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Abstract- The problem of parametric, autoregressive model 
based estimation of a time-varying spectra) density function of a 
nonstationary process is considered. Tt is shown that estimation 
results can be considerably improved if identification of the 
autoregressive model is carried out using the two-sided doubly 
exponentially weighted lattice algorithm whkh combines results 

yielded by two one-sided lattice algorithms running forward in 

time and backward in time, respectively. It is also shown that the
model order and the most appropriate estimation bandwidth 
can be efficiently selerted using the suitably modified Akaike's 
finał prediction error criterion. 

I. INTRODUCTION

The exponentially weighted normalized Jattice/ladder al­
gorithm developed by Lee, Morf and Friedlander [l], further 
denoted as EWLMF, allows for efficient identification of 
time-varying autoregressive models. Very good parameter 
tracking capabilities and model stability guarantee make the 
EWLMF algorithm a very good candidate for autoregressive 
model based parametric spectrum estimation of nonstationary 
processes [2]. When spectral analysis is carried out off-line, 
based on the entire signal history, the reduced-bias two­
sided (noncausal) estimation schemes offer both qualitative 
and quantitative improvements over the one-sided (causal) 
solutions. In this paper we propose a two-sided doubly 
exponentially weighted lattice algorithm, further denoted as 
E2WLMF, obtained by combining results yielded by two 
one-sided EWLMF algorithms running forward in time and 
backward in time, respectively. Two methods of merging 
the forward and backward estimation results are proposed 
and evaluated. Paralleling the results obtained in [3] for 
Yule-Walker estimators, it is shown that two decisions that 
strongly affect quality of the autoregressive spectra] estimates 
- selection of the model order and the choice of the appropri­
ate estimation bandwidth - can be made based on the suitably 
modified Akaike's finał prediction error (FPE) criterion. In 
particular, we prove that minimization of the FPE statistic is 
equivalent to minimization of the mean-square log spectra!
distortion measure evaluated for gain nonnalized spectra.

* 

Il. PRELTMTNARIES 

Spectral density function of a stationary autoregressive 
(AR) process of order n governed by 

i=l 
(1) 

var[e11(t)] = Pn 

where an = [a1,n, ... , an,n] T denotes the vector of AR 
coefficients, ',O,.(t) = [y(t - 1), ... ,y(t - n)]T denotes the 
regression vector made up of n past signal samples, and 
{en(t)} denotes white noise, can be expressed in the form 

(2) 

where w E [-1r, 1r] denotes normalized angular frequency, 
j= A and 

n 

A(z,an) = 1 - Lai,nZ-i. 
i.= l 

The so-called parametric estimate of Sn (w) can be obtained 
by replacing in (2) the true model parameters Pn and an 

with their estimates based on the available data record. 
When the analyzed AR process is nonstationary 

,. 

y(t) = L a,,n.(t)y(t - i)+ en.(t) = <p�(t)an.(t) + e,,,(t) 
i=l 

var[en(t)] = Pn (t) 
(3) 

but it fulfills the local stationarity assumptions specified in 
[4], [5], [6] (uniform stability of the forming filter, param­
eter variations of bounded variation), it can be consistently 
characterized by the time-varying spectra! density function 
defined as 

where 

Pn(t) Sn(w, t) = 

I A[ . ( )] 12 eJW l On t 

n 

A[z, a,.(t)] = 1 - L ai,n(t)z-i. 
i=l 

(4) 

We will focus on the problem of off-line estimation of 
Sn(w. t), t E [l, T0] based on the prerecorded data sequence 
Y = {y(l), ... , y(To)}. 
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III. PROTOTYPE ALGORITHM BASED O THE DIRECT

SIGNAL REPRESENTATION 
The local model of the analyzed nonstationary AR signal 

can be obtained using the two-sided exponential weighting 
technique. Since the rate of signal nonstationarity is usually 
unknown, and may itself change over time, we will consider 
the parallel estimation scheme made up of I{ simultane­
ously operated doubly exponentially weighted least squares 
(E2WLS) algorithms of the form 

Onlk(t) = [a1,n11,(t) .... , an,nlk(t)]T

To 
= arg min L >.�-Tl [y( T) -<pJ ( r )a„] 2 

On r=l {5) 
Tu 

P.,.1k(t) = Lk
\

t) 
�>.�-T1 [y(T) -'f'!(T)&,.1k(t)l2 

where O < >.k < 1, k E JC = {l, ... , I<} denotes 
the forgetting constant, deterrnining the effective estimation 
memory of the E2WLS algorithm 

To 
Lk(t) = L >.��-T l 

T=l 
often referred to as its estimation bandwidth. 

