
Local material symmetry group for
first- and second-order strain
gradient fluids

Victor A. Eremeyev

DICAAR, University of Cagliari, Italy
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Abstract

Using an unified approach based on the local material symmetry group introduced for general first- and second-order

strain gradient elastic media, we analyze the constitutive equations of strain gradient fluids. For the strain gradient

medium there exists a strain energy density dependent on first- and higher-order gradients of placement vector, whereas

for fluids a strain energy depends on a current mass density and its gradients. Both models found applications to modeling

of materials with complex inner structure such as beam-lattice metamaterials and fluids at small scales. The local material

symmetry group is formed through such transformations of a reference placement which cannot be experimentally

detected within the considered material model. We show that considering maximal symmetry group, i.e. material with

strain energy that is independent of the choice of a reference placement, one comes to the constitutive equations of

gradient fluids introduced independently on general strain gradient continua.
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1. Introduction

Various concepts of symmetry are closely related to mechanics. For example, a symmetry may reflect a certain
invariant property of a problem under consideration such an axial or spherical symmetry that is widely used
for derivation of particular classes of solutions, see, e.g., [1, 2]. Symmetries are widely applied to modeling
of anisotropic materials such as crystals [3, 4]. A variational symmetry is closely related to conservation laws
[5–7]. Considering material symmetries Noll [8] introduced the local material group as a set of such transfor-
mations of a reference placement which cannot be detected experimentally. For solids it includes groups used
in crystallography but it may also include non-orthogonal transformations related to description of fluids and
subfluids [9–10]. Using the local material symmetry group one can properly describe fluids, solids, and inter-
mediate classes called subfluids, that are neither solids nor fluids [9]. The notion of liquid crystals is also used
instead of subfluids [10] but here we will use wording subfluids in order to avoid mixing with the Ericksen–
Lesli liquid crystals [11, 12]. In particular, an elastic fluid is defined as an elastic medium for which a strain
energy density does not depend on the choice of a reference placement. In other words, for a fluid any mass
density preserving static deformations of a reference placement cannot be experimentally detected. The concept
of material symmetry groups is also very useful for a certain simplification of a form of constitutive equations.
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For example, in the case of simple (Cauchy) materials a strain energy density of an isotropic solid depends only
on three principal invariants of the Cauchy–Green strain measure whereas for an elastic fluid we have a depen-
dence on mass density [10]. Considering generalized models of continua we have rather complex constitutive
equations, in general. Application of the material symmetry requirements to generalized models of continua
is even more important than for simple materials as for the latter we have more arguments, in general. For
example, for polar media a strain energy depends on few non-symmetric second-order tensors such as stretch
and wryness tensor as well as a parametric tensor of microinertia [13, 14] or of microcurvature [15]. For these
media, the local material symmetry group was discussed in [13, 16–18] where the corresponding system of
strain invariants and the reduced constitutive equations were also presented. A similar definition of the material
symmetry group for micromorphic media was given in [19]. For strain gradient media the material symmetry
was discussed in [20–23]. In particular, the definition of the material symmetry group for third-order gradient
elasticity was proposed in [23]. The material symmetry is also closely related to the analysis of elastic moduli
tensors performed recently in [24–27] for strain gradient solids.

Recently the significant interest grows to a new class of materials called beam-lattice metamaterials, which
are widely used in civil, mechanical, and aerospace engineering, see, e.g., [28, 29]. They consist of periodic
or almost periodic networks of interconnected beams and in a certain sense mimic crystalline lattices and their
properties. Among their properties such as a lightweight, relatively high stiffness, flexibility, it is worth also
to mention many other useful characteristics such as acoustic response, thermal insulation, energy absorption,
etc., that makes these materials very interesting for engineering. As an example of beam-lattice materials one
can recall the open-cell foams [28, 30]. Straightforward calculations using real geometry with imperfections
require expensive time-consuming calculations so one need to introduce robust models, which can be more
easily optimized. Nowadays it is well-established that the homogenization of composite materials with high
contrast in properties may lead to generalized continuum models, such as strain-gradient elasticity, see, e.g.,
[31–39], and references therein. These enriched models demonstrate the efficiency of homogenized models to
modeling beam-lattice metamaterials. Within the strain-gradient elasticity there exists a strain energy density
introduced as a functions of strains and the higher-order gradients of displacement vector [40–44].

In addition to modeling of composite materials, the strain-gradient elasticity found applications in descrip-
tion of solids and fluids at small scales, see, e.g., [45–47]. In the case of fluids, gradient models can be related
to seminal works by van der Waals [48] and Korteweg [49], where the model was proposed with a strain energy
density dependent on a current mass density and its spatial gradient. Nowadays this model constitutes a basis of
co-called molecular theory of capillarity including wetting and dewetting phenomena [50, 51]. The foundations
of the model were also given in the landscape making works by Cahn and Hilliard [52,53]. Thus, nowadays the
model is known as the Korteweg fluid or the Cahn–Hilliard fluid or the first strain gradient fluid. In particular,
within the model we can describe not only wetting and dewetting phenomena but a formation of an interfacial
layer of finite thickness between uid and its vapour [54–58]. The natural generalization of the first strain gradient
fluid is the models of higher order, i.e., second and nth strain gradient fluid models discussed in [45, 59–63].

It is interesting to note that considering various possible stiffness tensors, Milton and Cherkaev [64] pro-
posed a model called nowadays a pentamode metamaterial with fluid-like properties, so it could be also
called a metafluid [65]. Nowadays using additive technologies such structures can be relatively easily reproduced
[66, 67].

