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Abstract

Visibility conditions between antennas, i.e. Line-of-Sight (LOS) and Non-Line-of-Sight (NLOS) can be crucial in the context

of indoor localization, for which detecting the NLOS condition and further correcting constant position estimation errors or

allocating resources can reduce the negative influence of multipath propagation on wireless communication and positioning.

In this paper a deep learning (DL) model to classify LOS/NLOS condition while analyzing two Channel Impulse Response

(CIR) parameters: Total Power (TP) [dBm] and First Path Power (FP) [dBm] is proposed. The experiments were conducted

using DWM1000 DecaWave radio module based on measurements collected in a real indoor environment and the proposed

architecture provides LOS/NLOS identification with an accuracy of more than 100% and 95% in static and dynamic senarios,

respectively. The proposed model improves the classification rate by 2-5% compared to other machine learning (ML) methods

proposed in the literature.

c© 2023 Published by Elsevier Ltd.
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1. Introduction

Indoor environment attributes, especially multipath

propagation, may significantly distort the transmitted

signals, which is an important issue. Therefore, the

most advanced concepts such as 5G, cyber-physical

systems or the Internet of Things (IoT) are considered

first, where the reliability of smart building systems

is of strategic importance due to control, maintenance

and security issues [1–3]. Hence, one of the possible

methods to minimize errors determined by undesirable
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indoor environment influence to identify the direct

undisturbed visibility conditions between antennas of

communicating devices, i.e. Line-of-Sight (LOS) and

Non-Line-of-Sight (NLOS) that occur when some ob-

stacle blocks the direct path of transmission between

the antennas, which may be crucial for the most com-

mon indoor services interconnecting a large number of

distributed devices, localization, routing management

and resources allocation [4–6].

Ultra Wide Band (UWB) technology can be con-

sidered as one of the most suitable solutions for in-

door because its resistance to multipath effects and

sub-meter distance measurement accuracy is deter-

mined by the wide bandwidth. Due to its wide band-

width, UWB additionally provides high time resolu-

tion, which is essential in terms of indoor localiza-

tion [7, 8]. Therefore, DecaWave DWM1000 UWB
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modules, compliant with IEEE 802.15.4-2015 stan-

dard, were chosen for the experiments presented in the

given article.

The next issue is Artificial Intelligence (AI), which

is becoming increasingly popular while consider-

ing the latest technologies, providing adaptability to

changing environmental characteristics, and which is

particularly effective for non-linear problems. Both

machine learning (ML) and more complex deep learn-

ing (DL) methods have been found very useful re-

cently, not only within strictly computer and automatic

systems, but also in radiocommunication-related solu-

tions, including networks management, localization,

resource allocation, channel modelling or even receiv-

ing process as the support for classical error correction

algorithms [9–11].

Taking the above into consideration a Deep Feed-

forward Neural Net (DFNN) architecture is presented

to identify LOS and NLOS situations in real indoor en-

vironments using UWB signals. The proposed method

can improve the position estimation or dynamic re-

source allocation in smart buildings, which is highly

useful in terms of 5G or IoT systems.

In Section II, the current state of research on NLOS

detection using ML method topics is reported, which

will serve as a reference for further evaluation of the

proposed model. In Section III, the measurement

methodology and the characteristics of the collected

data are described. In Section IV, the designed DFNN

structure and its evaluation are presented. In the last

section, conclusions are drawn and a short summary is

given.

2. Related work

Since this paper deals with the application of ML in

LOS/NLOS identification, it is a prerequisite to ana-

lyze the current research related to this topic. There

are many articles that study this issue, some of which

are systematized in Table 1. It is important to mention

that, due to the specific interests of this topic, papers

presenting only simulations or analytical solutions that

do not involve ML or do not strictly deal with in-

door environments (e.g., vehicle-to-vehicle communi-

cation, Global Navigation Satellite Systems, geoloca-

tion) are not more comprehensively described in the

literature [12–19].

In Table 1, the most meaningful information is

listed, such as the designed model and its input pa-

rameters, the technique or the best accuracy obtained.