In [7] it was shown that when the time-varying parameters 
can be modeled as random processes with orthogonal incre­
ments, the two-sided exponential window yields the best (in 
the mean square sense) parameter estimation results among 
all symmetric windows. Even though this result was obtained 
for a different estimation problem - identification of a finite 
impulse response (FIR) system - its qualitative imphcations 
seem to be more generał. 

The E2WLS estimates of a
n 

can be expressed in the form 

where 
To 

'Pnlk(t) = L >.t-Tl'f'n(T)ip�(T)
T=l 
To 

1Pn1dt) = L ,\�-rly(-r)<p.,.(-r).
T=l 

Unfortunately, unhke the classic al ( one-sided) exponentially 
weighted least squares (EWLS) case, inversion of the re­
gression mat1ix 'Pnidt) cannot be canied out in a recursive 
fashion. Sirnilarly, there seems to be no way to recursively 
compute the estimates of the driving noise variance p„1dt). 
This mak.es the E2WLS algorithm computationally pretty 
demanding. Another problem, which becomes particularly 
relevant in the spectra! estimation context, is due to the fact 
that the E2WLS scheme does not guarantee that the obtained 
AR models will be at all times stable. 

Estimation memory of the E2WLS algo1ithm should com­
ply with the speed of parameter variation so as to trade off the 
bias component of the mean squared parameter estimation 

error (which increases with growing memory) and its vari­
ance component (which decreases with growing memory). 
Another important decision that must be tak.en, in addition 
to selection of the appropriate value of >.k , is the choice of 
the model order n. Suppose that the range of model orders 
is limited to n EN= {l, ... , N}. Selection of the 'wrong' 
value of n has both quantitative and qualitative implications. 
When the order is underestimated, the corresponding spectra! 
estimates may fail to reveal some quasi-periodic components 
of the analyzed signal, while when it is overestimated, some 
spurious (nonexistent) resonances may be indicated. Tn both 
cases the accuracy of spectra! estimates deteriorates. 

A. Model order and estimation bandwidth selection

As shown in [3], joint selection of model order and
estimation bandwidth can be performed using the suitably 
modified Akaike's finał prediction error (FPE) criterion. 
Akaike [8] defined the finał prediction error as the mean 
squared value of the error observed when the model based 
on the data set Y is used to predict another, independent 
realization of Y denoted by Y = {y(l), ... , y(To)} 

8n1dt) = 
E{[y(t) - $;(t)&n1dt)]2 }

where (p,. (t) = [y(t -1),. ;_:, y(t-n)J T and the expectation
is canied out over Y and Y. 

If the order of the model is not underestimated and the 
analyzed signal is locally stationary, one can show that [7] 

[- ( )] ~ 'P;:;- 1 Pn 
COV anlk t = Mk(t) 

where 'Pn = E['Pn(t)ip�(t)] and

("To ;x_lt-TI) 2 
L.,r=l k 

(6) 

denotes the so-called equivalent width [9] of the two-sided 
exponential window. Based on this approximation, one can 
show that 

ó111k(t) � [1 + M�(t) ] Pn

E[P.,Jk(t)] � [1 - M�
(t)

] Pn

leading to the following estimate of 8„lk (t) 

[l + n ] 
FPEn.1dt) = xnlk(t) = l _ � Pnlk(t)

· J\ldt) 

and the decision rule 

(7) 

{n(t), k(t)} = arg min FPE„1dt). (8) 
nE./\J 
kEIC 

Based on (8), the parametric estimate of the instantaneous 
signal spectmm can be expressed in the form 

- Prr(t)lk(t) (t) 
sn(t)lk(t)w, t) = I A[cJw a - (t)] 12, n(t)lk(t) 

(9) 
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where 

n(t) 
A[z,an(t)lk(t/t)] = 1-Lui.,n(t)lk(t)(t)z-i.

i=l 

B. Relationship to spectra/ distortion measures

Suppose that the analyzed process is (locally) stationary
and that the order of the AR model used to obtain the 
spectra! estimate Sni

dt) is not underestimated, i.e., that it 
is not smaller than the true order n0. Denote by S�(w) =
Sn (w)/ Pn the gai n nom1alized spectra} density function and 
]et s�

lk
{w, t) = s„lk•(w, t)/Pnlk(t). 

