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This paper introduces a versatile and efficient design methodology for optimizing wide-angle 
impedance matching (WAIM) configurations, enhancing the scanning range of arbitrary antenna 
arrays. The three-layered structure is modeled using the generalized scattering matrices (GSMs) of the 
layers, incorporating sufficient excited modes for efficient input impedance calculation. To broaden 
the method’s applicability and meet manufacturing requirements, it also considers dielectric materials 
other than air between the array and WAIM. Machine learning (ML) algorithms are integrated to 
evaluate WAIM characteristics, reducing calculation time and resources while enhancing adaptability to 
new structures with minimal designer intervention. Decision Tree-based models are chosen to provide 
accurate prediction while minimizing the dataset preparation time. The methodology involves training 
a network using three ML algorithms, including decision tree, bagging, and random forest. Optimal 
WAIM parameters are efficiently determined using a genetic algorithm (GA). Three matching layers 
are designed and validated for several arrays operating at the frequency range between 9 and 11 GHz. 
The random forest model shows the best performance in predicting the WAIM behavior, with RMSE, 
R2 scores, MAPE of 0.033, 0.916, and 2.161, respectively. Results demonstrate that the designed 
WAIMs effectively enhance the scanning range of both microstrip and waveguide arrays within the 
desired frequency range. The method achieves a calculation time of 0.3 s per angle, significantly faster 
than previous approaches, with a total runtime under an hour and minimal RAM usage (9.7 MB). This 
method offers an efficient framework for developing tools to design wide-angle scanning arrays and 
expand their applications.

Keywords  Wide-angle impedance matching (WAIM), Machine learning (ML), Decision tree (DT) models, 
Generalized scattering matrix (GSM)

In Recent years, providing a high-gain and ubiquitous communication link has emerged as a prominent topic in 
telecommunication network applications. To address the issues, the proposed solutions typically involve high-
gain beam-scanning antennas. In contrast to the preceding slow and heavy mechanically rotated alternatives, 
phased-array antennas (PAAs) offer reliable and agile beam-steering capabilities, making them ideal for modern 
applications such as communication-on-the-move. However, the primary challenge in developing a wide-angle 
phased-array antenna (WAPAA) is the limited scanning range of arrays, which is mostly restricted to ±50◦ in 
three radiation planes, including E-, D-, and H-planes1,2. This issue primarily arises from impedance variations 
of the array element at the extreme scanning angles. These variations are caused by rising mutual coupling 
level between the PAA’s elements, leading to a dramatic drop in the antenna’s delivered power, which hinders 
the achievement of wide-angle arrays3. Therefore, achieving a WAPAA requires complex electromagnetic (EM) 
manipulations. Numerous relevant studies have tackled this challenge to enhance the array’s scanning range.

The first set of solutions addresses this issue by mitigating inter-element mutual coupling through 
modifications to the array’s radiation structure4–10. Although mitigating mutual coupling reduces scanning loss 
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at extreme scanning angles, this approach requires complex redesigns of the array, limits the array’s element 
choices, and increases the overall cost and complexity of the structure.

The second set of solutions involves placing wide-angle impedance matching (WAIM) superstrate above the 
aperture to compensate for impedance variation of the element at extreme scanning angles11–23. Earlier approaches 
included loading the waveguide array with multiple dielectric layers to create the necessary susceptance for 
impedance matching at those angles11–13. To achieve a consistent improvement across all radiation planes over 
a relatively large bandwidth, the dielectric slab was replaced with an engineered metamaterial layer, providing 
greater control over the impedance of the matching structure13–19. To minimize the need for designer expertise, 
several studies have focused on developing methodologies for designing the matching layer20–23. Initially, a 
method was proposed to design WAIMs for a dipole array by modeling the array-WAIM interaction as a set 
of uncoupled transmission lines20. Later, for analyzing large systems, a system-by-design (SbD) paradigm was 
deployed to design a matching structure that enhanced the waveguide array performance21. However, these two 
approaches were tailored to specific array elements and WAIMs, limiting the generalizability of the proposed 
approach. An element-independent design approach was proposed22 to realize an anisotropic matching layer by 
optimizing the permittivity and permeability tensors. Similar to Ref.20, their approach modeled the interaction 
between the array and the loaded layer using several uncoupled transmission lines. However, they incorporated 
the generalized scattering matrix (GSM) representation of the array element, making the approach independent 
of the element type. Viewing the matching layer as a metaradome, another element-independent design strategy 
was proposed23 to protect the PAA performance from the detrimental effects of the nearby cover. Unlike Ref.22, 
this method does not treat the metaradome as a homogeneous layer, allowing it to account for the complex 
interactions between the metaradome and the phased array antenna. This results in more accurate results, 
especially for non-homogenous structures. Furthermore, the metaradome was analyzed using a fast periodic 
method of moments (FPMoM) code, yielding high accuracy for planar periodic structures used as WAIM. 
However, the reliance on the FPMoM code limits the WAIM choice only to planar metamaterials, as the code’s 
precision is primarily optimized for such configurations. Developing such a code for more complex structures 
requires extensive time and designer expertise, reducing the method’s generalization and adaptability.