Whereas the presented literature mentions many dif-

ferent input features and parameters for validity as-

sessment, all of them are listed in Table 1 in their orig-

inal form and explained in the subsequent part of this

paper.

Firstly, it is important to elaborate on the input pa-

rameters used in the above-mentioned methods. Be-

cause of the fact that some of the presented architec-

Article

reference

Technology/

system

Type of research

measurement static/

dynamic

ML method
Input

parameters
Accuracy [%]

[20] WiFi static
Support Vector

Machine (SVM)

5 Channel State

Information (CSI)

parameters

pmNLOS : 18

p f NLOS : 13

[21] WiFi static SVM

Received Signal

Strength Indicator

(RSSI), 2 CSI

parameters

overall: 94

[22] WiFi
static and

dynamic

Least Square SVM

LS-SVM

3 Received Signal

Strength (RSS)

parameters

static: pe: 6

dynamic: pe: 12.5

[23] UWB static SVM

6 Channel Impulse

Response (CIR)

parameters

pLOS : 90.2

pNLOS : 91.9

[24] UWB static SVM CIR
static 1: 92

static 2: 100

[25] UWB static LS-SVM
3 CIR

parameters

pmNLOS : 9

p f NLOS : 8.2

[26] UWB dynamic
Convolutional

Neural Network
CIR overall: 87.4

[27] UWB static SVM 3 CIR parameters

overall: 93

pLOS : 94.7

pNLOS : 92.6

[28] UWB static Logistic Regression
RSS, 8 CIR

parameters

overall: 87.2

pLOS : 87.8

pNLOS : 86.5

[29] UWB
static and

dynamic

Multilayer

Perceptron (MLP)

and Boosted

Decision Trees

(BDT)

3 CIR parameters

static: 98

dynamic 1:

MLP: 82,

BDT: 87

dynamic2:

MLP: 92,

BDT: 94

[30]

Wireless Local

Area Network

(WLAN)

dynamic
Recurrent

Neural Network
CSI and RSSI overall: 91

[31]

Software

Defined Radio

(SDR)

static
Random Forest

(RF)
4 CIR parameters

pLOS : 96

pNLOS : 98

Proposed solution UWB
static and

dynamic
DFNN

Total Power (TP)

and

First Path Power

(FP)

static:

pNLOS : 100

pLOS : 99.3

overall: 99.6

dynamic:

pNLOS : 92.1

pLOS : 99.7

overall: 95.7

pLOS - LOS accuracy, pNLOS - NLOS accuracy, pmNLOS - missed NLOS, p f NLOS - false NLOS, pe = pmNLOS + p f NLOS

Table 1 Articles describing ML-based LOS/NLOS identification

tures are rather simple classifiers (e.g. SVM), the fea-

tures extracted from CSI or CIR can be more appropri-

ate as input parameters than the whole CSI or CIR it-

self, because mathematical structures, unlike DL, can-

not express complex, nonlinear dependencies by it-

self. These features can be obtained directly from

the signal and they are: the time of rise, the signal

energy, the number of paths with more than 85% to-

tal energy, the power difference between the first and

the strongest path, the amplitude, the Received Signal

Power to the First Path Power level ratio (RFPR). And

the others are quite statistical: skewness, Kurtosis, Ri-

cian K factor, mean, standard deviation, Mean Excess

Delay (MED), or Root Mean Squared Delay Spread

(RMS). Although all of these parameters occurred in-

terchangeably in the literature and only specific sets

of them are best for models performances, depending

on the collected measurements and used architectures,

they are not summarized in Table 1.

Secondly, the presented efficiency metrics should be

explained. General accuracy, which indicates the ra-

tio of the number of correct classifications to the total

number of samples tested, is described overall. Ana-

logically, LOS and NLOS accuracies (pLOS , pNLOS )

equal the number of correct identifications of one of

the conditions (LOS or NLOS) to the number of all its
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samples. On the other hand, the other three parame-

ters define the inaccuracy level as they pertain strictly

to misclassifications occurring. pmNLOS indicates the

number of missed NLOS labels to the total number

of all NLOS samples, and p f NLOS defines false NLOS

classifications, or simply missing LOS labels, out of

the total number of LOS samples. pe is the sum of

pmNLOS and p f NLOS and it denotes the probability of

error for the tested model. All these metrics will be

further used in the proposed DFNN evaluation.