Distortion of the shape of the estimated spectra] density 
function (up to the constant scaling factor) can be quantified 
using the following gain normalized mean-square log (MSL) 
measure 

dMsdt) = E { 2� 1_: [log S�{w) -log s�
lk(w, t)] 2dw}

= E {2-11' 

[log IA[P.iw , anlk(t)]l2 

211' -7'

-log IA(e1w , nn. )1 2 J 2 dw} . ( 10)

It can be shown that, under the assumptions made above, it 
holds that (see Appendix) 

( l l)

which is an extension of the formula derived by Akaike [10] 
for the least squares estimators. Note that fl,. = (),..,, Yn 2: 
nu, and therefore minimization of the finał prediction error 
ónlk (t) is equivalent to minimization of the gai n normalized 
MSL spectra! distortion measure d�15dt). Since from the 
practical viewpoint shape distonions are usually more im­
portant than scale distortions, minimization of FPE seems to 
be a practically meaningful objective. 

Finally, we note that for small distortions the gai n normal­
ized MSL measure is approximately proportional to the gain 
normalized mean Itakura-Saito (IT) measure 

d0 (l) - E - ----'n:...;____.,c__ { 
1 lrr [ S

0 (w) 
15 - 21r -rr §�

11
..(w, t)

-log �
S

�(w) -1] dw} (12)
S�

lk
(w, t) 

widely used in signal processing. Actually, using the approx­
imation 

1 2x = exp{lugx) � 1 + lugx + 
2

(lugx) 

which holds for :r. close to 1, one can show that 

IV. SOLUTION BASED ON THE LATTICE SIGNAL
REPRESENTATION 

A. Three parametrizations of a stationary AR proc:ess

Any zero-mean stationary AR process of order n with
parameters 

can be altematively and uniquely characterized by specifying 
the set 

Q,. = { ro,'ą1, · · ·, Qn} 

where Qi, i = 1, ... , n denote reflection coefficients (partia! 
correlation coefficients) and ro = E[y2 (t)] denotes the 
variance of {:t;{t)}. The AR model is stable iff retlection 
coefficients obey the condition lą;I < 1, i= 1, .. . , n. 

The third way of characterizing a stationary AR process 
of order n is by means of specifying the set of its autocor­
relation coefficients 

Rn.= {ro, r1, . .. , rn.} 

where ri = E[y(t)y(t - i)]. 
The parametrizations Pn , Qn and Rn are equivalent in the 

sense that given one, one can uniquely determine the other 
two. The transition from Rn to Pn and Q11 can be made by 
solving Yule-Walker equations [11]. Transitions from Q„ to 
Pn. and Rn., and from Pn. to Qn. and Rn. were described e.g. 
in (I 2]. 

B. ProposeJ algorithm

Reflection coefficients can be estimated directly from the
experimental data using the so-called lattice/ladder algo­
rithrns. The proposed estimation approach, resembling the 
E2WLS scheme described in the preceding section, combines 
results yielded by two lattice algopthms running forward 
in time (t = 1, 2, ... , T0) and backward in time (t =
T0 , T0 - 1, ... , 1), respectively. We will use the exponen­
tially weighted ladder algorithm proposed by Lee, Morf 
and Friedlander [I], further referTed to as EWLMF algo­
rithm. Unlike EWLS and E2WLS, the EWLMF algorithm 
guarantees stability of the AR model. Additionally, it is 
computationally efficient (both time and order recursive) and 
has good numerical properties. 

The proposed estimation scheme can be summarized in 
four steps. To make the presentation self-contained, all com­
ponent algorithms are listed below using a unified notation. 

