracess is nonstationary

TL

y(t) = ) aun(t)y(t — i) + en(t)

=1

Var[en(t)] . pn(t)

€)

but it fulfills the local stationarity assumptions specified in
[4], [5], [6] (uniform stability of the forming filter, param-
eter variations of bounded variation), it can be consistently
characterized by the time-varying spectral density function
defined as

Pn(t)

Sn(w.t) = (A, an(D)] |2 “4)

where

Alz,an(t)] =1 — Zai,n(t)z_‘,

i=1

We will focus on the problem of off-line estimation of
Sp(w. t), t € [1,Ty] based on the prerecorded data sequence

YiSHy ()~-- (To)}.
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ITI. PROTOTYPE ALGORITHM BASED ON THE DIRECT
SIGNAL REPRESENTATION

The local model of the analyzed nonstationary AR signal
can be obtained using the two-sided exponential weighting
technique. Since the rate of signal nonstationarity is usually
unknown, and may itself change over time, we will consider
the parallel estimation scheme made up of A simultane-
ously operated doubly exponentially weighted least squares
(E2WLS) algorithms of the form

&n|k( ) - [al n|k:( ) an nlk( )]T
= ar mln Ir —Tl @ (T, :
i ZA s
1 T,
Puk(t) = D) ST () - o (1)@ (1)
=3

where 0 < M\ < 1, &k € K = {1,...,K} denotes
the forgetting constant, determining the effective estimation
memory of the E2WLS algorithm

To

Ly (1) = Z /\l’:—rl

=1

often referred to as its estimation bandwidth.

In [7] it was shown that when the time-varying parameters
can be modeled as random processes with orthogonal incre-
ments, the two-sided exponential window yields the best (in
the mean square sense) parameter estimation results among
all symmetric windows. Even though this result was obtained
for a different estimation problem - identification of a finite
impulse response (FIR) system - its qualitative implications
seem to be more general.

The E2WLS estimates of o, can be expressed in the form

CRNOERE SITOIMN0
where
To
tI’n|k(t) = Z/\lkt—rl(pn(T)‘PI(T)
T;l
Pape(t) = N y(7)pu (7).
=1

Unfortunately, unlike the classical (one-sided) exponentially
weighted least squares (EWLS) case, inversion of the re-
gression matrix @, (t) cannot be carried out in a recursive
fashion. Similarly, there seems to be no way to recursively
compute the estimates of the driving noise variance 5”|k(t).
This makes the E2WLS algorithm computationally pretty
demanding. Another problem, which becomes particularly
relevant in the spectral estimation context, is due to the fact
that the E2WLS scheme does not guarantee that the obtained
AR models will be at all times stable.

Estimation memory of the E2WLS algorithm should com-
ply with the speed of parameter variation so as to trade off the
bias component of the mean squared parameter estimation

error (which increases with growing memory) and its vari-
ance component (which decreases with growing memory).
Another important decision that must be taken, in addition
to selection of the appropriate value of ), is the choice of
the model order n. Suppose that the range of model orders
is limited to n € A = {1,..., N}. Selection of the ‘wrong’
value of n has both quantitative and qualitative implications.
When the order is underestimated, the corresponding spectral
estimates may fail to reveal some quasi-periodic components
of the analyzed signal, while when it is overestimated, some
spurious (nonexistent) resonances mhy be indicated. Tn both
cases the accuracy of spectral estimates deteriorates.

A. Model order and estimation bandwidth selection

As shown in [3], joint selection of model order and
estimation bandwidth can be performed using the suitably
modified Akaike's final prediction error (FPE) criterion.
Akaike [8] defined the final prediction error as the mean
squared value of the error observed when the model based
on the data set J is used to predict another, independent
realization of ) denoted by ) = {g l), . 9(To)}

E{[l/ ) nlk ] }

where @,,(t) = [y(t - 1), /(f—n)]
is carried out over )V and y

If the order of the model is not underestimated and the
analyzed signal is locally stationary, one can show that [7]

7 1p,
M (2)

