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Abstract: In this work we study the problem of the existence of bifurcation in the solution

set of the equation F (x, λ) = 0, where F : X ×Rk → Y is a C2-smooth operator, X and Y are

Banach spaces such that X ⊂ Y . Moreover, there is given a scalar product 〈·, ·〉 : Y × Y → R1

that is continuous with respect to the norms in X and Y . We show that under some conditions

there is bifurcation at a point (0, λ0) ∈ X ×Rk and we describe the solution set of the studied

equation in a small neighbourhood of this point.
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1 Introduction

Let X and Y be real Banach spaces and F : X ×Rk → Y be a continuous map. Suppose

that the equation

F (x, λ) = 0, (1)

where x ∈ X and λ = (λ1, λ2, . . . , λk) ∈ Rk, possesses the trivial family of solutions

Λ = {(0, λ) ∈ X ×Rk : λ ∈ Rk}.

A point (x, λ) such that F (x, λ) = 0 and x 6= 0 is called a nontrivial solution of (1).

Bifurcation theory is concerned in part with the existence of nontrivial solutions of (1)
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in a small neighbourhood of Λ. A point (0, λ0) ∈ Λ is called a bifurcation point of (1) if

every neighbourhood of (0, λ0) contains a nontrivial solution of (1).

Methods of bifurcation theory are often applied in mathematical physics. Let us

mention some applications to mechanics of elastic constructions and hydromechanics. In

[3] the buckling of a thin elastic plate subject to arbitrary forces and stresses along its

boundary is studied by the use of a perturbation theory and a variational method. In

[6] to describe a deformation of the minimal interface of two fluids in a vertical tube in

a gravitational field one applies a method based on the Crandall-Rabinowitz bifurcation

theorem and representation theory. In [9] the buckling of a thin elastic rectangular plate

simply supported on sides is studied numerically. In [14] the forms of equilibrium of

a thin elastic circular plate lying on an elastic foundation and simply supported along

its boundary are investigated via a finite-dimensional reduction and the Krasnosielski

bifurcation theorem. Finally, in [16] the buckling of a homogeneous finite beam clamped

at the edges to an elastic foundation is studied by a method of a key function due to

Sapronov.

Assume that F is C1-smooth. For every λ ∈ Rk, let F ′x(0, λ) : X → Y denote the

Fréchet derivative of F with respect to x at (0, λ). Let N(λ) = kerF ′x(0, λ) and R(λ) =

imF ′x(0, λ). It is easily seen that if F ′x(0, λ0) : X → Y is a Fredholm operator of index

zero then a necessary condition for (0, λ0) to be a bifurcation point of (1) is

dimN(λ0) > 0.

In this paper we investigate bifurcation at (0, λ0) when X is a linear subspace of Y ,

there is given a scalar product 〈·, ·〉 : Y × Y → R1 that is continuous with respect to

the norms in X and Y , and F is a Cp-smooth map (p ≥ 2) that satisfies the following

conditions:

(I1) F (0, λ) = 0 for every λ ∈ Rk,

(I2) dimN(λ0) = 1,

(I3) N(λ0) ⊥ R(λ0),

(I4) F
′
x(0, λ0) : X → Y is a Fredholm operator of index 0.

Our aim is to prove a theorem on bifurcation at (0, λ0) and a local structure of a solution

set of equation (1) in a neighbourhood of a bifurcation point. We apply a kind of fini-

te-dimensional reduction of Liapunov-Schmidt type and the implicit function theorem.

We are motivated by applications in mathematical physics [6], [14], [16] in which the

problems under considerations (see above) are described by (1) with F that satisfies

(I1)–(I4) and is a variational gradient. The main results of this work are Theorem 3.7

and its variational version: Conclusion 3.10. Theorem 3.7 is an analogue of the Crandall-

Rabinowitz bifurcation theorem (see [17], [21]). However, our theorem is formulated in

terms of a finite-dimensional reduction and in a variational case it seems to be easier

to apply. Conclusion 3.10 is well adapted to a class of nonlinear problems of elasticity

described by the von Kármán equations with one or a few parameters (see [4], [15], [16])

in the case when the linearization space is one-dimensional. An example is given in

Section 4.
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The paper is divided into four sections. In Section 2 we introduce some notions and

we briefly sketch a scheme of finite-dimensional reduction. Section 3 is devoted to the

study of bifurcation and local properties of the solution set of (1) near a bifurcation point.