As a result, one can see that:

1. beam-lattice metamaterials can be modeled as a strain-gradient continuum;
2. some beam-lattice metamaterials may exhibit fluid-like properties.

Thus, as in the case of simple (Cauchy) materials the symmetry analysis may enlighten the relation between
the general form of constitutive relations of strain-gradient continua and the particular form of strain-gradient
fluids. Note that the both models were introduced independently. In order to clarify these relations we use the
analysis based on the local material symmetry group introduced for strain-gradient media.

Thus, the aim of this paper is to discuss the constitutive equations of a strain gradient fluids of first- and
second-order from the point of view of the local material symmetry group introduced for general strain gradient
continua undergoing large deformations.

This paper is organized as follows. In Section 2 we recall the constitutive equations of the strain gradient
continua of first- and second-order under finite deformations. Following [23], we introduce the local material
symmetry group. In Section 3 we briefly introduce first and second strain gradient elastic fluids using direct
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approach. Finally, in Section 4 we compare the constitutive relations derived with the help of the symmetry
group and those introduced earlier in Section 3.

2. Strain energy density for strain gradient continua

Following [23, 47, 68] let us consider finite deformations of an elastic body B modeled within strain gradient
elasticity. For each material particle x ∈ B we introduce its position vectors x and X in two states called
reference (initial) κ and current (deformed) χ placement, respectively. Thus, a deformation of B is defined as
an invertible differentiable mapping from a reference placement into current one as

x = x(X), (1)

where the vector-valued function x(X) is assumed to be smooth enough.
Material modeling of hyperelastic media is based on introduction of a strain energy density function [10,

69]. In what follows, we introduce these functions for simple (Cauchy), first- and second-order strain gradient
media by the relations

W =W0(F), F = ∇κx, (2)

W =W1(F, ∇κF), (3)

W =W2(F, ∇κF, ∇κ∇κF), (4)

where F and ∇κ are the deformation gradient and referential nabla-operator defined as in [70–72]. Here-
inafter the indices 0, 1, and 2 denotes simple, first-order, and second-order strain gradient models, respectively.
Applying to (2)–(4) the principle of material frame indifference [10] we came to the following representations

W =W0(C), C = F · FT, (5)

W =W1(C, K1), K1 = ∇κF · FT (6)

W =W2(F, K1, K2), K2 = ∇κ∇κF · FT, (7)

where we keep the same notation for the constitutive functions, C is the Cauchy–Green strain tensor, T is the
symbol of transposition operation, and the centered dot denotes the scalar product of two vectors [72, 73]. It
can be also applied to tensors of any order. For example, for two dyads we have

(a ⊗ b) · (c ⊗ d) = (b · c)a ⊗ d,

where ⊗ denotes the dyadic product and a, b, . . ., denote arbitrary vectors. Note that C, K1, and K2 are tensors
of second-, third- and fourth-order, respectively. This makes the possible forms of constitutive equations rather
complex as they includes a large number of material parameters [23, 68].

Note that in [23] another set of strain measures was used. Namely, the following constitutive relations were
introduced

W =W1(C, K̃1), K̃1 = ∇κF · F−1 (8)

W =W2(F, K̃1, K̃2), K̃2 = ∇κ∇κF · F−1. (9)

In order to simplify constitutive relations using a priori known material symmetry, Noll’s definition of the
local material symmetry group (isotropy group) was extended for strain gradient materials in [23, 68]. Let
us briefly recall these definitions including also the definition for simple materials. We consider a density-
preserving transformation of κ into another reference placement κ

∗. The corresponding mapping κ → κ
∗ has

the form

X∗ = X∗(X), (10)

where X∗ is the position vector of x ∈ B related to κ
∗. Thus, we can describe deformations of B as schemat-

ically shown in Figure 1. In what follows we denote all quantities calculated with respect to κ
∗ with the index

“∗”.
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Figure 1. Mappings and corresponding placements κ, κ
∗, and χ .

In order to introduce the definition of the local material symmetry group we have to find the correspondence
relations between arguments of strain energy density functions, i.e., relations

C → C∗, K1 → K∗
1, K2 → K∗

2.

As Wk , k = 0, 1, 2, describes an energy stored in an infinitesimal neighborhood of a point x ∈ B related to the
current placement, we should have the relation Wk = W∗

k . Of course, the form of constitutive function could
be dependent on the choice of the reference placement.

In the following, we are looking for such transformations of a reference placement which cannot be detected
experimentally. From the mathematical point of view this requirement results in the determination of local
transformations κ → κ

∗ such that for considered models of materials the following invariance properties are
fulfilled

W0(C) =W0(C∗), (11)

W1(C, K1) =W1(C∗, K∗
1), (12)

W2(C, K1, K2) =W2(C∗, K∗
1, K∗

2). (13)

In order to complete (11)–(13) we have to find the exact correspondence between C and C∗, K1 and K∗
1, and K2

and K∗
2.