Step I - evaluation of reflection coefficients 

For each value of k E K,, compute and memorize the sets 
of reflection coefficients obtained by means of forward time 
(-) and backward time(+) estimation using the EWLMF 
algorithm 

Qtlk(t) = {rg;Jt),IJtk (t), ... ,IJt lk
(t), }, t E [l,Ti ].

Both sets characterize models of order n = 1, ... , N and 
can be computed recursively as follows [l] 
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y -t Qtlk (t) 

for t = 1, ... , Tu <lo ( -) 
fur t = To, ... , l du ( +) 
p;(t) = Akpf (t ± 1) + y2(t) 
L;(t) = )..kL;(t ± 1) + 1

:;::-± (t) _ pf (t) 
Olk - L";(t)

t:�k(t) = 1)�k(t) = y(t)/.f;fw 

for n= l, ... ,min{N,t} cło(-) 
for n= l, ... ,min{N, To - t + l} do(+) 

ą:, .. (t) = t:!-11k(t)11:-111(t ± 1) + ą:11,(t ± l)x 

X ✓l - [t:!_1Jk(t)F✓l - [TJ.�-l lk(t ± 1)] 2 

t:.�l l(t) = t:!-l l k(t) - ą!l k(t)ry!-llk(t ± l)
. . 

✓l - [ą;lk(t)] 2✓1 - [TJ!-l l k(t ± 1)]2 

17!-llk(t ± 1) - ą!lk(t)t:!-1Jk(t)

l - [ą�lk(t)] 2✓l - [t:�-l l k(t)] 2 

enci 
end 

with initial conditions set to t:�k (O) = 17� k (O) = O,

t:�k(To + 1) = 1Jrijk(To + 1) = o, L;;(o) = Lt(To + 1) = O, 
IJ�k(U) = IJ;k(To + 1) = U for j = 1, ... ,N, and µi;(U) =
Pt (To + 1) = t: where t: denotes a small positive constant. 
The quantities 

t-1 To-t 

L-;_(t) = I::>-L + " . Lk (t) = L >-1c 
i=O 

denote effective widths of the corresponding exponential 
windows. Tt can be shown that to maximize robustness of the 
parallel estimation scheme with respect to the unknown rate 
of signal nonstationarity, the effective memory spans of the 
component algorithms should form a geometrie progression 
[3]. For example, one can choose foroetting constants so that 

± ± . 
o 

Lk+1 (oo) = 2Lk (oc), wh1ch corresponds to the mem01y 
doubling technique. 

The auxiliary variables c:!
1
k (t) and 17!

l
k (t) can be in­

terpreted as nonnalized one-step-ahead forward and back­
ward prediction errors, respectively, Note that the forgetting 
constant Ak appears only in the first two recursions of the 
EWLMF algorithm. 

Step 2 - evaluation of autocorrelation coefficients

Prior to merging the forward time and backward time estima­
tion results, change Q-parametrization to R-parametrization 

R;, 1i.(t) = {r�i.(t), rtt(t), ... , r! 1 i.(t)}, t E [l, T0]. 

This can be achieved using the following recursive algorithm 

for t = 1, ... , Tu <lo 

end 

fur n = L ... , N du 

R,k(t) = (1 - [q:lk(t)J
2
)R-11k(t)

-± () ± . ) an ,nlk t =q„l k(t 

for i = 1, ... , n - 1 do 
-± 

(t) - -± 
(t) 

± ( )-± 
ai,nlk - ai,n -llk - ą„l k t a,.-i,n-llk(t) 
en<l 

n 

r;!',k(t) = Laf .. ,k(t)r;!=_;,k(t) 
i=l 

end 

with initial condition �k(t) = �,-Jt). 
Define 

r± (t)Olk 

r�k(t) 

r± (t) 
Nlk 

Note that the matrices R.Nlk (t) ii.t ik (t) are, by constmcti 
Toeplitz and positive definite. 