Analyzing the mentioned literature, it can be con-

cluded that within all the articles at least 3 features

are used as input parameters and the SVM model is

evaluated in over half of them. Moreover, only four

papers present an evaluation based on dynamic mea-

surements and only one selected scenario has an accu-

racy of 94%. Since dynamic motion determines the

occurrence of fast fading, it is important to include

such scenarios during model evaluation and testing.

An important issue is the assignment of data during

the training and testing phases. Although in, e.g. [29],

different scenarios are used for learning and testing, in

[21, 24, 30] data from the same scenario is divided be-

tween the training and testing phases, which may im-

pact the generality assessment of the designed model.

Considering the previously-mentioned methods, the

use of ML methods to evaluate LOS/NLOS conditions

can be very effective. However, the total accuracy de-

pends strictly on the complexity of the tested model

and the analyzed input parameters and it may vary sig-

nificantly with respect to the measurement scenarios

and the initial data. Thus, the goal of this paper was

established – DL architecture for LOS/NLOS identifi-

cation, with a stable accuracy of at least 94% for dy-

namic scenarios, taking into account real-time opera-

tion, with the smallest possible number of input values

and directly available from the measurements. Addi-

tionally, it was decided to include fluent transitions be-

tween LOS and NLOS conditions in the measurement

scenarios since the changeover issue has not been ana-

lyzed in the literature yet. The novelty of the proposed

approach includes not only the usage of the promising

AI-based models, but also their evaluation regarding

different types of propagation conditions: static and

dynamic scenarios involving dynamic, fluent changes

between LOS and NLOS.

3. Experimental data collection

To meet the assumptions indicated in the previous

section, it is important to choose the most suitable

ML structure. Since the analyzed data included both

static and dynamic measurements, a model handling

the nonlinearity issue is needed. DFNN is the net-

work that single-handedly distinguishes nonlinear de-

pendencies based on an even highly reduced number

of input parameters. At the same time, taking into ac-

count model complexity, it is still more suitable than a

Recurrent Neural Network (RNN) or a Convolutional

Neural Network (CNN). Before choosing a specific

DFNN architecture for LOS/NLOS identification, data

from the training and testing phases had to be collected

in a real indoor environment. The measurements were

performed during three separate campaigns: one static

and two dynamic, at Gdansk University of Technol-

ogy, using a UWB module: DecaWave DWM1000

working at 6489 MHz frequency and 499.2 MHz of

bandwidth. During each scenario, two parameters

were collected: Total Power (TP) [dBm] and First Path

Power (FP) [dBm] based on CIR. Since CIR repre-

sents the system response to an input impulse signal,

TP indicates the total received signal power (the sum

of the power of all the components from a multipath

propagation), and FP represents the power of the first

received component. Both of them were read out from

the node registers and then transmitted [32] with a rep-

etition rate of 25 measurements per second to a data

collector. A more comprehensive description of the

measurement stand can be found in [33].

3.1. Campaigns 1 and 2

The first campaign (C1) is static and it consists of

ten different scenarios: 1-6 are LOS, and 7-10 are

NLOS scenarios, each containing approximately 8000

pairs of the collected CIR parameters. The second, dy-

namic campaign (C2) comprises nine scenarios: two

LOS (approx. 7000 measurements for each) and seven

NLOS (approx. 7000 measurements for each) scenar-

ios. This gives over 140 000 TP and FP measure-

ments. At first, all the NLOS scenarios were analyzed

in terms of the distance dependency and then only two

NLOS scenarios were chosen for further model eval-

uation to stick to an equal proportion of LOS/NLOS

samples.

In Fig. 1 a plan view of the measurement area

(typical classroom) for both campaigns, including the

nodes arrangement and the movement trajectory, is

presented. The collecting data node (blue dot) is

placed in the centre of the room in the same spot

for each campaign, while another node (green dots

for LOS, and orange ones for NLOS) is moved be-

tween ten different measurement points for every sin-

gle static scenario, and each node placement is marked

with the corresponding scenario number. Both nodes

are mounted on tripods and located approximately 1 m

above the ground. Non-uniform distances between the

consecutive points are determined by the room archi-

tecture (wall or pilasters). Additionally, the furniture

such as desks or chairs is omitted in the given picture.