In Section 4 some applications of our results are indicated.

In practice it suffices to suppose that F is defined in a neighbourhood of (0, λ0) in

X ×Rk, but we want to omit inessential details.

2 Finite-dimensional reduction

In this section we describe a kind of a finite-dimensional reduction of the Liapunov-

Schmidt type. The scheme we present is adapted from [21] ( see also [10], [11], [17],

[20]).

From now on we assume that X ⊂ Y are real Banach spaces with a scalar product

〈·, ·〉 : Y × Y → R1 that is continuous with respect to the norms in X and Y . The norms

in X and Y can be defined independently of the scalar product 〈·, ·〉, and the norm in X

does not have to be induced by the norm in Y . In particular, X and Y with 〈·, ·〉 may

be Hilbert spaces. Let F : X × Rk → Y be a Cp-smooth map, where p ≥ 1, satisfying

conditions: (I1), (I3), (I4) and

(I ′2) dimN(λ0) = n 6= 0.

The aim is to show that under the above assumptions the problem of bifurcation for

equation (1) at the point (0, λ0) ∈ X × Rk is reducible to the problem of bifurcation

for the equation ϕ(ξ, λ) = 0 with a certain map ϕ : S ⊂ Rn × Rk → Rn at the point

(0, λ0) ∈ Rn×Rk. The reader may find the proofs of the propositions given below in [13]

and [15].

Proposition 2.1. For every λ ∈ Rk the following equality holds:

Y = R(λ)⊕N(λ). (2)

Let G : X ×Rn ×Rk → Y be a map defined by

G(x, ξ, λ) = F (x, λ) +
n
∑

i=1

(ξi − 〈x, ei〉)ei, (3)

where ξ = (ξ1, ξ2, . . . , ξn) and {e1, e2, . . . , en} is a fixed orthonormal base of N(λ0).

Proposition 2.2. The operator G′x(0, 0, λ0) : X → Y is an isomorphism.

It is easily seen that G is Cp-smooth. From the implicit function theorem it follows that

there exist two open sets U ⊂ X and S ⊂ Rn × Rk such that 0 ∈ U , (0, λ0) ∈ S and the

solution set of the equation

G(x, ξ, λ) = 0 (4)

in U × S is a graph of a certain Cp-smooth function x : S → U such that x(0, λ0) = 0.

Moreover, it is obvious that x(0, λ) = 0 for all (0, λ) ∈ S, because G(0, 0, λ) = 0. Let
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ϕ = (ϕ1, ϕ2, . . . , ϕn) : S → Rn be defined by coordinates as follows:

ϕi(ξ, λ) = ξi − 〈x(ξ, λ), ei〉, i = 1, . . . , n. (5)

Proposition 2.3. (0, λ0) ∈ Λ is a bifurcation point of equation (1) if and only if (0, λ0) ∈
S is a bifurcation point of equation

ϕ(ξ, λ) = 0. (6)

3 Theorem on bifurcation

In this section our main results are stated and proved.

Let F : X × Rk → Y be a Cp-smooth map, p ≥ 2, satisfying conditions (I1)-(I4) (see

p. 562). Fix e ∈ N(λ0) such that 〈e, e〉 = 1 and denote λ0 = (λ01, λ02, . . . , λ0k). We will

describe the solution set of (1) in terms of the finite-dimensional reduction. Notice that

now in the formulas of maps G and ϕ there are n = 1 and e1 = e. Differentiating the

equality G(x(ξ, λ), ξ, λ) = 0 with respect to ξ at (0, λ0) we obtain

F ′x(0, λ0)x
′
ξ(0, λ0) + (1− 〈x′ξ(0, λ0), e〉)e = 0.

From this and (I3) it follows that x
′
ξ(0, λ0) = e.

Theorem 3.1. There exist open sets V0 ⊂ X and V ⊂ Rk such that (0, λ0) ∈ V0 × V

and for every (x, λ) ∈ V0 × V we have F (x, λ) = 0 if and only if (〈x, e〉, λ) ∈ S and

x = x(〈x, e〉, λ).