Using identities for the first differentials

dx = dX · F = dX∗ · F∗ = dX · P · F∗,

we have the relation between deformation gradients and nabla-operators

F = P · F∗, ∇κ = P · ∇∗, (14)

where P = ∇κX∗ is the deformation gradient related to (10). As a result, we obtain the first correspondence
relation

C = P · C∗ · PT. (15)

For the second differentials we have the formulas

d2x ≡d(dx) = d(dX · F) = d2X · F + dX · dF

=d2X · F + dX · (dX · ∇κF), (16)

d2X∗ =d2X · P + dX · (dX · ∇κP), (17)

d2x =d2X∗ · F∗ + dX∗ · (dX∗ · ∇∗F∗)

=d2X · P · F∗ + dX · (dX · ∇κP) · F∗

+ dX · P · (dX · P · ∇∗F∗). (18)

Comparing (16) with (18) we see that

dX · (dX · ∇κF) = dX · (dX · ∇κP) · F∗ + dX · P · (dX · P · ∇∗F∗)
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and obtain the formula for the second deformation gradient

∇κF =∇κP · F∗ + (P ∗ ∇∗F∗) · P−T. (19)

Here we introduce the Rayleigh product “∗” of a second-order tensor and other tensors, see, e.g., [23] for more
detail. In particular, for dyads, triads, tetrads, and other polyads, the Rayleigh product is defined as follows

P ∗ (a ⊗ b) = (P · a) ⊗ (P · b) = P · (a ⊗ b) · PT,

P ∗ (a ⊗ b ⊗ c) = (P · a) ⊗ (P · b) ⊗ (P · c),

P ∗ (a ⊗ b ⊗ c ⊗ d) = (P · a) ⊗ (P · b) ⊗ (P · c) ⊗ (P · d), etc.,

where P is a second-order tensor. Obviously, as for dyads, for second-order tensors we have more simple formula
for the Rayleigh product

P ∗ C = P · C · PT.

The Rayleigh product has properties

(P1 · P2) ∗ K = P1 ∗ (P2 ∗ K), P−1 ∗ (P ∗ K) = K. (20)

Multiplying (19) by FT from the right we obtain

K1 ≡∇κF · FT = ∇κP · F∗ · FT + (P ∗ ∇∗F∗) · P−T · FT

=∇κP · F∗ · F∗T
· PT + (P ∗ ∇∗F∗) · P−T · F∗T

· PT

=∇κP · C∗ · PT + P ∗ (∇∗F∗ · F∗T
)

=∇κP · P−1 · P · C∗ · PT + P ∗ K∗
1. (21)

With (21) we have the second correspondence

K1 = P ∗ K∗
1 + B · P · C∗ · PT, (22)

where B = ∇κP · P−1.
In the following, we use the following transposition operation denoted by T(m, n) applied for high-order

tensors. For a polyad of N th order it is defined as

(e1 ⊗ · · · ⊗ em ⊗ · · · ⊗ en ⊗ · · · ⊗ eN )T(m,n)

= e1 ⊗ · · · ⊗ en ⊗ · · · ⊗ em ⊗ · · · ⊗ eN . (23)

For example, for triads we have

(a ⊗ b ⊗ c)T(1,2) = b ⊗ a ⊗ c, (a ⊗ b ⊗ c)T(1,3) = c ⊗ b ⊗ a.

As B is a third-order tensor symmetric with respect to two first indices we have

BT(1,2) = B. (24)

In order to find a relation between K2 and K∗
2 we derive the third differentials of x and X∗ as follows

d3x ≡d(d2x) = d
(
d2X · F + dX · (dX · ∇κF)

)

=d3X · F + 2d2X · (dX · ∇κF) + dX · (d2X · ∇κF)

+ dX · (dX · (dX · ∇κ∇κF)) , (25)

d3X∗ =d3X · P + 2d2X · (dX · ∇κP) + dX · (d2X · ∇κP)

+ dX · (dX · (dX · ∇κ∇κP)) , (26)
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d3x =d
(
d2X∗ · F∗ + dX∗ · (dX∗ · ∇∗F∗)

)

=d3X∗ · F∗ + 2d2X∗ · (dX∗ · ∇∗F∗) + dX∗ · (d2X∗ · ∇∗F∗)

+ dX∗ · (dX∗ · (dX∗ · ∇∗∇∗F∗)) . (27)

As ∇κF = ∇κ∇κx, ∇κP = ∇κ∇κX∗ and ∇∗F∗ = ∇∗∇∗x, these third-order tensors are symmetric with respect
to first two indices that results in the identities

d2X · (dX · ∇κF) = dX · (d2X · ∇κF),

d2X · (dX · ∇κP) = dX · (d2X · ∇κP),

d2X∗ · (dX∗ · ∇∗F∗) = dX∗ · (d2X∗ · ∇∗F∗).

Substituting (17) and (26) into (27) and comparing the result with (25) we get

dX · (dX · (dX · ∇κ∇κF)) = dX · (dX · (dX · ∇κP)) · F∗

+ 3dX · P · (dX · (dX · ∇κP) · ∇∗F∗)

+ dX · P · (dX · P · (dX · P · ∇∗∇∗F∗)) . (28)

From (28) it follows that

∇κ∇κF =∇κ∇κP · F∗ + (P ∗ ∇∗∇∗F∗) · P−T

+ 3sym
(1,2,3)

[
B · P ·

(
(∇∗F∗)T(2,3) · PT

)T(2,3)
]

. (29)

Here we have introduced the symmetrization with respect the first three indices. For a triad and tetrad it is given
by

sym
(1,2,3)

(a ⊗ b ⊗ c) =
1

6
(a ⊗ b ⊗ c + b ⊗ a ⊗ c + a ⊗ c ⊗ b

+ c ⊗ a ⊗ b + b ⊗ c ⊗ a + c ⊗ b ⊗ a),

sym
(1,2,3)

(a ⊗ b ⊗ c ⊗ d) =sym
(1,2,3)

(a ⊗ b ⊗ c) ⊗ d.