During the dynamic campaign (C2) the mobile node

is moved by a person, back and forth along the trajec-

tory denoted in Fig. 1 with solid lines (the green line

for LOS and the red lines for NLOS) where each line

represents a separate scenario. The movement speed

of the node is a standard walking pace (approx. 1-1.2

mps). The node is moved at the same height as during
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Fig. 1. C1 and C2 measurement plan view with dimensions in me-

ters

Fig. 2. Power parameters of measured data for mobile node at dif-

ferent distances (C2)

the static campaign (C1), i.e. 1 m above the ground.

Figures 2-3 show the results of the power param-

eter measurements, indicating their interdependence.

In Fig. 2 the results for NLOS scenarios at different

distances are shown, while in Fig. 3 (a) static and (b)

dynamic campaigns with both LOS and NLOS vari-

ants are marked.

As long as the distance between the nodes does not

affect the relation between TP and FP (Fig. 2), the

edge values of the range (scenarios 1 and 7) are cho-

sen for further analysis.

It can be observed that the dynamic scenarios (Fig.

3) are characterised by sparser power values than the

static ones (Fig. 2). Additionally, for the dynamic sce-

narios both LOS and NLOS data points are overlap-

ping, which impedes the identification process. This

proves that the analysis of the data collected during

the dynamic measurements is crucial for designing a

holistic classification model.

It is important to mention that apart from the mea-

surement dynamics, electric parameters of the obsta-

cles also influence the collected data. During the 7th

scenario from the static campaign (C1), the nodes

communicate through a glass door and in this case

sparser power values can be discerned, i.e. FP: 15.8

dB, TP: 9.2 dB dispersion for 7th scenario (C1) and

FP: 33.1 dB, TP: 11.6 dB dispersion for 3rd scenario

(C2). Dispersion is defined as the difference between

the minimum and maximum received power values.

(a)

(b)

Fig. 3. Power parameters of measured data (a) TP(FP) for C1 (b)

TP(FP) for C2

Fig. 4. C3 measurement plan view with dimensions in meters

3.2. Campaign 3

The third campaign (C3) is also dynamic and it con-

sists of twenty different scenarios, each with approxi-

mately 700 measurements. It is conducted in a differ-

ent room, but with the same structure. In Fig. 4 the

plan view with a movement trajectory is presented: a

dark blue line for NLOS and a light green for LOS

condition. The reference node position is unchanged

(a blue dot).

It can be noticed that in this case both LOS and

NLOS are present in each scenario. To properly la-

bel the data and find the exact transition between LOS

and NLOS (marked with a red circle) an algorithm

for object recognition was applied [34]. The applica-

tion using a USB camera (mounted on the reference

node) sends ‘1’ (LOS information) to the reference

node each time it recognizes the symbol located on

the measurement node, and ‘0’ otherwise.
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Fig. 5. Power parameters of measured data TP(FP) for C3

The applied image recognition algorithm is the Haar

cascade of classifiers, proposed in [34]. The cascade

function is trained by the sets of positive (containing

the recognized object) and negative (containing only

backgrounds) images, from which distinctive features

with the corresponding sums of pixels are extracted.

For object recognition, the most effective features are

selected by the meta-algorithm AdaBoost [35].

The highest dispersion for this campaign equals

30.2 dB for FP and 12.4 dB for TP. The dependence of

those power parameters for all the scenarios with the

distinguished LOS and NLOS conditions is presented

in Fig. 5.