Proof 3.2. Suppose contrary to our claim, that there are no open sets V0 ⊂ X and

V ⊂ Rk with the above properties. Then for every n ∈ N there exists (xn, λn) ∈ X ×Rk

such that ||xn||X ≤ 1
n
, |λn − λ0| ≤ 1

n
and one of the following conditions is satisfied:

1. F (xn, λn) = 0 and (〈xn, e〉, λn) /∈ S,
2. F (xn, λn) = 0, (〈xn, e〉, λn) ∈ S and xn 6= x(〈xn, e〉, λn),
3. F (xn, λn) 6= 0, (〈xn, e〉, λn) ∈ S and xn = x(〈xn, e〉, λn).
If (〈xn, e〉, λn) ∈ S and xn = x(〈xn, e〉, λn) then F (xn, λn) = F (x(〈xn, e〉, λn), λn) +
(〈xn, e〉 − 〈x(〈xn, e〉, λn), e〉)e = G(x(〈xn, e〉, λn), 〈xn, e〉, λn) = 0.

Since xn → 0 in X, there exists n0 ∈ N such that xn ∈ U for every n ≥ n0. If for some

n ≥ n0 we have F (xn, λn) = 0 and (〈xn, e〉, λn) ∈ S then 0 = F (xn, λn) + (〈xn, e〉 −
〈xn, e〉)e = G(xn, 〈xn, e〉, λn), and so xn = x(〈xn, e〉, λn).
Since (〈xn, e〉, λn)→ (0, λ0) ∈ S there exists n1 ∈ N such that (〈xn, e〉, λn) ∈ S for every

n ≥ n1 — a contradiction.

The equality 〈G(x(ξ, λ), ξ, λ), e〉 = 0 implies

ϕ(ξ, λ) = −〈F (x(ξ, λ), λ), e〉. (7)

From (7) we obtain

ϕ′ξ(ξ, λ) = −〈F ′x(x(ξ, λ), λ)x′ξ(ξ, λ), e〉,
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and hence ϕ′ξ(0, λ0) = 0. Moreover, since ϕ(0, λ) = 0 for every (0, λ) ∈ S we have

ϕ
(m)
λi1λi2 ...λim

(0, λ0) = 0 for all i1, i2, . . . , im ∈ {1, 2, . . . , k} and m ∈ N . In order to get our

main result we have to assume that there is i ∈ {1, 2, . . . , k} such that ϕ′′ξλi(0, λ0) 6= 0.

There is no loss of generality if we assume

(I5) ϕ
′′
ξλk

(0, λ0) 6= 0.

From now on, if λ = (λ1, λ2, . . . , λk−1, λk) ∈ Rk, λ′ = (λ1, λ2, . . . , λk−1) ∈ Rk−1 we will

write λ = (λ′, λk).

Proposition 3.3. There exist open sets Ω0 ⊂ R1×Rk−1 and Ω ⊂ R1 such that (0, λ′0) ∈
Ω0, λ0k ∈ Ω and there exists a Cp-smooth map f : Ω0 → Ω that satisfies the following

conditions:

(1) f(0, λ′0) = λ0k,

(2) for every (ξ, λ′) ∈ Ω0 and λk ∈ Ω we have ϕ(ξ, λ′, λk) = 0 if and only if ξ = 0 or

λk = f(ξ, λ′) .

Proof 3.4. Let ψ : S → R1 be a function defined by

ψ(ξ, λ) =

∫ 1

0

ϕ′ξ(tξ, λ)dt. (8)

Observe that we have

ϕ(ξ, λ) = ξψ(ξ, λ). (9)

Hence ϕ(ξ, λ) = 0 only if ξ = 0 or ψ(ξ, λ) = 0. From (8) and (I5) it follows that

ψ(0, λ0) = ϕ′ξ(0, λ0) = 0 and ψ′λk(0, λ0) = ϕ′′ξλk(0, λ0) 6= 0. Applying the implicit function

theorem we get the desired claim.

Let Br(λ
′
0) denote a ball in Rk−1 of radius r centered at λ′0, and Bδ(0) a ball in X of

radius δ centered at 0.

Theorem 3.5. Let f : Ω0 → Ω be a function of Proposition 3.3 and r > 0 be a number

such that (−r, r)×Br(λ
′
0) ⊂ Ω0. There exist open sets Ṽ0 ⊂ X and Ṽ ⊂ Br(λ

′
0)×Ω such

that (0, λ0) ∈ Ṽ0 × Ṽ and for every (x, λ) ∈ Ṽ0 × Ṽ we have F (x, λ) = 0 if and only if

x = 0 or there exists ξ ∈ (−r, r) such that λk = f(ξ, λ′) and x = x(ξ, λ′, f(ξ, λ′)).