The symmetrization is commutative with the Rayleigh product

sym
(1,2,3)

(P ∗ T) = P ∗ sym
(1,2,3)

(T) (30)

for any tensor T.
Multiplying (29) by FT from the right we obtain

K2 ≡∇κ∇κF · FT =

=∇κ∇κP · F∗ · F∗T
· PT + (P ∗ ∇∗∇∗F∗) · P−T · F∗T

· PT

+ 3sym
(1,2,3)

[
B · P ·

(
(∇∗F∗)T(2,3) · PT

)T(2,3)
]

· F∗T
· PT

=∇κ∇κP · P−1 · P · C∗ · PT + P ∗ (∇∗∇∗F∗ · F∗T )

+ 3sym
(1,2,3)

[
B ·

(
P ∗ (∇∗F∗ · F∗T )

)]

=P ∗ K∗
2 + W · P · C∗ · PT + 3sym

(1,2,3)

[
B · (P ∗ K∗

1)
]

. (31)

In (31) we have introduced a fourth-order tensor W as follows

W = ∇κ∇κP · P−1,
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which is symmetric with respect to the first three indices

WT(1,2) = W, WT(1,3) = W, WT(2,3) = W. (32)

As we restrict to mass-density-preserving transformations, P is an unimodular tensor, | det P| = 1. Thus, the
gradient of det P is zero. Using the identities

d

dP
det P = (det P)P−T,

d(det P) = dX · ∇κ(det P),

d(det P) = dP :
d

dP
det P = (dX · ∇κP) :

d

dP
det P,

we obtain

∇κ(det P) = (det P)∇κP : P−T = ±(∇κP · P−1) : 1 = ±B : 1 = 0. (33)

Here 1 is the unit tensor and “:” denotes the double dot product defined for dyads, triads, and other polyads by
relations

(a ⊗ b) : (c ⊗ d) = (a · c)(b · d),

(a ⊗ b ⊗ c) : (d ⊗ e) = (b · d)(c · e)a,

(a ⊗ b ⊗ c) : (d ⊗ e ⊗ f) = (b · d)(c · e)a ⊗ f, etc.

Thus, we have that

(a ⊗ b) : 1 = a · b, (a ⊗ b ⊗ c) : 1 = (b · c) a, etc.

In fact, in addition to (24), Equation (33) constitutes an additional constraint for B, which plays the same
role as the constraint | det P| = 1.

As det P = ±1, its second gradient is also zero. Using (33) we obtain

∇κ∇κ det P = det P[W : 1 − B : BT(1,3)]. (34)

Thus, we have the additional constraint for W and B

W : 1 = B : BT(1,3). (35)

Note that W : 1 and B : BT(1,3) are both symmetric second-order tensors.
As we consider P, ∇κP, and ∇κ∇κP (or P, B and W) to be determined in a point, these tensors can be

regarded as mutually independent, which means that they do not have to fulfill any additional integrability
conditions.

In the following, we use the following groups: the group of unimodular tensors Unim, i.e., the group with
respect to multiplication which contains second-order tensors P such det P = ±1, and the groups Lin3 and Lin4

with respect of addition which consist of third- and fourth-order tensors, respectively.
Using (15), (22), and (31), we transform (11)–(13) into the following definition of the local material

symmetry groups for considered classes of materials.

Definition 2.1 (Local material symmetry group). We call the local material symmetry group at x the follow-
ing sets of tensors:

• for simple materials a set of second-order tensors

G
(0)
κ

= {P : P ∈ Unim}

such that

W0(C) = W0(P · C · PT);
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• for first-order strain gradient materials a set of ordered couples

G
(1)
κ

= {X = (P, B) : P ∈ Unim, B ∈ Lin3, BT(1,2) = B, B : 1 = 0}

such that

W1(C, K1) = W1(P · C · PT, P ∗ K1 + B · P · C · PT);

• for second-order strain gradient materials a set of ordered triples

G
(2)
κ

={Z = (P, B, W) : P ∈ Unim,

B ∈ Lin3, BT(1,2) = B, B : 1 = 0,

W ∈ Lin4, WT(1,2) = W, WT(1,3) = W,

WT(2,3) = W, W : 1 = B : BT(1,3)}

such that

W2(C, K1, K2) =W2(P · C · PT, P ∗ K1 + B · P · C · PT, P ∗ K2 + W · P · C · PT

+ 3sym
(1,2,3)

[B · (P ∗ K1)])

for all C, K1, K2 defined at x in domains of corresponding energy density functions.

Sets G
(0)
κ , G

(1)
κ , and G

(2)
κ constitute groups with respect to the following group operations:

• the multiplication as the group operation for G
(0)
κ , i.e., if P1, P2 ∈ G

(0)
κ , then P = P1 · P2 belongs to G

(0)
κ ;

• for two elements X1 = (P1, B1) and X2 = (P2, B2) in G
(1)
κ the group operation results in

X1 ◦ X2 =
(
P1 · P2, B1 + P1 ∗ (B2 · P−1

1 · P−T
1 )
)

;

• for two elements Z1 = (P1, B1, W1) and Z2 = (P2, B2, W2) in G
(2)
κ the group operation results in

Z1 ◦ Z2 = P1 · P2, B1 + P1 ∗ (B2 · P−1
1 · P−T

1 ),

W1 + P1 ∗ (W2 · P−1
1 · P−T

1 )

+3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (B2 · P−1

1 · P−T
1 )
)]
)

.

Thus, G
(0)
κ is a subgroup of the full unimodular group Unim.