Step 3 - model fusion

To obtain two-sided parameter estimates, similar to th, 
described in the preceding section, combine selected forw 
time and backward time estimation results. In principle, , 
combination of the form 1r = (k-, k+), k-, k+ E K, c 
be considered. Choosing k- = k+ = /.;, i.e., 1r = (k, 
will result in combining estimates yielded by forward ti 
and backward time EWLMF algorithms equipped with 
same forgetting constant Ak , · which can be considered 
lattice counterpart of (5). However, one can also consi, 
asymmetric combinations (k- =I- k+) to fuse long-mem( 
forward time estimation results with short-memory back w, 
time ones, or vice versa. Such asymmetric variants may pn 
useful in the presence of abrupt, e.g. jump-like parame 
changes. 

Denote by II the set of all considered pairs 1r = (k- k· 
For each pair 1r E II the covaiiance mat1ices R.N lk-(;) , 
-+ RNJk+ (t) can be merged using the formula 

RN11r(t) = µ,r(t)R.N lk_(t) + [1- µ,r(t)]Rt i k+(t) 

where 
C 

or equivalently 

n=O, ... ,N. 
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The resulting Toeplitz positive definite matrices RNl
1r (t), t E where 

[l, T0 ], can serve as a basis for estimation of parameters of 
AR models of different orders 

n= l, ... ,N. 

The combined forward-backward models can be obtained by 
means of solving the set of Yule-Walker equations 

[l, -a1,N1,r(t), ... , -aN,Nlrr(t)]RN11r(t) 
= [PNlrr(t), O••.: O]. (16) 

The Levinson-Durbin algorithm which provides such a solu­
tion is listed below 

RN1rr(t)--. 'P„1,,(t), n= l, ... , N 

for t = l, ... , Tu do 

end 

fur n= l, ... , N du

for -i = 1, ... , n - 1 <lo 

a,,n11r(t) = ai,n-11,r(t) - ąn1r.(t)an-i,n-ll1r(t) 
end 

end 

with initial condition Pu11\' (t) = ru11\' (t).

Step 4 - selection of the best fitting model 

Selection of the best fitting model will be based on the 
modified version of FPE. To apply this criterion, one should 
first deterrnine the equivalent number of observations taken 
into account when building the competing models Pn1

1r (t). 
Let 

t-1
c;: (t) = I:>-Ii = >-f c;: (t - 1) + 1 

i=U 

To-t 

c:(t) = L >-Ii = >.�c:(t + 1) + 1 
i=O 

with initial conditions c;; (O) = Cj; (Tu + 1) = O. Then 
the equivalent number of obsei-vations for a given choice of 
1r = (k-, k+ ) can be obtained from 

M (t) =
[L;_ (t) + L't,+ (t)] 2 

1T 

c,:-_(t)+c:+ (t) 

The best fitting model can be selected according to 

(17) 

(19) [l+ M;'w]-FPE„1rr(t) = 

l _ _ n_ Pn11r(t).
M,, (t) 

V. STMPLTFTED LATTTCE SOLUTTON

The model fusion technique, used in the preceding section 
to combine forward time and backward time estimates was 
based on cova1iance averaging. Such an approach has a 
elear statistical interpretation and guarantees stability of the 
resulting AR models. The procedure described below allows 
one to achieve si.milar goals while significantly reducing 
computational complexity. The idea is to apply averaging 
directly to reftection coefficients evaluated at Step I:

n= l, ... ,N 

(21) 

Since qnl1r(t) is a convex combination of ą;:
1
k_ (t), 

lą;;-1
k_ (t)I < 1, and q�

lk+ (t), lą�
i
k+ (t)I < 1, it holds that 

ląn 11r(t)I < l,'<it, i.e., the models 

Qn11r(t) = {ro1,,-(t), ą111r(t), ... , ąn11r(t)}, t E [1, Tu] 

n= l, ... ,N 

are at all times stable. 
Based on QNl1r(t), the results of combined forward­

backward estimation can be obtained using the following 
recursive algorithm 

QNl1r(t)--. 'Pn11r(t), n·= l, ... , N 

for t = L ... , To do 
for n= l, ... , N do 

Pn,-rr(t) = [1 - ą;'. 1,,.(t)]Pn-l,1r(t) 
a,.,n11r(t) = ąn1,,-(t) 

for i = L ... , n - 1 do 
ai,nl,r(t) = a.,,n-llr. (t) - ą„1,r(t)a,._,,,.-ll1r (t) 
end 

enrl 
end 

with initial condition Po,1r(t) = ro1rr(t). 
As before, the best fitting model can be deterrnined by 

rninimizing the FPE statistic in the way described in the 
preceding section (Step 4). 