Proof 3.6. There exists δ ∈ (0, r) such that for every x ∈ X if ||x||X < δ then |〈x, e〉| < r.

Let Ṽ0 = V0 ∩Bδ(0) and Ṽ = V ∩ (Br(λ
′
0)×Ω), where V0 ⊂ X and V ⊂ Rk are open sets

of Theorem 3.1. Take (x, λ) ∈ Ṽ0 × Ṽ .

(⇒) By Theorem 3.1, if F (x, λ) = 0 then (〈x, e〉, λ) ∈ S and x = x(〈x, e〉, λ), which
gives ϕ(〈x, e〉, λ) = 0. From Proposition 3.3 it follows that 〈x, e〉 = 0 or λk = f(〈x, e〉, λ′).
If 〈x, e〉 = 0 then x = x(0, λ) = 0. If λk = f(〈x, e〉, λ′) then x = x(〈x, e〉, λ′, f(〈x, e〉, λ′)).

(⇐) Assume now that x = 0 or there exists ξ ∈ (−r, r) such that λk = f(ξ, λ′)

and x = x(ξ, λ′, f(ξ, λ′)). In the first case, F (x, λ) = F (0, λ) = 0. In the second case,

by Proposition 3.3, we have ϕ(ξ, λ) = 0, and hence F (x, λ) = F (x, λ) + ϕ(ξ, λ)e =

F (x, λ) + (ξ − 〈x(ξ, λ), e〉)e = F (x, λ) + (ξ − 〈x, e〉)e = G(x, ξ, λ) = 0.
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We are now in a position to prove our main result.

Theorem 3.7. Under assumptions (I1)-(I5), the solution set of equation (1) in a certain

neighbourhood of (0, λ0) ∈ Λ is the union of two sets: Λ and Ξ. The set Ξ is given by

Ξ = {(x̂(ξ, λ′), λ′, f(ξ, λ′)) : |ξ| < r, |λ′ − λ′0| < r},

where x̂ and f are Cp-smooth functions such that x̂(0, λ′0) = 0, f(0, λ′0) = λ0k, x̂
′
ξ(0, λ

′
0) =

e, f ′ξ(0, λ
′
0) = −1

2

ϕ′′
ξξ
(0,λ0)

ϕ′′
ξλk

(0,λ0)
, x̂′λs(0, λ

′
0) = 0 and f ′λs(0, λ

′
0) = −ϕ′′

ξλs
(0,λ0)

ϕ′′
ξλk

(0,λ0)
for every s ∈

{1, 2, . . . , k − 1}.
Moreover, the intersection of Λ and Ξ in a sufficiently small neighbourhood of (0, λ0) can

be parametrized as follows

IΛ,Ξ = {(0, λ′, f(ξ̂(λ′), λ′)) : |λ′ − λ′0| < %}

where 0 < % ≤ r and ξ̂ is a Cp-smooth function such that ξ̂(λ′0) = 0 and ξ̂′λs(λ
′
0) = 0 for

every s ∈ {1, 2, . . . , k − 1}, which gives that (0, λ0) is a bifurcation point of (1).

Proof 3.8. Let f : Ω0 → Ω be a function of Proposition 3.3. Fix r > 0 such that (−r, r)×
Br(λ

′
0) ⊂ Ω0. Let x̂ : (−r, r)×Br(λ

′
0)→ X be given by x̂(ξ, λ′) = x(ξ, λ′, f(ξ, λ′)). Then

f(0, λ′0) = λ0k and x̂(0, λ′0) = x(0, λ0) = 0. Differentiating x̂ we get x̂′ξ(0, λ
′
0) = e and

x̂′λs(0, λ
′
0) = 0 for every s ∈ {1, 2, . . . , k − 1}. Moreover, differentiating the equality

ψ(ξ, λ′, f(ξ, λ′)) = 0 we obtain f ′ξ(0, λ
′
0) = − ψ′

ξ
(0,λ0)

ψ′
λk
(0,λ0)

= −1
2

ϕ′′
ξξ
(0,λ0)

ϕ′′
ξλk

(0,λ0)
and f ′λs(0, λ

′
0) =

−ψ′
λs
(0,λ0)

ψ′
λk
(0,λ0)