All the presented power parameter values are ini-

tial features used in further DFNN evaluation. Before

forwarding them into the network, they were normal-

ized to [0,1] range, to improve the performance of the

model convergence based on possible min/max values

that can be estimated by DW1000 radio module in the

real scenario. Simply speaking, the TP and FP val-

ues are normalized and then treated as the DFNN in-

put. Based on such input data, network classifies the

current visibility condition as LOS or NLOS. Addi-

tionally, the presented campaigns data are not merged,

i.e. the measurements for the learning phase are de-

rived from a different campaign than those used in the

testing phase. There are two main reasons for sepa-

rating the static, dynamic and dynamic with smooth

LOS/NLOS transition datasets during the training and

testing phases. Firstly, it allows for analyzing the ro-

bustness of a given solution and to evaluate the accu-

racy of the LOS/NLOS classification for measurement

data of different nature. Better generalization leads to

the second aspect, namely the control of the overfitting

problem.

4. Results and discussion

Collecting the measurement data allowed for de-

signing the optimal neural network architecture and

evaluating the performance of LOS/NLOS identifica-

tion. This process is divided into two subsections. In

the first section, the modeling process of DFNN is

introduced, including describing the general network

operations and determining the final structure. In the

second part, the final results are presented and com-

pared with the other two methods.

4.1. Network modelling

In Fig. 6 the proposed DFNN architecture with

the marked connections between the nodes across

all the layers is shown. A simpler version of

the presented structure is previously introduced in

[36]. {nl,1, nl,2, nl,3, ..., nl,i} represent each node {1, ..., i}

within l layer. The output y for the exemplary first

node in the first hidden layer can be described by the

following formula:

y1 = f (

i∑

j=1

x jw j + b1) (1)

where {x1, x2, x3, ..., x j} indicate input parameters,

and w j for j = 1, 2, . . . represents node weights. The

additional bias weight is denoted as bn, where n =

1, 2, 3 and the activation function is f ().

The final output denoted as nout1 and nout2 is cal-

culated based on the logSoftmax activation function

which yields normalized values representing probabil-

ity, including the given input and the two examined

classes: LOS and NLOS.

During the learning process, all weights are modi-

fied in order to minimize the difference between the

network output and the reference output. The level of

such a weight modification will be further described

as the learning rate. Considering the popularity of the

neural networks and numerous publications provid-

ing an extensive description of the mathematical back-

ground regarding the presented architecture, a more

detailed explanation can be found in [37, 38].

The presented structure is the final model that is

selected using a grid search based on C3, i.e. the

most complex data, in terms of both the measurement

methodology and the obtained power parameters (Fig.

5), as a learning set, and C2 as a testing set. The grid

search method examines all the potential model struc-

tures based on a given set of possible parameters. Al-

though this method can be considered redundant (for

more complex identification problems genetic algo-

rithms can be more efficient) for that type of classi-

fication, it proved sufficient. The set of (1-4) hidden

layers is evaluated, with varying activation functions

(Sigmoid and ReLU) and batch sizes (1-150). All the

models are trained for a fixed learning rate equal to

0.001 and converged below 100 epochs. Based on the

performed parameter search, architectures with 3 or

more hidden layers provide considerable validity, so

that the set of layers 1-4 is not further extended. Fol-

lowing across-the-board parameter search, only the fi-

nal result of the extraction is presented. The evaluated

model represents the best trade-off between the iden-

tification efficiency and the lowest model complexity.

The architecture details, strictly pertaining to the

learning process (e.g. to the activation function for

each hidden layer), are systematized in Table 2
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Fig. 6. Proposed DFNN architecture

Layer, No. of nodes Activation function

1, 100 Rectified Linear Unit (ReLU)

2, 100 ReLU

3, 100 ReLU

No. of epochs 50

No. of batches 150

Learning rate 0.001

Optimization algorithm Adaptive Moment Estimation (ADAM)

Table 2 DFFN architecture parameters

The epochs number indicates the optimal quantity

of iterations during the training phase, and the num-

ber of batches represents the sets of a few different

samples from the learning data collection. ADAM is

chosen as an optimization algorithm that is applied to

dynamically varying learning rate parameters during

the updating of weights. It allows to improve the ef-

fectiveness of model convergence [39].

4.2. DFNN evaluation and final results

Since the architecture of the DFNN has been de-

termined, it is possible to verify the validity of the

classification performance. For comparison, the learn-

ing and testing process also used the algorithms men-

tioned in Section 1, i.e., SVM with linear and Radial

Basis Function (RBF) kernels, and RF [20, 31].