VI. STMULATTON RESULTS

Simulations incorporated 4 time-invariant AR models l\I1, 
M2 , MJ and I4, of orders 2, 4, 6 and 8, respectively. {n(t), 1r(t)} = {n(t), k-(t), k+(t)}

= arg min FPE„1rr(t).nEN 
1rEII 

(18) The characteristic polynomial Ai(z) of the model l\I, had
i pairs of complex-conjugate zeros of the form zt
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0. 995e±Jk1r/5, k = l, ... , ·i, corresponding to i resonant 
modes of the fonning filter 1/A(z). 

The generated signal {y(t), t = 1, .. . , T0} bad peri­
ods of stationarity, governed by the models M1 , ... , M4 , 
interleaved with periods of nonstationary behavior. Two 
simulation scenarios were applied, corresponding to smooth 
transitions between the models (A) and abmpt transitions 
(B), respectively. In the smooth case, depicted in Fig. 2, 
transition from the model M;-1 to the model Mi was realized 
by gradually moving, with a constant speed, the 'i-th pair 
of zeros from their initial zero positions towards the unit 
circle - the c01Tesponding trajecto1ies are shown in Fig. I. 
In the abrupt case, illustrated in Fig. 3, the model Mi-l was 
instantaneously switched to the model Mi , which resulted in 
a jump change of model parameters. 

The length of the simulated nonstationary AR signal was 
set to T0 = 5000 and the breakpoints, marked with bullets in 
Figs. 2 and 3, had the following time coordinates: t1 = 1000, 
t2 = 1500, t3 = 2500, t4 = 3000, t5 = 4000, te, = 4500 (for 
type-A changes), and t7 = 1250, t8 = 2750, t'J = 4250 (for 
type-B changes). Data generation was started 1000 instants 
prior to t = 1 and was continued for 1000 instants after 
T0 = 5000, so Chat no matter what bandwidth, the estirnation 
process and evaluation of its results could be in all cases 
started at the instant 1 and ended at the instant T0. 

The parallel estimation scheme was made up of 4 
E2WLMF algorithms combining results yielded by K = 3 
forward/backward EWLMF trackers equipped with forget­
ting constants ,\1 = 0.95, ..\2 = 0.99 and ..\3 = 0.995. The 4 
combinations of forward/backward forgetting constants were: 
(0.99, 0.99), (0.995, 0.995), (0.995, 0.95) and (0.95, 0.995), 
which corresponds to 1r1 = (2, 2), 1r2 = (3, 3), 1r3 = (:3, 1) 
and 1r4 = (1, 3), respectively. 

The unnormalized mean Itakura-Saito spectra! distortion 
measure 

dis (t) 

= 
E { 2-J" [ 

fn(w, t) - log 
fn(w, t) - ll dw}

27!' -rr Sn1 dw, t) S11 1dw, t) 

was used to evaluate different spectra! estimation results. 
Table I shows the IS scores, obtained by means of 

combined time and ensemble averaging (over t E [1, T0] 
and 100 independent realizations of {y(t)}). The first three 
double columns show results yielded by one-sided (for­
ward) EWLMF algorithms for different choices of estima­
tion bandwidth (>.) and model order (n). The next four 
double columns show the analogous results obtained for 
the two-sided E2WLMF algmithms incorporating covariance 
averaging. Finally, the last double column shows results 
yielded by the parallel estirnation scheme with FPE-based 
joint bandwidth and order selection (for different values of 
the maximum model order N). 

The results presented in Table I clearly demonstrate ad­
vantages of two-sided estimation as well as advantages of 
adaptive bandwidth and order scheduling. In particular, note 
that when the maximum model order is not underestimated, 

, 

" 

Real Part 

Fig. I: Trajectories of zeros of the characteristic polynornial. 

• 

• 

Fig. 2: Sirnulation scenario A used in the case of smooth 
parameter changes (upper figure) and the corresponding 
time-varying specttum (]ower figure). 

i.e., when N 2: 8, the parał lei estimation scheme outpe1fom1s
all non-adaptive fixed-bandwidth fixed-order algorithms it
combines.