571‘L

and the expectation

=%

(6)

cov[a, k()]
where ®,, = E[p,(t)y? ()] and

T [t—|
(ZTO 1 A )
Tt 2lt—7
27'0=1 Akl |
denotes the so-called equivalent width [9] of the two-sided

exponential window. Based on this approximation, one can
show that

M (t) =

n

M (t )} o

n

E[pnx(t)] = {1 - M;(t)} Pu

leading to the following estimate of 5,,_|k(t)

1+
“‘")} Paie(t) (D

Ok () = {1 i

FPEnUr(t) = gnlk(t) = 1 n
CAL(Y)

and the decision rule

{(A(1), k(t)} = arg min FPE,, , (¢). )
neN
kEK
Based on (8), the parametric estimate of the instantaneous
signal spectrum can be expressed in the form

Pryiken ()

ez ©)

8 (w,t) = :
(1) |k (1) ’a‘(tJlk(t)( )] 2
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where
A(t)

Alz, 85070 (0] =1 =

=i\

-1

a,,,a(r.);i(f.)(t)z

B. Relationship to spectral distortion measures

Suppose that the analyzed process is (locally) stationary
and that the order of the AR model used to obtain the
spectral estimate §n|k(t) is not underestimated, i.e., that it
is not smaller than the true order ng. Denote by S;(w) =
Sn(w)/pn the gain normalized spectral density function and
let Sglk(w,t) = S, 1k(w, t)/ Pk (t).

Distortion of the shape of the estimated spectral density
function (up to the constant scaling factor) can be quantified
using the following gain normalized mean-square log (MSL)

measure

boe () = B{ 5 [ log 53(0)  tog 830w 0 |

Sl

B E{iﬁ / " [log Al G ()P

< -7
—108|A(6j“’,an)|2]2d\u}. (10)
It can be shown that, under the assumptions made above, it

holds that (see Appendix)

2n
M, (t)

[

(1

st (t)

which is an extension of the formula derived by Akaike [10]
for the least squares estimators. Note that p,, = p,,,,,Vn >
ny, and therefore minimization of the final prediction error
dn1k(t) is equivalent to minimization of the gain normalized
MSL spectral distortion measure dyqp,(¢). Since from the
practical viewpoint shape distortions are usually more im-
portant than scale distortions, minimization of FPE seems to
be a practically meaningful objective.

Finally, we note that for small distortions the gain normal-
ized MSL measure is approximately proportional to the gain
normalized mean Itakura-Saito (IT) measure

1]dw} a2

widely used in signal processing. Actually, using the approx-
imation

S

1 & w
;’S(t)—E{—/ [A
27 J_n | 8l t)

B AS"_(‘L’)_ _

S:)le(“)’ t)

1
z = exp(logz) 21+ logz + 5(10g @)*

which holds for » close to 1, one can show that

1

Ts(t) = idRJSL(t)-

IV. SOLUTION BASED ON THE LATTICE SIGNAL
REPRESENTATION

A. Three parametrizations of a stationary AR process

Any zero-mean stationary AR process of order n with
parameters

* un:n}

Pn o {/)717“1,11- ..

can be alternatively and uniquely characterized by specifying
the set

Qn : {7‘01‘QI1 .. -1q".}

where ¢;.7 = 1,...,n denote reflection coefficients (partial
correlation coefficients) and 7y = E[y?(¢)] denotes the
variance of {y(t)}. The AR model is stable iff reflection
coefficients obey the condition |q,| < 1,2 =1,..., n.

The third way of characterizing a stationary AR process
of order n is by means of specifying the set of its autocor-
relation coefficients

Rn = {TQ,T],...,T',,‘}

where 7; = E[y(t)y(t — 1)).

The parametrizations P,, 9, and R,, are equivalent in the
sense that given one, one can uniquely determine the other
two. The transition from R, to P, and Q,, can be made by
solving Yule-Walker equations [11]. Transitions from Q,, to
P, and R,,, and from P, to Q,, and R,, were described e.g.
in [12].

B. Proposed algorithm

Reflection coefficients can be estimated directly from the
experimental data using the so-called lattice/ladder algo-
rithms. The proposed estimation approach, resembling the
E2WLS scheme described in the preceding section, combines
results yielded by two lattice algorithms running forward
in time (¢ = 1,2,...,7T) and backward in time (¢ =
To,To — 1....,1), respectively. We will use the exponen-
tially weighted ladder algorithm proposed by l.ee, Morf
and Friedlander [l1], further referred to as EWLMF algo-
rithm. Unlike EWLS and E2WLS, the EWLMF algorithm
guarantees stability of the AR model. Additionally, it is
computationally efficient (both time and order recursive) and
has good numerical properties.