To address this issue, recent advances in machine learning (ML), particularly supervised learning techniques, 
have demonstrated significant potential to accelerate the prediction of EM behavior in complex structures 
without relying on intensive numerical codes24–35. Supervised ML models are trained on labeled datasets from 
a limited set of high-fidelity simulations, enabling them to learn the relationship between input parameters and 
output performance. These models then serve as surrogate models (SM), capable of generalizing performance 
predictions across a broader design space. This approach significantly reduces computational time and resource 
consumption while maintaining accuracy. Decision tree algorithms, a prominent category of supervised 
learning models, have been used in various applications such as antenna design24–26, microwave medical 
sensing27, intelligent surfaces29, electromagnetic numerical modeling30,31, and wireless propagation32. Previous 
studies have shown that tree-based models outperform well-known neural network-based learning methods, 
such as deep learning, when applied to tabular data, especially when only a limited amount of data is available. 
Leveraging the “wisdom of the crowd” theory, these models exhibit high data efficiency and require significantly 
less training data preparation time compared to deep learning approaches35–41.

This paper presents a novel methodology for designing wide-angle impedance matching (WAIM) structures 
independently of the underlying array, offering several key contributions: 

	1.	 The proposed method significantly reduces computational cost and hardware requirements by focusing sole-
ly on analyzing the WAIM rather than jointly optimizing the array and the matching structure. This inde-
pendent approach minimizes reliance on full-wave solvers while maintaining accuracy. Additionally, the 
methodology ensures precision by considering a sufficient number of excited modes and their interactions, 
leading to a more accurate characterization of WAIM performance.

	2.	 A machine learning-based surrogate model is integrated to eliminate the need for complex numerical codes 
or computationally expensive full-wave solvers during optimization. The accuracy of the surrogate model is 
ensured through rigorous testing and comparison of different machine learning architectures, selecting the 
most reliable model for predicting WAIM characteristics. This enhances the accuracy of the design process, 
while maintaining computational efficiency.

	3.	 The methodology accurately captures the interaction between the WAIM and the array, ensuring generaliza-
tion across different array configurations. By incorporating the generalized scattering matrix (GSM) of the 
array into the calculations, the proposed approach enables WAIM designs that are adaptable to various array 
structures without requiring case-specific modifications.

	4.	 The approach considers different practical fabrication constraints, extending the design methodology to 
non-planar WAIM structures. Unlike previous studies that assume an air gap between the WAIM and the 
array, this method incorporates the necessary support structures into the design. This allows for the develop-
ment of more complex and practically realizable WAIM configurations that were previously constrained to 
planar geometries.

Methodology to design a wide-angle impedance-matching structure
Overview of the modular framework
This section outlines the proposed methodology for designing a matching structure to enhance power delivery 
at extreme scanning angles. Unlike integral equation-based approaches42, our method adopts a modular 
perspective on the multi-layered configuration of the PAA, WAIM, and the intermediate layer, shown in Fig. 1. 
This modular approach allows for layer-by-layer modification, making the methodology adaptable and widely 
applicable.