Table TI shows the analogous results obtained for the 
E2WLMF algorithms based on direct averaging of reftection 
coefficients. Note that the scores are uniformly worse than 
those obtained under covariance averaging, which means that 
reductio□ of computational load can be only achieved at the 
cost of noticeable performance degradation. 

Fig. 4 shows the locally time-averaged (each time bin cov­
ers 250 consecutive time instants) histograms of the results of 
bandwidth and order selection for smooth pararneter changes. 
Note good bandwidth and order adaptivity of the proposed 
parallel estimation scheme. 

Finally, Fig. 5 shows typie.al estimation results obtained, 
for a single realization of an AR process with smooth param­
eter changes, using the proposed algorithm with covariance 
averaging. 
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TABLE I: Mean spectra! distortion scores for a nonstationary autoregressive signal with smooth (A) and abmpt (B) parameter 

changes, obtained for 3 one-sided EWLMF estimators (the first 3 double columns), 4 two-sided E2WLMF estimators with 
covariance averaging (the next 4 double columns), and the proposed parallel estimation scheme (the last double column). 

0.9!t U.9' U.995 (U.99, 0.9') (U.995, 0.995) {U.99.), U.9�J (U.95, 0.995) tPE 
n/N A B A B A B A 

I 3.ISISI 3.669 3.726 3.518 3.721 3.497 3.658 
2 2.299 2.372 2.102 2.257 2.119 2.351 2.045 
., 2.206 2 .. 114 l.9R6 2.166 2.000 2.259 1.924 
• 1.307 1.552 1.U6M l.3M9 1.116 1.540 0.'.199 
5 1.373 1.631 1.080 1.3?2 1.12) 1.523 0.995 
6 0.727 1.037 0.470 O.R3H O.SRti 1.049 0.365 
7 0.788 1.148 0.471 0.811 0.570 0.964 0.340 
M 0.510 0.537 O.l2M 0.221 U.l?M 0.365 0.064 
9 0.567 0.5RR 0.132 0.190 0.166 0.293 0.065 

IO 0.627 0.647 0.1]9 O.IR., 0.169 0.264 0.067 
Il U.693 0.715 U.146 0.181 U.173 U.248 U.068 
12 0.763 0.783 0.152 0.183 0.177 0.242 0.069 
n O.Rl6 O.R55 0.160 O.IR! O.lRO 0.241 0.071 
14 U.923 U.943 U.167 0.193 U.184 0.241 0.072 
15 1.008 1.028 0.174 0.197 0.188 0.240 0.073 

16 1.110 1.132 O.lx I 0.202 0.192 0.239 0.075 
17 1.211 1.22M o.1gg 0.207 U.I% U.2:40 0.077 
18 1.322 1.359 U.195 0.214 U.2UU U.243 0.079 
19 1.42A 1.463 0.20J 0.219 0.204 0.245 O.OR! 
20 1.535 1.573 0.'.!10 0.1!5 o.ws 0.:?47 0.083 

M• 

:
l M3 

:
M 2 

1 M
l 

•
1, ,, 1, T, 

20 

-20 

Fig. 3: Simulation scena1io B used in the case of abrupt 
parameter changes (upper figure) and the corresponding 
time-varying spectrum (lower figure). 

VII. CONCLUSION 

The problem of spectra! density estimation of a nonstation­
ary autoregressive (AR) process, with unknown and possibly 
time-varying rate of parameter variation and order, was 
considered. The proposed estimation algorithms combine 
results yielded by two banks of exponentially weighted least­
squares lattice algorithms, equipped with different bandwidth 
and order settings, running forward in time and backward 
in time, respectively. lt was showu that selection of the 
locally most appropriate order of autoregression and esti­
mation bandwidth can be made using the suitably modified 
Akaike's finał prediction error (FPE) criterion. It was also 
shown that minimization of the FPE statistic is equivalent 
to minimization of the gain normalized mean-square log 
spectra! distortion measure. The proposed algorithms are 