Let us prove the property of new group operations. Let X1 = (P1, B1) and X2 = (P2, B2) be two arbitrary

elements of G
(1)
κ . So the following relations are fulfilled

W1(C, K1) =W1(P1 · C · PT
1 , P1 ∗ K1 + B1 · P1 · C · PT

1 )

=W1(P2 · C · PT
2 , P2 ∗ K1 + B2 · P2 · C · PT

2 )

for all C and K1 in the domain of W1. By definition X = X1 ◦ X2 is given by

X ≡ (P, B) = (P1 · P2, B1 + P1 ∗ (B2 · P−1
1 · P−T

1 )).
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Let us check that X belongs to G
(1)
κ . We have the identities

W1(P · C · PT, P ∗ K1 + B · P · C · PT)

=W1

[
P1 · P2 · C · PT

2 · PT
1 , (P1 · P2) ∗ K1

+(B1 + P1 ∗ (B2 · P−1
1 · P−T

1 )) · P1 · P2 · C · PT
2 · PT

1

]

=W1

[
P1 · (P2 · C · PT

2 ) · PT
1 , P1 ∗ (P2 ∗ K1)

+ B1 · P1 · (P2 · C · PT
2 ) · PT

1

+(P1 ∗ (B2 · P−1
1 · P−T

1 )) · P1 · P2 · C · PT
2 · PT

1

]

=W1

[
P1 · (P2 · C · PT

2 ) · PT
1 ,

P1 ∗ [P2 ∗ K1 + B2 · P2 · C · PT
2 ] + B1 · P1 · (P2 · C · PT

2 ) · PT
1

]

=W1(P2 · C · PT
2 , P2 ∗ K1 + B2 · P2 · C · PT

2 )

=W1(C, K1). (36)

Moreover, B has the same symmetry as B1 and B2, and B : 1 = 0. Thus, X = X1 ◦ X2 ∈ G
(1)
κ . Note, that here

we used the identities (20) and
(P ∗ B) · P−T · C · PT = P ∗ (B · C). (37)

Similarly, we prove that if Z1 and Z2 ∈ G
(2)
κ , then Z = Z1 ◦ Z2 ∈ G

(2)
κ . First, we have

W2(C, K1, K2) =W2(P1 · C · PT
1 , P1 ∗ K1 + B1 · P1 · C · PT

1 ,

P1 ∗ K2 + W1 · P1 · C · PT
1 + 3sym

(1,2,3)

[B1 · (P1 ∗ K1)])

=W2(P2 · C · PT
2 , P2 ∗ K1 + B2 · P2 · C · PT

2 ,

P2 ∗ K2 + W2 · P2 · C · PT
2 + 3sym

(1,2,3)

[B2 · (P2 ∗ K1)]).

For

Z ≡ Z1 ◦ Z2 = (P, B, W) = P1 · P2, B1 + P1 ∗ (B2 · P−1 · P−T
1 ),

W1 + P1 ∗ (W2 · P−1
1 · P−T

1 ) + 3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (B2 · P−1

1 · P−T
1 )
)]
)

we obtain the identities

W2

(
P · C · PT, P ∗ K1 + B · P · C · PT,

P ∗ K2 + W · P · C · PT + 3sym
(1,2,3)

[B · (P ∗ K1)]

)

= W2

[
P1 · P2 · C · PT

2 · PT
1 , (P1 · P2) ∗ K1

+ (B1 + P1 ∗ (B2 · P−1
1 · P−T

1 )) · P1 · P2 · C · PT
2 · PT

1 ,

(P1 · P2) ∗ K1

+
[
W1 + P1 ∗ (W2 · P−1

1 · P−T
1 )

+ 3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (B2 · P−1

1 · P−T
1 )
)] ]

· P1 · P2 · C · PT
2 · PT

1

+ 3sym
(1,2,3)

[
(B1 + P1 ∗ (B2 · P−1

1 · P−T
1 )) · ((P1 · P2) ∗ K1)

] ]
.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Using the same transformations of C and K1 as for W1, (30), and the identities

P1 ∗ (W2 · P−1
1 · P−T

1 ) · P1 · P2 · C · PT
2 · PT

1 = P1 ∗ (W2 · P2 · C · PT
2 ),

P1 ∗ (B2 · P−1
1 · P−T

1 ) · ((P1 · P2) ∗ K1) = P1 ∗ (B2 · (P2 ∗ K1))

we come to

W2

[
P1 · (P2 · C · PT

2 ) · PT
1 ,

P1 ∗ [P2 ∗ K1 + B2 · P2 · C · PT
2 ] + B1 · P1 · (P2 · C · PT

2 ) · PT
1 ,

P1 ∗
[
P2 ∗ K2 + W2 · P2 · C · PT

2 + 3sym
(1,2,3)

[B2 · (P2 ∗ K1)]
]

+ W1 · P1 · (P2 · C · PT
2 ) · PT

1 + 3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (P2 ∗ K1)

)]

+ 3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (B2 · P−1

1 · P−T
1 )
)] ]

· P1 · (P2 · C · PT
2 ) · PT

1

]

= W2

[
P1 · (P2 · C · PT

2 ) · PT
1 ,

P1 ∗ [P2 ∗ K1 + B2 · P2 · C · PT
2 ] + B1 · P1 · (P2 · C · PT

2 ) · PT
1 ,

P1 ∗
[
P2 ∗ K2 + W2 · P2 · C · PT

2 + 3sym
(1,2,3)

[B2 · (P2 ∗ K1)]
]

+ W1 · P1 · (P2 · C · PT
2 ) · PT

1

+ 3sym
(1,2,3)

[
B1 ·

(
P1 ∗ (P2 ∗ K1 + B2 · (P2 · C · PT

2 ))
)] ]

= W2

(
P2 · C · PT

2 , P2 ∗ K1 + B2 · P2 · C · PT
2 ,

P2 ∗ K2 + W2 · P2 · C · PT
2 + 3sym

(1,2,3)

[B2 · (P2 ∗ K1)]
)

= W2(C, K1, K2).