The proposed estimation scheme can be summarized in
four steps. To make the presentation self-contained, all com-
ponent algorithms are listed below using a unified notation.

Step 1 - evaluation of reflection coefficients

For each value of k € K, compute and memorize the sets
of reflection coefficients obtained by means of forward time
(=) and backward time (+) estimation using the EWLMF
algorithm

0% (1) = (75, (1), a5, (D), ..., a5 (), }, tE€LTy]

Both sets characterize models of order n = 1,..., N and
can be computed recursively as follows [1]
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P2 Qﬁlk(f.)_

I fort=1,...,Ty do (—)
| fort="T,...,1do(4)
P (t) = Mpi (L £ 1) +4°(2)
LE@) = MLE(t£1) +1

n(0) = ;*J(’)

y(0)/\/pE ()

Eu|k(” 7iu|lc

for n=1....,min{N,t} do (=)
forn=1,...,min{N,Tg —t+ 1} do (+)
qfu(t) a €f—1|k (L)Uf—m =) ¥ qu-(t +1)x

X 1= (e O /1= b (£ 1)) |
er ) —4q n]k( Y et £ 1)

| il \/1 a2 O /1= I TEE

' + Ty (t £1) —qfu(t)E: 1 (1) l
71.,,[1-(*) >
Jl = [qulk \/1 En— 1|k ®)?
| end
i end
with initial conditions set to E(;lk(o) 7707)‘«(0) ="R0;

En“ (TO+1) 1 noik(TO+ 1) i 0 L ( ) =N L:(TO+1) =4,

Jlk(U) Jlk(TO )—Uforj—lv .., N, and p,?(()):
])Z(T(] + 1) = € where € denotes a small positive constant.
The quantities

To-t

=L %

denote effective widths of the corresponding exponential
windows. Tt can be shown that to maximize robustness of the
parallel estimation scheme with respect to the unknown rate
of signal nonstationarity, the effective memory spans of the
component algorithms should form a geometric progression
[3]. For example, one can choose forgetting constants so that
Lfﬂ( = QLf(oc), which corresponds to the memory
doubling technique.

The auxiliary variables e:'k(t) and 7;:,k(t) can be in-
terpreted as nonmalized one-step-ahead forward and back-
ward prediction errors, respectively, Note that the forgetting
constant Ay appears only in the first two recursions of the
EWLMEF algorithm.

ZA;, Lt

2=0

Step 2 - evaluation of autocorrelation coefficients

Prior to merging the forward time and backward time estima-
tion results, change O-parametrization to R-parametrization
R

Mk () = {755 (0,754 (0), -, P (D)},

This can be achieved using the following recursive algorithm

€ (1, Ty].

QN[P ) — RNM(’)
fort=1,...,Ty do
forn=1,....N do
ﬁak(t) Sai= [’;ﬁk(t)]z)ﬁf—uk(t)

~t Bt
a‘n,nlk ([’) = qn]k (0

fora=1,...,n—1do
:t ~t =3 ~t
a, nl)‘( ) = a‘z,n-1|k(t) - qn|k(t)an—z,n—llk(t)
end
n
~+ ~+ ~t
Ty k(t) = Za'l,n!k(t)rnvi“:(t)
=1
end
end

with initial condition ﬁa:lk(t) = ?(flk(t).

Define
o) Fe(t) v (t)
o

t)
gl Tt
RNUc(r) o |. i
; : . Tk (t)

Fk,ik(i) _rfik((.) T (t)

Note that the matrices R. vik(t) ﬁ;lk(t) are, by constructi
Toeplitz and positive definite.