Considering the character of the collected data, only

dynamic campaigns are included in the learning pro-

cess during the proposed DFNN model evaluation.

Moreover, randomness of the initial weights and shuf-

fling data samples during separate tests determine lim-

ited repeatability of separate learning processes and

the variability of the final results. Hence, only the best

final results (extracted from the 10 individual trials of

each configuration) are presented in Table 3.

The above results show that the proposed DFNN

structure outperforms the other methods regarding

three different variants: C2/C1, C2/C3 and C3/C2 by

about 2% compared with the second best method and

from 5% to 10% compared with the worst evaluated

algorithm. In the case of C3/C1, all the methods of-

fered over 99% accuracy. Moreover, DFNN yielded

the highest mean values for particular pNLOS and pLOS

metrics, i.e. 97.5% and 97.2% respectively. The sec-

ond best structure, SVM with RBF kernel, resulted in

Architecture Training set Testing set pNLOS [%] pLOS [%] Accuracy [%]

DFNN

C2 C1 100 99.32 99.60

C2 C3 97.91 89.88 94.01

C3 C1 100 99.95 99.97

C3 C2 92.08 99.72 95.74

Mean value: 97.50 97.22 97.33

Linear SVM

C2 C1 100 83.15 90.03

C2 C3 99.07 84.00 91.75

C3 C1 98.03 99.98 99.18

C3 C2 81.47 99.98 90.33

Mean value: 94.64 91.78 92.82

RBF SVM

C2 C1 100 96.18 97.74

C2 C3 99.43 83.23 91.56

C3 C1 99.97 99.98 99.98

C3 C2 87.75 99.96 93.60

Mean value: 96.79 94.84 95.72

RF

C2 C1 100 84.77 90.99

C2 C3 99.48 78.36 89.21

C3 C1 98.88 99.92 99.49

C3 C2 86.53 99.91 92.94

Mean value: 96.22 90.74 93.16

Table 3 Overall accuracy results

pNLOS equal to 96.8% and pLOS equal to 94.8%. Al-

though the results for static C1 dataset identification

for both DFNN and SVM with RBF can be compara-

ble, it should be noted that DFNN presents noticeably

higher effectiveness in the case of dynamic measure-

ment data analysis, i.e. C2 and C3 testing datasets.

The dynamic character of the collected data, due to

the occurrence of fast fading, determines data nonlin-

earity. Thus, the DFNN-based solution surpasses all

the other evaluated methods. It is also worth mention-

ing that the proposed DFNN model is proved to be

the most stable one: the difference between the best

and the worst result (marked with the red colour) for

each method equaled: 5.6%, 8.4%, 9.2% and 10.3%

for DFNN, RBF SVM, Linear SVM and RF respec-

tively.

Considering a given accuracy rate, it also occurs

that, apart from the 99% accuracy rate, the tested mod-

els provide nonsymmetric identification performance,

where one condition is classified much better than the

other. This stems from the specificity of the learning

process, i.e., the mathematical structure is more suit-

able for one of the LOS/NLOS variants.

Additionally, influence of the chosen training

dataset on the final identification efficiency can be dis-

cerned. The DFNN accuracy of C2 as training set and

C3 as test set is expected to be lower (94%) than that

of the swap set (95%), since C3 movement trajectory

is more complex (with LOS/NLOS transition). These

results suggest that even some brief dynamic scenarios

containing LOS/NLOS transformations may be suffi-

cient to train the proposed model for use in new real-

world operational environments.

In Fig. 7-10 false detection rates for each train-

ing/testing variant and each model are presented. They

represent the pmNLOS and p f NLOS which are defined in

section 2. It can be observed that the model learns

better for one of the variants (LOS or NLOS) pro-

vides more false detection for this variant, and less for

the other one. Thus, as long as one of the accuracies

equals 100% for each algorithm (Tab. 3), only one

colour is displayed on the bar (Fig. 7).