Finally, let us note that W has the same symmetry as W1 and W2. Moreover, we can prove that W : 1 = B :
BT(1,3. To this end, we have used the following formulas

3sym
(1,2,3)

(
B2
)

: 1 = 2B : BT(1,3, (38)

3sym
(1,2,3)

(B1 · B2) : 1 = B1 : B
T(1,3
2 + B2 : B

T(1,3
1 (39)

for third-order tensors B, B1, and B2 such that B : 1 = B1 : 1 = B2 : 1 = 0, which can be proved through

straightforward calculations. Thus, Z = Z1 ◦ Z2 ∈ G
(2)
κ .

The unit elements of G
(0)
κ , G

(1)
κ and G

(2)
κ are 1, I ≡ (1, 0) and I

(2) ≡ (1, 0, 0), respectively. Inverse elements of
these groups are

P ∈ G
(0)
κ

: P−1;

X ≡ (P, B) ∈ G
(1)
κ

: X
−1 = (P−1, −P−1 ∗ (B · P · PT));

Z ≡ (P, B, W) ∈ G
(2)
κ

:

Z
−1 =

(
P−1, − P−1 ∗ (B · P · PT), −P−1 ∗ (W · P · PT)

−3sym
(1,2,3)

(
P−1 ∗ (B · P · PT) · P−1 ∗ (B · P · PT)

) )
.
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For example, X
−1 satisfies to (24) and (33), and

X
−1 ◦ X =(P−1 · P, −P−1 ∗ (B · P · PT) + P−1 ∗ (B · P · PT))

=(1, 0),

X ◦ X
−1 =

(
P · P−1, B − P ∗

(
P−1 ∗ (B · P · PT) · P−1 · P−T

))

=(1, 0).

Similarly, an element Z
−1 satisfies to Z

−1 ◦ Z = Z ◦ Z
−1 = (1, 0, 0) and to (32) and (35).

Let us note that this definition introduces the symmetry group locally, i.e., for a considered point x. Thus for
non-homogeneous materials the material symmetry maybe different in different points. Moreover, the symmetry
groups depend also on the choice of a reference placement, in general.

Our definition of the local material symmetry group is slightly different from that given in [23] as here we
used another strain measures. Moreover, in order to keep constraints (24) and (33), (32) and (35) we change the
group operation, cf. [23, equation (103)]. Note if we consider instead of Unim a subgroup of the full orthogonal
group Orth, the group operation transforms into more simple form

X1 ◦ X2 = (P1 · P2, B1 + P1 ∗ B2),

which is similar to that used in [23].
In the following, we consider a particular class of materials called elastic fluids. We define an elastic fluid as a

hyperelastic medium whose symmetry group contains all admissible elements, i.e., the corresponding symmetry
group is a maximal. As a result, it does not depend on the choice of reference placement. For example, for

a simple fluid the symmetry group coincides with the full unimodular group: G
(0)
κ = Unim [10]. Thus, we

formulate

Definition 2.2 (Strain gradient fluids). An elastic strain gradient material is called a strain gradient fluid at x
if there exists a reference placement κ, called undistorted, such that the material symmetry group is maximal.

In other words, here G
(0)
κ = Unim, G

(1)
κ = U (1), and G

(2)
κ = U (2), where U (1) and U (2) contains all elements of

Unim, Lin3, and Lin4 with required symmetries and constraints.
In order to clarify the connections between symmetry groups and complex fluids let us first recall the con-

stitutive relations of elastic first- and second-order strain gradient fluids which were introduced independently
within so-called direct approach.

3. First- and second-order strain gradient fluids

Let us briefly recall the constitutive equations of strain gradient fluids. Let U be a strain energy density function
defined per unit mass in a current placement χ and ρ be a mass density in χ . For the classic Euler fluid the
constitutive equation has the form [62, 70]

U = U0(ρ), (40)

whereas for first- and second-order strain gradient fluids we have the following constitutive dependencies [45,
62, 72]

U =U1(ρ, ∇ρ), (41)

U =U2(ρ, ∇ρ, ∇∇ρ), (42)

respectively. Applying the principle of material frame indifference to (41) and (42) we obtain the following
invariance properties

U1(ρ, ∇ρ) = U1(ρ, Q · ∇ρ), (43)

U2(ρ, ∇ρ, ∇∇ρ) = U2(ρ, Q · ∇ρ, Q · ∇∇ρ · QT) ∀ Q : QT = Q−1. (44)

Equations (43) and (44) state that U1 and U2 are isotropic functions of their arguments arguments [72, 74, 75].
Using the theory of invariants [74, 75] we obtain the following representations

U1 =U1(ρ, j0), (45)

U2 =U2(ρ, j0, j1, j2, j3, j4, j5), (46)
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where we introduce the following invariants

j0 =∇ρ · ∇ρ, j1 = tr D = ∇ · ∇ρ, j2 = tr D2, j3 = tr D3,

j4 =∇ρ · D · ∇ρ, j5 = ∇ρ · D2 · ∇ρ, (47)

and D = ∇∇ρ is a symmetric second-order tensor.
Obviously, as U0, U1, and U2 do not depend on any reference placement, these constitutive relations give

examples of fluids defined from the point of view of symmetry group. Let us discuss this matter in more detail.