Step 3 - model fusion

To obtain two-sided parameter estimates, similar to th
described in the preceding section, combine selected forw
time and backward time estimation results. In principle, :
combination of the form 7 = (k—, k%), k7, kT € K
be considered. Choosing A~ = k* = k, ie, 7 = (k,
will result in combining estimates yielded by forward ti
and backward time EWLMF algorithms equipped with
same forgetting constant A, which can be considered
lattice counterpart of (5). However, one can also consi
asymmetric combinations (k= # k™) to fuse long-mem
forward time estimation results with short-memory backw
time ones, or vice versa. Such asymmetric variants may pre
useful in the presence of abrupt, e.g. jump-like parame
changes. .

Denote by II the set of all considered pairs # = (K7, k
For each pair 7 € II the covariance matrices Rle () @

(t) can be merged using the formula
R (1) = pr (R = (0) + [1 = e (IR s (1) (

Ly (1)

pa(t) = L +L0

or equivalently
7A'n|ﬁ(t) = lfﬂ(t)?,:pf (t) i [1 = “ﬂ(t)]ﬁhw (t) (

n=10,...,N.
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The resulting Toeplitz positive definite matrices ﬁNl,,(t), te

[1.Tg], can serve as a basis for estimation of parameters of
AR models of different orders

Pnlﬂ(t) = {ﬁn[ﬂ(t)’ al;nln(f')) ce aan,n\ﬂ(f)}a LS [la TO]

n=1,...,N.

The combined forward-backward models can be obtained by
means of solving the set of Yule-Walker equations
(1, =@ nja(t)s -, —an, N (D] RN (1)

The Levinson-Durbin algorithm which provides such a solu-
tion is listed below

(16)

RAVM'(f) L B Pﬂ[‘rl’(t)) n = 11 DRI N

for tL="14 =, T do
forn=1,...,Ndo

?n b (t) e Z;:l ai,n— 'n(t)?n—t w (t)
Qn.|7r(t) - ! /\1 2! [
pn~1]7\’(t)
ﬁ,,|n(t) ey [1 2 ‘Iilﬂ(t)] ﬁu.—llﬂ(t)
an.u\n(t) - q-n.|r(t)
fori=1,...,n—1do

ai.nlﬂ(t) = al.,,,u,,(l) = %t\,-.(t)anfz.nfllﬂ(t)
end

end
end

with initial condition py| () = Ty (t).
Step 4 - selection of the best fitting model

Selection of the best fitting model will be based on the
modified version of FPE. To apply this criterion, one should
first determine the equivalent number of observations taken
into account when building the competing models Py, (t).
Let

5=l
Cil)=)> M'=XCr(t-1)+1
=U
Tt
Ci)= > M =MNCHt+1)+1
i=0
with initial conditions Cy (0) = C7(Ty + 1) = 0. Then

the equivalent number of observations for a given choice of
m = (k~, k%) can be obtained from

_ L@+ L )P

M (t — (17)
) Cr. (1) + Cli(t)
The best fitting model can be selected according to
(R, 7(1)} = {A(), k(). k* (1)}
(18)

= arg min FPE,, . ().
neN
7€l

where
1+ 57 ~
FPEnlﬂ(t) = 7_7;1(_‘1 pniﬂ(t)- )
LA 0]
V. SIMPLIFIED LATTICE SOLUTION

The model fusion technique, used in the preceding section
to combine forward time and backward time estimates was
based on covanance averaging. Such an approach has a
clear statistical interpretation and guarantees stability of thc
resulting AR models. The procedure described below allows
one to achieve similar goals while significantly reducing
computational complexity. The idea is to apply averaging
directly to reflection coefficients evaluated at Step 1:

Unjr(t) = pa (g () + [1 = px()]gy i (6) - (20)
=l e N
Foin (8) = i (8)Fg = () + [L = pn (W)]7g 0 (B). 21

Since gnl,,{t) is a convex combination of q;Ik,(t),
|q;k_ (t)] < I, and q:‘|k+(f.), |qu“(7‘,)| < 1, it holds that
|G (2)] < 1,V i.e., the models

Qn}n(t] = {?0|7r(t)1QI|ﬂ(t)1 % o :Qn|7.'(t)}1 te [lyTU]
N

) = e

are at all times stable.