Analyzing the given bar plots, it can be noticed that
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Fig. 7. Misclassification rate for C2 (training) C1 (testing) sets

Fig. 8. Misclassification rate for C2 (training) C3 (testing) sets

Fig. 9. Misclassification rate for C3 (training) C1 (testing) sets

Fig. 10. Misclassification rate for C3 (training) C2 (testing) sets

Fig. 11. Misclassifications within exemplary scenarios (C2/C3)

each training dataset (C2 and C3) determines differ-

ent learning performance, not only with reference to

the final accuracy, but also with respect to the better

adaptation of the model to a specific direct visibility

condition. Hence, for C2 training dataset more false

NLOS classifications occurres, while for C3 train-

ing dataset misclassifications are mostly based on the

missed NLOS cases.

The last step of analyzing the obtained results is

to evaluate the areas (in the environmental context)

where misclassifications appear. Nevertheless, since

the collected data contain power measurements and

LOS/NLOS labels only, the explicit node position cor-

responding to the error occurrence cannot be indi-

cated. Thus, in Figure 11, exemplary misclassifica-

tions are presented with reference to the LOS/NLOS

changeover as a function of samples.

It can be noticed that the identification errors of

DFNN occur especially in the transition regions, es-

pecially the LOS to NLOS transition. However, some

misclassifications also occur in the stable NLOS re-

gion (dark blue line in Fig. 4). The authors suggest

that augmenting the collected data with more time-

dependent information may reduce the above misclas-

sification problem. Nevertheless, such research re-

mains in future plans.

5. Conclusions

The given paper substantiates the validity of using

ML methods in terms of classifying the LOS/NLOS

problem within the real indoor environment. The pre-

sented research showes that the optimal DFNN ar-

chitecture may allow proper identification of the di-

rect visibility conditions. Even if the input param-

eters characterizing the communication environment

are reduced to only two components instead of, e.g.

the whole CIR, it still outperforms state-of-the-art

methods presented in section 2. Moreover, the de-

signed training and testing structure, which utilizes

separate measurement data obtained during different

campaigns, still provides the LOS/NLOS classifica-

tion with 95% accuracy for a dynamic environment,

and over 99% for a static one.

The particular case study presented in the paper can

be used within indoor systems in both localization, as

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


8 Olejniczak A., et al.

a tool to reduce the position estimation error, and in

other radiocommunication-related systems, e.g. for

routing optimization or resource allocation. Consider-

ing the potential applications of such solutions in real

radiocommunication systems, the most critical factors

that should be considered are undoubtedly time and

computational complexity.

Since the proposed decision-making process is

based on single FP and TP values (directly read from

DWM1000 radio modem register) only, the real-time

operation is possible. This is an important advantage

of DFNN (or any simpler ML method) in comparison

to ML models analyzing also time-dependent changes,

e.g. Long Short-Term Memory or RNN. Although

such architectures may be more suitable in the case

of dynamics of the measurement methodology, which

significantly affects the identification process because

of additional issues occurring during the node motion

(e.g. fast fading), they also require historical input val-

ues for efficient classification.

Regarding the computational complexity there are

various, more basic ML methods that outperform deep

learning, such as SVM. Nevertheless, the results pre-

sented in the paper have shown that those less com-

plex models provide similar accuracy only for static

measurement scenarios. In the case of a dynamic en-

vironment, it is still more reasonable to use the DFNN

model. Considering the fact that the proposed deep

architecture is rather simple (3 layers, ReLU activa-

tion function), it is possible to provide a LOS/NLOS

classification based on TP and FP values within the

measurement time resolution (40 ms), even on a mi-

crocontroller with low computational power. Thus, the

proposed model may be implemented inside both fixed

network infrastructure and individual nodes.

Undeniably, additional testing of the above-shown

DFNN structure is still needed. The presented model

should be evaluated and extended to cover different

areas and obstacles determining the NLOS state (e.g.

different buildings, types of wall, furniture, people)

which directly affects the estimated CIR. Furthermore,

it would be valuable to analyze the relation between

the collected data characteristics and the final results

of accuracy to derive the set of data which is most

effective during the learning process. Finally, more

deep learning-based structures can be analyzed and

compared, including both time-dependent and time-

independent models.
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