= −ϕ′′
ξλs

(0,λ0)

ϕ′′
ξλk

(0,λ0)
for every s ∈ {1, 2, . . . , k − 1}. From Theorem 3.5 it follows

that there exist open sets Ṽ0 ⊂ X and Ṽ ⊂ Br(λ
′
0) × Ω such that (0, λ0) ∈ Ṽ0 × Ṽ and

{(x, λ) ∈ Ṽ0×Ṽ : F (x, λ) = 0} = {(x, λ) ∈ Ṽ0×Ṽ : x = 0}∪{(x, λ) ∈ Ṽ0×Ṽ : ∃ξ∈(−r,r) x =

x(ξ, λ′, f(ξ, λ′)) ∧ λk = f(ξ, λ′)} = (Λ ∪ Ξ) ∩ Ṽ0 × Ṽ . A point (x, λ) ∈ Λ ∩ Ξ only if it

satisfies the following system














x = x̂(ξ, λ′),

λk = f(ξ, λ′), ξ ∈ (−r, r), λ′ ∈ Br(λ
′
0),

x = 0.

Since x̂(0, λ′0) = 0 and x̂′ξ(0, λ
′
0) = e 6= 0, there exist: 0 < % ≤ r, an open set B ⊂ (−r, r)

such that 0 ∈ B and a Cp-smooth function ξ̂ : B%(λ
′
0) → B such that ξ̂(λ′0) = 0 and

for all (ξ, λ′) ∈ B × B%(λ
′
0) we have x̂(ξ, λ′) = 0 only if ξ = ξ̂(λ′). Differentiating

the equality x̂(ξ̂(λ′), λ′) = 0 we receive x̂′ξ(ξ̂(λ
′), λ′)ξ̂′λs(λ

′) + x̂′λs(ξ̂(λ
′), λ′) = 0 for every

s ∈ {1, 2, . . . , k − 1}, and hence ξ̂′λs(λ
′
0) = 0. Summarizing IΛ,Ξ ⊂ Λ ∩ Ξ and in a

sufficiently small neighbourhood of (0, λ0) the intersection Λ ∩ Ξ is equal to IΛ,Ξ.

Conclusion 3.9. Assume that (I1)-(I5) hold and k = 2. Then the solution set of (1) in

a small neighbourhood of (0, λ0) ∈ Λ is the union of two surfaces: Λ and Ξ. The surface

Ξ can be parametrized as follows

Ξ = {(x̂(ξ, λ1), λ1, f(ξ, λ1)) : (ξ, λ1) ∈ (−r, r)× (λ01 − r, λ01 + r)},
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where x̂ : (−r, r)× (λ01− r, λ01+ r)→ X and f : (−r, r)× (λ01− r, λ01+ r)→ R1 are Cp-

smooth functions such that x̂(0, λ01) = 0, f(0, λ01) = λ02, x̂
′
ξ(0, λ01) = e, x̂′λ1

(0, λ01) = 0,

f ′ξ(0, λ01) = −1
2

ϕ′′
ξξ
(0,λ01)

ϕ′′
ξλ2

(0,λ01)
and f ′λ1

(0, λ01) = −
ϕ′′
ξλ1

(0,λ01)

ϕ′′
ξλ2

(0,λ01)
. In a sufficiently small neighbour-

hood of (0, λ0) the surfaces Λ and Ξ intersect only along the curve

IΛ,Ξ = {(0, λ1, f(ξ̂(λ1), λ1)) : λ1 ∈ (λ01 − %, λ01 + %)},

where 0 < % ≤ r and ξ̂ : (λ01 − %, λ01 + %) → (−r, r) is a Cp-smooth function such that

ξ̂(λ01) = ξ̂′(λ01) = 0, and hence (0, λ0) is a bifurcation point of (1).

Let us consider the following condition:

(I ′3) F : X × Rk → Y is a variational gradient of a certain functional E : X × Rk → R1

with respect to the scalar product 〈·, ·〉, i.e. for all x, y ∈ X and λ ∈ Rk

E ′x(x, λ)y = 〈F (x, λ), y〉.

It is evident that (I ′3) implies (I3). Furthermore, by formula (7) we obtain

ϕ′′ξλs(0, λ0) = −E
(3)
xxλs

(0, λ0)(e, e, 1) (10)

for s ∈ {1, 2, . . . , k}. From this it follows that if F satisfies (I ′3) then (I5) can be replaced

by the equivalent condition:

(I ′5) E
(3)
xxλk

(0, λ0)(e, e, 1) 6= 0.