4. Strain gradient fluids from the point of view of the symmetry group

For the simple materials, the correspondence between the elastic fluid and the symmetry group is straightforward

and could be found in many textbooks on continuum mechanics, see, e.g., [10, 70, 72]. Indeed, as G
(0)
κ = Unim,

from Definition 2.1 we obtain
W0(C) = W0(P · C · PT) ∀P ∈ Unim. (48)

Substituting into (48) P = (det F)F−1 we obtain

W0(C) = W0((det F)2F−1 · C · F−T) = W0((det F)21) = W0(det F).

Thus, W0 depends only on det F and here we again keep the same notation for the constitutive function. As
det F relates mass densities in κ and χ as

| det F|ρ = ρκ,

we can replace it through ρ. Thus, we came to an elastic simple fluid with the constitutive relation in the form

W0 = W0(ρ).

As W0 was defined per unit volume in the reference placement whereas U0 was defined per unit mass in the
current placement, these functions can be related as follows

U0 =
ρκ

ρ2
W0.

Let us apply a similar approach to non-trivial cases of strain gradient fluids.

4.1. First-order strain gradient fluid

According to Definitions 2.1 and 2.2 we have the following invariance property

W1(C, K1) = W1(P · C · PT, P ∗ K1 + B · P · C · PT) (49)

for all P ∈ Unim and for all B ∈ Lin3 such that B = BT(1,2) and B : 1 = 0. As in the case of simple fluids,
substituting P = (det F)F−1 into (49) we obtain

W1(C, K1) =W1

(
(det F)21, (det F)3F−1 ∗ K1 + (det F)2B

)
(50)

∀B : B = BT(1,2), B : 1 = 0.

Using Lemma 5.2 we can reduce (51) as follows

W1(C, K1) = W1

(
(det F)21, (det F)3(F−1 ∗ K1) : 1

)
. (51)

Keeping, for simplicity, the same notation for the strain energy density, we came to the dependence

W1(C, K1) = W1

(
det F, (F−1 ∗ K1) : 1

)
. (52)

Similarly (33) we derive the formula for ∇ det F:

∇ det F = (∇F · F−1) : 1. (53)
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Using (53) we can prove that

(F−1 ∗ K1) : 1 = (∇F · F−1) : 1 ≡ ∇ det F.

As a result, we see that

W1(C, K1) = W1(det F, ∇ det F), (54)

which can be transformed into dependence on ρ and ∇ρ.
Thus, we have proven that the constitutive relation of the first-order strain gradient fluid (41) follows from

Definition 2.2.
Let us note that the constraint B : 1 = 0 plays here a crucial role. Indeed, if we restrict ourselves to arbitrary

symmetric tensors B we come to an elastic simple fluid with the constitutive relation W1 = W1(det F). In other
words, a less-restrictive symmetry group definition results in the trivial result.

4.2. Second-order strain gradient fluid

Here we have the invariance

W2(C, K1, K2) =W2(P · C · PT, P ∗ K1 + B · P · C · PT, P ∗ K2

+ W · P · C · PT + 3sym
(1,2,3)

[B · (P ∗ K1)]) (55)

for all admissible P, B and W. Substituting again P = (det F)F−1 into (55) we obtain

W2(C, K1, K2) =W2

(
(det F)21, (det F)3F−1 ∗ K1 + (det F)2B,

(det F)4F−1 ∗ K2 + (det F)2W

+ 3(det F)3 sym
(1,2,3)

[
B · (F−1 ∗ K1)

] )
(56)

∀B : B = BT(1,2), B : 1 = 0,

∀W : W = WT(1,2) = WT(1,3) = WT(2,3),

W : 1 = B : BT(1,3).

Now let us consider B = 0. In this case W has the property W : 1 = 0, so (56) transforms into

W2(C, K1, K2) =W2

(
(det F)21, (det F)3F−1 ∗ K1,

(det F)4F−1 ∗ K2 + (det F)2W
)

(57)

∀W : W = WT(1,2) = WT(1,3) = WT(2,3),

W : 1 = B : BT(1,3).

This means that we can apply Lemma 5.3. Thus, W2 depends on K2 through K2 : 1 only. Now with (35) we can
exclude W from (56) and obtain the following invariance expressed in terms of B:

W2(C, K1, K2) =W2

(
(det F)21, (det F)3F−1 ∗ K1 + (det F)2B,

(det F)4(F−1 ∗ K2) : 1 + (det F)2B : BT(1,3)

+ 3(det F)3 sym
(1,2,3)

[
B · (F−1 ∗ K1)

]
: 1

)
(58)

∀B : B = BT(1,2), B : 1 = 0.
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Using (39) we transform (58) into

W2 =W2

(
(det F)21, (det F)3F−1 ∗ K1 + (det F)2B,

(det F)4(F−1 ∗ K2) : 1 + (det F)2B : BT(1,3)

+ (det F)3
[
B : (F−1 ∗ K1)T(1,3) + (F−1 ∗ K1) : BT(1,3)

] )
. (59)

We have the identity

(F−1 ∗ K2) : 1 = (∇∇F · F−1) : 1. (60)

Moreover, similarly to (34) we have another identity

∇∇ det F = det F
[
(∇∇F · F−1) : 1

−(∇F · F−1) : (∇F · F−1)T(1,3)
]

.