B A 

3.5U6 3.645 
2.174 2.098 
2.rnn 1.979 
1.301 1.090 
1.294 I.OBI 
0.752 0.513 
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B 
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ł.421 
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0.860 
0.297 
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0.21.<i 
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O.IBJ 
O.IRO 

0.11g 
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0.179 
0.178 

5000 

100-

80 

A B 

3.704 3.493 

2.069 2.329 
1.950 2.2.n 
1.04M 1.515 
1.050 1.496 
0.464 1.024 
0.456 0.937 

0.106 U.348 
0.102 0.2iR 

O.IO, 0.249 
0.109 U.233 
O.li! 0.226 
0.114 0.227 

U.117 U.224 

0.120 0.223 
0.123 0.221 

U.126 U.221 
U.129 0.224 
0.132 0.225 

0.135 0.:?:?7 

time 
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3.626 3..S.48 3.617 3.463 
2.172 2.139 2.025 2.106 
2.051 2.04� 1.911 2.0I� 
1.164 1.262 ł.UUI 1,213 

l.156 1.265 1.009 l.215 

0.5H7 0.729 1.1109 0.650 
0.516 O.i19 0.406 0.671 
U.226 U.148 U.044 U.U4J 
0.192 0.12R 0.044 0.041 
0.179 0.127 0.045 0.041 
U.171 U.12'-J U.045 0.041 
0.167 0.132 0.045 0.042 
0.16R n.n, 0.046 0.042 

0.165 0.137 U.046 0.04) 
0.165 0.140 0.047 0.044 
O.IM 0.143 o.04x 0.044 
0.165 U.146 0.048 U.045 
0.167 U.149 U.048 U.045 

0.16R 0.152 0.04R 0.045 

0.170 O 156 0.048 0.046 

20 

order 

Fig. 4: Locally time-averaged histograms of the results 
of bandwidth selection (upper figure) and order selection 
(!ower figure) for a nonstationary AR process with smooth 
parameter changes. 

computationally attractive and guarantee stability of the 
resultant autoregressive models, which is a prerequisite for 
well-posed AR-model based spectra] estirnation. 
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APPENDIX [derivation of (11)] 

Using Taylor series expansion, one arrives at 

ług I A[ejw ,anjk(t)] 1
2 

� log I A(eiw , an.) 1
2 

+ 1(eiw , t) (22) 

where 

ry(e1w , t) = �a�
lk

(t)'v an [log IA(e1w
, O!n)l2

] 

and �an1dt) = an1dt) - O!n.. Straightforward calculations 
lead to 

where 

óaT (t)�(eiw)
x(eJw_ t) = __ n

_clk_. ___ _
' A(e1w ,an) 

�(ejw) = -[
e

�jw , ... , e
-jnw] T 

and x*(e1w , t) = x(e--1w , t) denotes the cornplex conjugate 
of x(eiw , t).

According to (22) it holds that 

d�15dt)=E - ·l(eJw ,t)(U;J .
{ 1 1" . } 27r -rr . 

Using the equivalence (x + x*)2 
= 2lx1 2 + 2Re[x2], one 

aJTives at 

where 

According to (6) 

i ~ q;;;- 1p„ 
E[óa„1dt)�anlk(t)] = Mk(t) 

. 

Furthermore, since it holds that 

1 
l" . . 1 l" . .  

- e1 w'Sn(w)(U;J = - e-Jw'Sn(w)(U;J = Ti 
211" . -1' 27r . -r. 

one obtains 

This leads to 

rJi(t) = tr{ E[�an.lk(t)óa�lk(t)]

[ 
1 1.,, �(eJw)�H (eJw) 

] } 
~ n 

X 211" -1r IA(eiw ,an)l2 dw =
1\,-h(t) 

Similarly, using the expansion A- 1 (eiw , an ) 
'-'

00 c-e-Jwi and the fact that J" e-jw·i(U;J O for L.Ji=O t --rr 

i � 1, one arrives at 

d2(t) = tr{ E[�an
lk

(t)�a!lk
(t)]

x - --'-�-'-c----,-� dw = O 
[ 

1 11' e(eJw)e(eiw) 
] } 27r -1r A2(eiw ,an) 

which completes derivation of ( 11 ). , 
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