By (7) we also obtain

ϕ′′ξξ(0, λ0) = −E(3)
xxx(0, λ0)(e, e, e). (11)

Summarizing, in a variational case we have the following result.

Conclusion 3.10. Under assumptions: (I1), (I2), (I
′
3), (I4) and (I ′5), the solution set of

equation (1) in a certain neighbourhood of (0, λ0) ∈ Λ is the union of two sets: Λ and Ξ.

The set Ξ is given by

Ξ = {(x̂(ξ, λ′), λ′, f(ξ, λ′)) : |ξ| < r, |λ′ − λ′0| < r},

where x̂ and f are Cp-smooth functions such that x̂(0, λ′0) = 0, f(0, λ′0) = λ0k, x̂
′
ξ(0, λ

′
0) =

e, f ′ξ(0, λ
′
0) = −1

2
E

(3)
xxx(0,λ0)(e,e,e)

E
(3)
xxλk

(0,λ0)(e,e,1)
, x̂′λs(0, λ

′
0) = 0 and f ′λs(0, λ

′
0) = −

E
(3)
xxλs

(0,λ0)(e,e,1)

E
(3)
xxλk

(0,λ0)(e,e,1)
for every

s ∈ {1, 2, . . . , k − 1}.
Moreover, the intersection of Λ and Ξ in a sufficiently small neighbourhood of (0, λ0) can

be parametrized as follows

IΛ,Ξ = {(0, λ′, f(ξ̂(λ′), λ′)) : |λ′ − λ′0| < %}

where 0 < % ≤ r and ξ̂ is a Cp-smooth function such that ξ̂(λ′0) = 0 and ξ̂′λs(λ
′
0) = 0 for

every s ∈ {1, 2, . . . , k − 1}, which gives that (0, λ0) is a bifurcation point of (1).
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4 Applications

It is obvious that if we assume that F is a map from a small neighbourhood of the

point (0, λ0) in X × Rk to Y , our results remain true. After this remark we are ready

to give an example of application of Conclusion 3.10 to mathematical physics. All the

results of Section 4 were proved either in [12] or [15]. However, to make this exposition

self-sufficient we give the main ideas of the proofs.

For every m ∈ N and µ ∈ (0, 1), let Cm,µ(D̄) denote the real Hölder space of functions

defined on D = {(u, v) ∈ R2 : u2 + v2 < 1} with the standard norm

||x;Cm,µ(D̄)|| = max
|α|≤m

sup {|Dαx(u, v)| : (u, v) ∈ D}+

max
|α|≤m

sup

{ |Dαx(u, v)−Dαx(ū, v̄)|
|(u− ū, v − v̄)|µ : (u, v), (ū, v̄) ∈ D, (u, v) 6= (ū, v̄)

}

,

where Dαx = ∂|α|x
∂α1u∂α2v

, α = (α1, α2) ∈ N0 × N0, N0 = N ∪ {0} and |α| = α1 + α2. It is

well-known that Cm,µ(D̄) is a Banach space (see [1]). Let

• C4,µ
0,0 (D̄) = {f ∈ C4,µ(D̄) : ∆f |∂D = f |∂D = 0},

• C2,µ
0 (D̄) = {f ∈ C2,µ(D̄) : f |∂D = 0},

• X = C4,µ
0,0 (D̄)× C4,µ

0,0 (D̄),

• Y = C0,µ(D̄)× C0,µ(D̄).

The norms in X and Y are defined by coordinates. That is as the maximum (or the sum)

of norms of both coordinates of a given element. The function given by

〈(x1, x2), (y1, y2)〉 =
1

π

∫∫

D

(x1y1 + x2y2)dudv

is a scalar product in Y , which is continuous with respect to the norms in X and Y . We

define F : X ×R2
+ → Y as follows

F (x, λ) = (∆2x1 − [x1, x2] + 2λ1∆x1 + λ2x1 − γx31,−∆2x2 −
1

2
[x1, x1]), (12)

where R+ = (0,+∞), x = (x1, x2), λ = (λ1, λ2), γ is a positive constant and [·, ·] : X → Y

is given by

[x1, x2] =
∂2x1
∂u2

∂2x2
∂v2

− 2
∂2x1
∂u∂v

∂2x2
∂u∂v

+
∂2x1
∂v2

∂2x2
∂u2

.