As

(F−1 ∗ K1) : (F−1 ∗ K1)T(1,3) = (∇F · F−1) : (∇F · F−1)T(1,3)

we see that

det F(F−1 ∗ K2) : 1 = ∇∇ det F + det F(F−1 ∗ K1) : (F−1 ∗ K1)T(1,3).

As a result, we transform (59) into

W2 =W2

(
(det F)21, (det F)3F−1 ∗ K1 + (det F)2B, (det F)3∇∇ det F

+ (det F)2
[
(det F)F−1 ∗ K1 + B

]
:
[
(det F)F−1 ∗ K1 + B

]T(1,3) )
. (61)

In other words, W2 has the form

W2 =W2

(
det F, (det F)F−1 ∗ K1 + B, ∇∇ det F

)
, (62)

so it can be transformed into a dependence on det F, ∇ det F, and ∇∇ det F. This can be transformed into
dependence on ρ, ∇ρ, and ∇∇ρ. Note that here we used constraint (56). Thus, one can see that constraints
followed from the incompressibility condition det P = ±1 play a crucial role for transformation of a general
gradient medium into gradient-type fluid.

5. Conclusions

Considering relations between capillary fluids and general strain gradient elasticity models, we have demon-
strated that the local material symmetry group constitutes a unified approach to material modeling, i.e., to
classification and further of constitutive equations of gradient elastic media. Indeed, defining a gradient fluid as
a material insensitive to any mass-density-preserving transformations of a reference placement, we came to the
constitutive relations of capillary fluids. In a similar way more complex cases related to strain gradient subfluids
can be analyzed. The latter could be useful for the group description of some beam-lattice metamaterials [32, 35,
38]. Let us note that a certain invariance of a strain energy density may also result in non-trivial conservation
laws using the technique [5–7]. Such conservation laws may serve as additional identities and as benchmark
solutions within the statics of strain gradient elasticity.
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Appendix. Some representations of invariant scalar functions

Here we present few propositions related to a representation of scalar functions of tensorial arguments. We
begin from a preliminary proposition.

Lemma 5.1. Let f be a scalar function of a tensor X of any order such that

f (X + B) = f (X) ∀B : B : 1 = 0. (63)

Then f has the form
f (X) = f (X : 1). (64)

In other words, Lemma 5.1 states that under condition (63) f depends on X through X : 1.

Proof. Obviously, if f is given by (64) it satisfies (63). Indeed, in this case we have

f (X) = f (X + B) = f ((X + B) : 1) = f (X : 1).

In order to prove the converse we decompose X as follows

X = Xtr + Xdev, Xtr =
1

3
(X : 1) ⊗ 1, Xdev = X −

1

3
(X : 1) ⊗ 1. (65)

This decomposition is similar to the decomposition of a second-order tensor into a sum of the spherical and
deviatoric parts [72]. We have

Xtr : 1 = X : 1, Xdev : 1 = 0.

Using (65) we transform (63) into

f (X) = f (X + B) = f (Xtr + Xdev + B) ∀B : B : 1 = 0.

Taking here B = −Xdev we come to

f (X) = f (Xtr) = f

(
1

3
(X : 1)

)

from that it follows (64).

Let us now consider a more specific case. Let X be a third-order tensor symmetric with respect to the first
two indices, X = XT(1,2). Unfortunately, the introduced decomposition (65) does not keep the symmetry. Indeed,
one can see that

Xtr 6= X
T(1,2)
tr and Xdev 6= X

T(1,2)
dev .

In order to keep this symmetry, we introduce the symmetrized decomposition

X =Xs
tr + Xs

dev, (66)

Xs
tr =

1

4
X : 1 ⊗ 1 +

1

4
(X : 1 ⊗ 1)T(1,2) , (67)

Xs
dev =X −

1

4
X : 1 ⊗ 1 −

1

4
(X : 1 ⊗ 1)T(1,2) . (68)

One can see that we still have identities

Xs
tr : 1 = X : 1, Xs

dev : 1 = 0.

With this decomposition we prove the following result.

Lemma 5.2. Let f be a scalar function of a third-order tensor X, X = XT(1,2), such that

f (X + B) = f (X) ∀B : B = BT(1,2), B : 1 = 0. (69)

Then f has the form (64).
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Proof. Again, we see that if f is given by (64) it satisfies to (69). As B = Bs
dev considering decomposition (69)

f (X) = f (X + B) = f (Xs
tr + Xs

dev + B)

we can take B = −Xs
dev, so we obtain

f (X) =f (Xs
tr) = f

(
1

4
X : 1 ⊗ 1 +

1

4
(X : 1 ⊗ 1)T(1,2)

)

=f (X : 1)

and we again came to (64).

Now let us consider fourth-order tensors. Let Y be a fourth-order tensor symmetric with respect to the first
three indices. We again introduce its “spherical” and “deviatoric” parts as follows

Y =Ys
tr + Ys

dev, (70)

where

Ys
tr =

3

5
sym
(1,2,3)

[Y : 1 ⊗ 1] , Ys
dev = Y − Ys

tr. (71)

Thus, we have
Ys

tr : 1 = Y : 1, Ys
dev : 1 = 0.

Using this decomposition, we formulate the following proposition:

Lemma 5.3. Let f be a scalar function of a fourth-order tensor Y symmetric with respect to the first three
indices, Y : 1 = 0, such that

f (Y + W) = f (Y) (72)

∀W : W = WT(1,2) = WT(1,3) = WT(2,3), W : 1 = 0.

Then f has the form (64).

The proof mimics previous proofs and we omit it.
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