Based on Q. (), the results of combined forward-
backward estimation can be obtained using the following
recursive algorithm

Quix(t) — Pa(t), n=1,.. N

51L,:T(t) = il = qz[ﬂ(”]ﬁn—].ﬂ(t)
Zin,n|1r(t = Qnjx U’)

fori=1.....n—1do
a'11,-::,|-.r(t) = ai,n—1|-n(l) = thr(l)an—i,u—llﬂ(l)
end

end

end

with initial condition pg,x(t) = 7o) (t)-

As before, the best fitting model can be determined by
minimizing the FPE statistic in the way described in the
preceding section (Step 4).

VI. SIMULATION RESULTS

Simulations incorporated 4 time-invariant AR models N,
M,, My and My, of orders 2, 4, 6 and 8, respectively.
The characteristic polynomial A;(z) of the model NI, had
i pairs of complex-conjugate zeros of the form zf =
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0.995etk7/5 k= 1,.. ..
modes of the forming filter 1/4;(z).

The generated signal {y(t),t = 1,...,Ty} had peri-
ods of stationarity, govermed by the models Mj,..., My,
interleaved with periods of nonstationary behavior. Two
simulation scenarios were applied, corresponding to smooth
transitions between the models (A) and abrupt transitions
(B), respectively. In the smooth case, depicted in Fig. 2,
transition from the model M;_; to the model M; was realized
by gradually moving, with a constant speed, the i-th pair
of zeros from their initial zero positions towards the unit
circle - the corresponding trajectories are shown in Fig. 1.
In the abrupt case, illustrated in Fig. 3, the model M,_; was
instantaneously switched to the model M;, which resulted in
a jump change of model parameters.

The length of the simulated nonstationary AR signal was
set to Ty = 5000 and the breakpoints, marked with bullets in
Figs. 2 and 3, had the following time coordinates: ¢{; = 1000,
t2 = 1500. t3 = 2500, t4 = 3000, t5 = 4000, t; = 4500 (for
type-A changes), and t7 = 1250, tg = 2750, t9 = 4250 (for
type-B changes). Data generation was started 1000 instants
prior to t = 1 and was continued for 1000 instants after
Ty = 5000, so that no matter what bandwidth, the estimation
process and evaluation of its results could be in all cases
started at the instant 1 and ended at the instant Tj.

The parallel estimation scheme was made up of 4
EZWLMF algorithms combining results yielded by K = 3
forward/backward EWLMF trackers equipped with forget-
ting constants Ay = 0.95, A2 = 0.99 and A3 = 0.995. The 4
combinations of forward/backward forgetting constants were:
(0.99, 0.99), (0.995. 0.995), (0.995, 0.95) and (0.95, 0.999),
which corresponds to m = (2,2). 2 = (3,3), 73 = (3.1)
and 74 = (1, 3), respectively.

The unnormalized mean Itakura-Saito spectral distortion
measure

dis(t)
CefL [ s ],
2 J_ 4 Sn|k(w,t) Dsnlk(w)t)

was used to evaluate different spectral estimation results.

Table T shows the IS scores, obtained by means of
combined time and ensemble averaging (over t € [1,Ty]
and 100 independent realizations of {y(t)}). The first three
double columns show results yielded by one-sided (for-
ward) EWLMF algorithms for different choices of estima-
tion bandwidth (A) and model order (n). The next four
double columns show the analogous results obtained for
the two-sided E2WLMF algorithms incorporating covariance
averaging. Finally, the last double column shows results
yielded by the parallel estimation scheme with FPE-based
joint bandwidth and order selection (for different values of
the maximum model order N).

The results presented in Table I clearly demonstrate ad-
vantages of two-sided estimation as well as advantages of
adaptive bandwidth and order scheduling. Tn particular, note
that when the maximum model order is not underestimated,

i, corresponding to 7 resonant

Imaginary Parl

t
Real Part

Fig. I: Trajectories of zeros of the characteristic polynomial.

Stwi,i)

Fig. 2: Simulation scenario A used in the case of smooth
parameter changes (upper figure) and the corresponding
time-varying spectrum (lower figure).

i.e., when N > 8 the parallel estimation scheme outperforms
all non-adaptive fixed-bandwidth fixed-order algorithms it
combines.