The equation

F (x, λ) = 0 (13)

with F given by (12) is called the von Kárman equation for a thin circular elastic plate

which lies on an elastic base and is uniformly radially compressed along its boundary. In

mechanics x1 is a deflection function, x2 is a stress function, λ1 is a value of a compressing

force, λ2 and γ are parameters of an elastic foundation. The solutions of (13) lying in a

sufficiently small neighbourhood of the set of trivial solutions of (13) are called the forms
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of equilibrium of a plate. The map F is C∞-smooth and an easy computation shows that

for all y = (y1, y2) ∈ X

F ′x(x, λ)y = (∆2y1 − [y1, x2]− [x1, y2] + 2λ1∆y1 + λ2y1 − 3γx21y1,−∆2y2 − [x1, y1]). (14)

Let E : X ×R2
+ → R1 be given by

E(x, λ) =
1

2π

∫∫

D

(

(∆x1)
2 − (∆x2)

2 − [x1, x1]x2
)

dudv +

1

2π

∫∫

D

(

−2λ1
(

(

∂x1
∂u

)2

+

(

∂x1
∂v

)2
)

+ λ2x
2
1 −

1

2
γx41

)

dudv. (15)

E is easily seen to be C∞-smooth.

Theorem 4.1 (see Th. 2.4 of [12]). The map F is a variational gradient of the

functional E with respect to the scalar product 〈·, ·〉.

Sketch of the proof 4.2. For all x, y ∈ X and λ ∈ R2
+, we have

E ′x(x, λ)y =
d

dt
E(x+ ty, λ)|t=0 =

1

π

∫∫

D

∆x1∆y1dudv −
1

π

∫∫

D

∆x2∆y2dudv

− 1

π

∫∫

D

[x1, y1]x2dudv −
1

2π

∫∫

D

[x1, x1]y2dudv

− 1

π

∫∫

D

2λ1

(

∂x1
∂u

∂y1
∂u

+
∂x1
∂v

∂y1
∂v

)

dudv

+
1

π

∫∫

D

(λ2x1y1 − γx31y1)dudv.

Integrating by part we receive
∫∫

D

∆x1∆y1dudv =

∫∫

D

(∆2x1)y1dudv,
∫∫

D

∆x2∆y2dudv =

∫∫

D

(∆2x2)y2dudv,
∫∫

D

[x1, y1]x2dudv =

∫∫

D

[x1, x2]y1dudv

and
∫∫

D

(

∂x1
∂u

∂y1
∂u

+
∂x1
∂v

∂y1
∂v

)

dudv = −
∫∫

D

(∆x1)y1dudv.

Hence E ′x(x, λ)y = 〈F (x, λ), y〉, which completes the proof.

Theorem 4.3 (see Th. 2.2 of [12]). For every λ ∈ R2
+, F

′
x(0, λ) : X → Y is a Fredholm

map of index 0.

Sketch of the proof 4.4. Fix λ ∈ R2
+. By (14) we get

F ′x(0, λ)y = (∆2y1 + 2λ1∆y1 + λ2y1,−∆2y2). (16)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


570 J. Janczewska / Central European Journal of Mathematics 2(4) 2004 561–572

We can write (16) as

F ′x(0, λ)y = A(y) +B(y),

where A,B : X → Y are given as follows:

A(y) = (∆2y1,−∆2y2), B(y) = (2λ1∆y1 + λ2y1, 0).

It is known that ∆: C2,µ
0 (D) → C0,µ(D) is an isomorphism. Moreover, it is a simple

matter to check that B is compact, which finishes the proof.

Let Jk : R → R, k ∈ N0, denote the k-th Bessel function. It is well-known (see [8],

[18]) that α ∈ R is an eigenvalue of ∆: C2,µ
0 (D)→ C0,µ(D) if and only if α < 0 and there

is k ∈ N0 such that Jk(
√
−α) = 0. Furthermore, if J0(

√
−α) = 0 then the eigenspace

corresponding to α is one-dimensional. If Jk(
√
−α) = 0 for a certain k ∈ N then the

corresponding eigenspace is two-dimensional.