Scientific Reports |        (2025) 15:16601 2| https://doi.org/10.1038/s41598-025-00310-0

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


To provide an efficient and general method, the GSM concept is integrated to solve the problem. The 
framework, illustrated in Fig. 2, includes two main phases. The first phase involves calculating the loaded array 
matrix from its three constituent GSM matrices: SA (antenna array), SG (gap layer), and SW  (WAIM). The 
second phase focuses on preparing GSM data. By cascading the GSM and calculating the loaded array’s input 
impedance, a global optimization procedure (yellow blocks) iteratively explores the WAIM parameters domain, 
adjusting each parameter to minimize the reflection coefficient and improve the overall impedance matching 
across the targeted scanning angles.

Overall GSM matrix formulation derivation
For a multi-layered periodic structure, based on the Floquet analysis1, the fields at the intersections can be 
expressed as the superposition of a sufficient number of TE and TM modes. Due to the different characteristic 
impedances of excited modes, the GSM concept is used to represent the input–output relationship of each layer43, 
normalizing each mode’s incident and reflected waves to its characteristic impedance. Figure 3 illustrates the 
graphical visualization of the excited modes within the unit cell of the configuration. The large boxes represent 
each layer’s GSM, with solid lines indicating forward and backward excited modes and dotted lines showing 
their connections at the intersections. In this model, it is assumed that m, n, and k modes (including both 
TE and TM modes) exist at I2, I3, and I4 to construct the EM fields at each discontinuity. The number of 
required excited modes can be calculated from the desired accuracy, which is discussed briefly later. The antenna 
port at the I1 plane can be excited by TEM or TE mode, depending on the antenna’s feeding type. At I4 (the 
boundary between the WAIM and free space), both propagating and evanescent modes exist. The evanescent 
modes can be assumed to be terminated with a loading impedance equal to their respective mode’s impedance 
to model their non-traveling feature20. Hence, three GSMs with the size of (m + 1)(m + 1), (m + n)(m + n), 
(n + k)(n + k) are formed for the SA, SG, and SW , respectively. Connecting the identical modes at both 
sides of the intersections completes the loaded array model. The overall GSM of the three-layered structure is 

Fig. 2.  Framework overview of the proposed method.

 

Fig. 1.  (a) Example of the array with the WAIM and the gap between them. (b) Exploded view of the structure 
with the reference planes of each layer.
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then calculated by cascading the GSMs of the three layers1,44. Following the same procedure, the elements of the 
cascaded GSM, SAGW , are defined as follows: 

	 SAGW
11 = SA

11 + SA
12

(
I − SGW

11 SA
22

)−1
SGW

11 SA
21 � (1a)

	 SAGW
12 = SA

12
(
I − SGW

11 SA
22

)−1
SGW

12 � (1b)

	 SAGW
21 = SGW

21
(
I − SA

22SGW
11

)−1
SA

21 � (1c)

	 SAGW
22 = SGW

22 + SGW
21

(
I − SA

22SGW
11

)−1
SA

22SGW
12 � (1d)

where I is the identity matrix. The elements of the SGW  can be calculated in the same way from the SW  and SG.
It is worth noting that in the (1a–1d) each element of the three matrices is also a matrix. To identify them, 

first assume Eq. 2a represents the general form of a particular layer’s GSM with M1 modes on the input side and 
M2 modes on the output side (M1 + M2 = M ). Each SA,G,W

ij  can then be defined as Eqs. (2b–2e). 

	

SA,G,W =




S1,1 · · · S1,M1 · · · S1,M

...
. . .

...
. . .

...
SM1,1 · · · SM1,M1 · · · SM1,M

...
. . .

...
. . .

...
SM,1 · · · SM,M1 · · · SM,M




� (2a)

	

SA,G,W
11 =




S1,1 · · · S1,M1
...

. . .
...

SM1,1 · · · SM1,M1




M1×M1

� (2b)

Fig. 3.  Equivalent model for the loaded array formed by three cascaded GSMs.
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SA,G,W
12 =




S1,M1+1 · · · S1,M

...
. . .

...
SM1,1 · · · SM1,M




M1×M2

� (2c)

	

SA,G,W
21 =




SM1+1,1 · · · S1,M1+1
...