Table TI shows the analogous results obtained for the
E?WILMF algorithms hased on direct averaging of reflection
coefficients. Note that the scores are uniformly worse than
those obtained under covariance averaging, which means that
reduction of computational load can be only achieved at the
cost of noticeable performance degradation.

Fig. 4 shows the locally time-averaged (each time bin cov-
ers 250 consecutive time instants) histograms of the results of
bandwidth and order selection for sinooth parameter changes.
Note good bandwidth and order adaptivity of the proposed
parallel estimation scheme.

Finally, Fig. 5 shows typical estimation results obtained,
for a single realization of an AR process with smooth param-
eter changes, using the proposed algorithm with covariance
averaging.
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TABLE [: Mean spectral distortion scores for a nonstationary autoregressive signal with smooth (A) and abrupt (B) parameter
changes, obtained for 3 one-sided EWLMEF estimators (the first 3 double columns), 4 two-sided E2WLMEF estimators with
covariance averaging (the next 4 double columns), and the proposed parallel estimation scheme (the last double column).

0.95 099 | 0.995 177099, 099 | (0995, 0.995) | (0.995, 0.95) 10.95, 0.995) FPE
\ A B A B | A B || A B A B Y B A B A B
|

3.881 | 3.669Y | 3.726 | 3.518 | 3.721 | 3.497 3.658 | 3.506 | 3.645 | 3504 | 3704 | 3493 | 3.626 | 3543 3617 | 3463 |
2299\ ') 2:370 |f 2:102 § 2257 | 2.119 || 2351 2,045 | 2.174 | 2.098 | 2.237 | 2.069 | 2329 | 2.172 | 2.139 2025 | 2106
2206 | 2314 | 1986 | 2.166 | 2000 | 2259 1924 | 2083 | 1979 | 2146 | 1950 | 2237 | 2033 | 2048 1913 | 2018
1.307 | 1.552 [ 1.068 | 1.389 | 1416 | +.540 0999 | 1.301 1.090 | 1.421 1048 | 1515 | 1.164 1.262 1,001 1.213
1.373 | 1.631 | 1.080 | 1.392 | 1.123 | 1523 0995 | 1.294 | 1081 | 1.399 | 1050 | 1496 | 1156 | 1.265 || 1.009 | 1.213
0727 | 1.037 | 0470 | OR38 | 03586 | 1.049 0365 | 0752 | 0513 | 0.936 | 0.464 | 1.024 | 0587 | 0.729 1009 | 0.650
0788 | 1.148 | 0471 | 0811 | 0370 | 0.964 0340 | 0.725 | 0460 | 0.860 | 0.456 | 0.937 | 0.516 | 0.729 | 0406 | 0.671
0510 | 0537 | 0128 | 0221 | 0.178 | 0.365 0.064 | 0.169 | 0165 | 0.297 | 0.106 | 0.348 | 0.226 | 0.148 0.044 | 0.043
0.567 | 0588 | 0.132 | 0,190 | 0166 | 0293 0065 | 0.044 | 0148 | 0243 | 0102 | 0.278 | 0192 | 0128 0.044 | 0.041
0.627 | 0.647 | 0.139 | 0.183 | 0.169 | 0.264 0.067 | 0.134 | 0136 | 0215 | 0.105 | 0.249 | 0.179 | 0.127 0.045 | 0.041
il 0.693 | 0715 | 0146 | 0181 | 0173 | 0.248 || 0068 | 0.128 | 0.127 | 0199 | 0109 | 0233 | 0171 | 0129 0045 | 004t
12 0.763 | 0783 | 0.152 | 0183 | 0.177 | 0.242 || 0069 | 0.126 | 0.122 | 0.190 | 0111 | 0.226 | 0167 | 0.132 0.045 | 0.042
13 0836 | 0.855 | 0.160 | 0.188 | N.180 | 0243 0071 | 0128 | 0.122 | 0.190 | 0114 | 0.227 | 0.168 | 0.134 0046 | 0.042
14 0923 | 0943 | 0.167 [ 0.193 | 0.184 | 0.241 0072 | 0129 | 0.118 | 0.186 | 0117 | 0224 | 0.165 | 0.137 0046 | 0.043
15 1.008 | 1.028 | 0.174 | 0.197 | 0.188 | 0240 0.073 | 0.129 | 0.1153 | 0.183 | 0.120 | 0.223 | 0.165 | 0.140 0047 | 0044
16 1010 | 1132 | 01&1 | 0202 | 0192 | 0.239 0075 | 0130 | 0113 | 0180 | 0.123 | 0.22] | 0.164 | 0.143 D048 | 0.044
17 1211 1.22% | 0.188 | 0207 | 0.196 | 0.240 0.077 | 0131 | 0.112 | 0178 | 0126 | 0.221 | 0.165 | 0.146 || 0.048 | 0.045
18 1.322 | 1359 | 0.195 | 0214 | 0200 | 0.243 0079 | 0.135 | 0113 | 0179 | 0.129 | 0224 | 0.167 | 0.149 0.048 | 0.045
19 1428 | 1463 | 0.203 | 0219 | 0.204 | 0.245 0081 | 0135 | 0112 | 0,179 | 0.132 | 0.225 | 0.16R | 0.152 0.048 | 0.043
20 1535 | 1.573 | 0210 [ 0235 | 0.208 | 0.247 || 0083 | 0.137 | 0.112 | 0.178 | 0.135 | 0.227 | 0.170 | 0156 || 0.048 | 0.046
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Fig. 3: Simulation scenario B used in the case of abrupt
parameter changes (upper figure) and the corresponding
time-varying spectrum (lower figure).