For λ = (λ1, λ2) ∈ R2
+, let δ = (λ1)

2−λ2, a = −λ1−
√
δ and b = −λ1+

√
δ. Of course,

a and b are determined on condition δ ≥ 0. Let ∆2 + 2λ1∆ + λ2I : C
4,µ
0,0 (D) → C0,µ(D)

and ∆ − aI,∆ − bI : C2,µ
0 (D) → C0,µ(D), where I(h) = h are natural embeddings of the

appropriate Hölder spaces.

Lemma 4.5 (see Lemmas 4.1-4.3 of [12]). Under the above assumptions:

(i) If δ < 0 then ker(∆2 + 2λ1∆+ λ2I) = {0}.
(ii) If δ = 0 then ker(∆2 + 2λ1∆+ λ2I) = ker(∆ + λ1I).

(iii) If δ > 0 then ker(∆2 + 2λ1∆+ λ2I) = ker(∆− aI)⊕ ker(∆− bI).

By (16), N(λ) = ker(∆2+2λ1∆+ λ2I)×{0}. From this and Lemma 4.5 we obtain what

follows.

Theorem 4.6. dimN(λ) = 1 if and only if one of the below conditions is satisfied:

(I) δ = 0 and J0(
√
λ1) = 0,

(II) δ > 0, J0(
√
−a) = 0 and Jk(

√
−b) 6= 0 for every k ∈ N0,

(III) δ > 0, J0(
√
−b) = 0 and Jk(

√
−a) 6= 0 for every k ∈ N0.

Suppose that λ0 = (λ01, λ02) and dimN(λ0) = 1. Fix e = (e1, 0) ∈ N(λ0) such that

〈e, e〉 = 1. Set

c0 =

{

a0 if (I) or (II),

b0 if (III),

where a0 = −λ01 −
√
δ0, b0 = −λ01 +

√
δ0 and δ0 = (λ01)

2 − λ02. A trivial verification

combining Theorem 4.1 with (14) shows that

E ′′′xxλ1
(x, λ)(y, z, 1) =

2

π

∫∫

D

(∆y1)z1dudv,

E ′′′xxλ2
(x, λ)(y, z, 1) =

1

π

∫∫

D

y1z1dudv,
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and

E ′′′xxx(x, λ)(y, z, w) = − 1

π

∫∫

D

([y1, z2] + [y2, z1] + 6γx1y1z1)w1dudv

− 1

π

∫∫

D

[y1, z1]w2dudv,

where x = (x1, x2) , y = (y1, y2), z = (z1, z2), w = (w1, w2). From this and Lemma 4.5

we receive

E ′′′xxλ1
(0, λ0)(e, e, 1) =

2

π

∫∫

D

(∆e1)e1dudv = 2c0〈e, e〉 = 2c0,

E ′′′xxλ2
(0, λ0)(e, e, 1) =

1

π

∫∫

D

e21dudv = 〈e, e〉 = 1,

E ′′′xxx(0, λ0)(e, e, e) = 0.

Applying Conclusion 3.10 we get the following theorem.

Theorem 4.7. Let λ0 ∈ R2
+ satisfy the above assumptions. Then the solution set of

equation (13) in a certain neighbourhood of (0, λ0) ∈ X ×R2
+ is the union of two sets: Λ

and Ξ. The set Ξ is given by

Ξ = {(x̂(ξ, λ1), λ1, f(ξ, λ1)) : |ξ| < r, |λ1 − λ01| < r},

where x̂ and f are C∞-smooth functions such that x̂(0, λ01) = 0, f(0, λ01) = λ02,

x̂′ξ(0, λ01) = e, f ′ξ(0, λ01) = 0, x̂′λ1
(0, λ01) = 0 and f ′λ1

(0, λ01) = −2c0.
Moreover, the intersection of Λ and Ξ in a sufficiently small neighbourhood of (0, λ0) can

be parametrized as follows

IΛ,Ξ = {(0, λ1, f(ξ̂(λ1), λ1)) : |λ1 − λ01| < %},

where 0 < % ≤ r and ξ̂ is a C∞-smooth function such that ξ̂(λ01) = 0 and ξ̂′(λ01) = 0,

which gives that (0, λ0) is a bifurcation point of (13).
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elastic disk lying on an elastic foundation”, Annales Polonici Mathematici, Vol. 77,
(2001), pp. 53–68.

[13] J. Janczewska: “The necessary and sufficient condition for bifurcation in the von
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