tme order

Fig. 4: Locally time-averaged histograms of the results
of bandwidth selection (upper figure) and order selection
(lower figure) for a nonstationary AR process with smooth
parameter changes.

VII. CONCLUSION

The problem of spectral density estimation of a nonstation-
ary autoregressive (AR) process, with unknown and possibly
time-varying rate of parameter variation and order, was
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considered. The proposed estimation algorithms combine
results yielded by two banks of exponentially weighted least-
squares lattice algorithms, equipped with different bandwidth
and order settings, running forward in time and backward
in time, respectively. It was shown that selection of the
locally most appropriate order of autoregression and esti-
mation bandwidth can be made using the suitably modified
Akaike’s final prediction error (FPE) criterion. It was also
shown that minimization of the FPE statistic is equivalent
to minimization of the gain normalized mean-square log
spectral distortion measure. The proposed algorithms are

computationally attractive and guarantee stability of the
resultant autoregressive models, which is a prerequisite for
well-posed AR-model based spectral estimation.
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APPENDIX [derivation of (11)]

Using Taylor series expansion, one arrives at

log | Ale’ .Gy (t)] |*

Zlog| A(e™, an) P+ v(e™,t)  (22)

where
v, t) = Aazw(t)va,, [log |A(e™, an)?]

and A, x(t) = Qi (t) — @, Straightforward calculations

lead to _ _ _
e, 1) = z(e!, 1) + 2* (e, 1)

where
g Ao, (t)€(e™)
z(e?™. t) = _A(c-fu,an)
ge”) = = [e,. ., emme]T

and z*(e’,t) = 2(e” 7%, t) denotes the complex conjugate
of x (e, t).
According to (22) it holds that

o LN l i 2( jw 3
dMSL(t)_E{Qﬂ, /_ﬂW.(e ,t)ﬁ’}-

Using the equivalence (z + 2*)? = 2|x|? + 2Re[2?], one
arrives at

drisy, (1) = 2di(t) + 2Re[d,(t)]

where

da (1) _1—/7r E {[2(e", 8)2)} dw

:277 S

da(t) = %/ﬂ E {z2(e™, )} dw.

According to (6)
E[Aoct i (t) Aoy, (t)] = -

Furthermore, since it holds that

= IG ()dw = —
o | e n(w)dw = e

J =g

one obtains

1" EENEE) B

25 ). e e
This leads to

dy (1) = tr{E[Aanlk(t)AaI'k(t)]
1 (" g(e)E (&) w} n
: [27: /_ |A(e?, an)|? . }_ My(t)

A_l(e'juaan) =
Q for

1

Similarly, using the expansion

S, cie” ¥ and the fact that [ e /@idw =
= -7

i > 1, one arrives at

dg(t) = tr{E[Aamk(t)AaE[k(t)]

2m J_,

A%(e, o)

which completes derivation of (11).
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