. . .
...

SM,1 · · · SM,M1




M2×M1

� (2d)

	

SA,G,W
22 =




SM1+1,M1+1 · · · SM1+1,M

...
. . .

...
SM1+1,M · · · SM,M




M2×M2

� (2e)

As indicated in Eqs. (2b–2e), SA,G,W
11  and SA,G,W

22  represent the interactions between different modes in the 
input and output sides, respectively. SA,G,W

12  and SA,G,W
21  show the modal interaction between two sides of the 

layer. With the cascaded GSM, SA,G,W , the input impedance of the loaded array can be calculated as1

	 Zin = Z11 − Z12 (ZL + Z22)−1 Z21� (3)

where Zij  are the elements of the overall impedance matrix calculated using SAGW , and ZL is defined as 
follows45:

	 ZL =
(
I + SAGW

11
) (

I − SAGW
11

)−1
Z0� (4)

where Z0 is the diagonal matrix, including the reference impedance of each mode on the input and output sides.

GSM preparation
As illustrated in Fig. 2, a key part of this methodology involves deriving the GSM for the three main components 
of the problem, SA, SG, and SW , at different scanning angles (θi,ϕi). The following sections provide a detailed 
explanation of the extraction process for each layer’s GSM. 

	 (1)	 Array: Although there are analytical methods to derive the matrix for the simple elements, such as dipole 
and waveguide apertures20,21, most array configurations require analysis using EM solvers. Although us-
ing an EM solver for the GSM evaluation can be time-consuming, this evaluation is performed once at the 
beginning of the design process and thus does not significantly impact the overall design time. Moreover, 
for infinite periodic PAAs, setting the parallel periodic boundaries of the array’s unit cell allows for the 
evaluation of the unit cell only instead of the entire PAA, maintaining numerical accuracy and reducing 
calculation time.

	 (2)	 Gap layer: The same approach can be applied for the GSM extraction of the gap layer by EM solvers, 
which is particularly useful for complex support configurations that are difficult to model analytically. 
This method assumes that the gap layer is a simple dielectric material slab, allowing it to be modeled as 
several isolated transmission lines. This assumption is well-aligned with the conclusions in the Refs.20,46 
and imposes the same excited modes at two sides of the gap layer (m = n). Therefore, the elements of SG 
can be derived as 

	

S
(TE/TM)
ij =




Γ(TE/TM)
i

−
(

T
(TE/TM)
12,i

T
(TE/TM)
21,i

Γ(TE/TM)
i

e−j2βid
)

1−
(

Γ(TE/TM)
i

e−jβid
)2 if i = j,

T
(TE/TM)
12,i

T
(TE/TM)
21,i

e−jβid

1−
(

Γ(TE/TM)
i

e−jβid
)2 if |i − j| = m,

0 otherwise.

� (5)

	 (3)	 Matching layer: Previous studies have utilized EM commercial software22 or numerical codes developed 
for specific configurations23 to derive the WAIM’s GSM. However, using commercial software in iterative 
procedures is time-consuming and inefficient. On the other hand, deploying numerical codes for specific 
structures reduces the computational time. However, in cases that new structures are utilized, a whole 
new code needs to be developed by the expert designers to predict the WAIM behavior. Supervised ML 
algorithms offer an alternative by creating surrogate models that approximate the EM behavior of the 
structures without needing expensive computational resources for iterative full-wave simulations or high-
ly specialized numerical codes. SM training involves acquiring several datasets using a commercial EM 
solver. These training datasets include input–output pairs, where the input is WAIM geometric parame-
ters, and the output is the corresponding GSM.

	(3.1)	 SM training: The goal of training a surrogate model is to establish a mapping function between input and 
output datasets, (xi,yi), to emulate real-world behavior. The SM training procedure is illustrated in Fig. 4. 
Preparing the datasets requires understanding the WAIM performance. Using a commercial EM solver to 
simulate the WAIM, identified by the input vector xi, the corresponding GSM is extracted to form yi. In 
the “Data Split” section, the datasets are divided into training and testing datasets with a ratio of 4:1. The 
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training datasets are used to build a model based on a particular algorithm, with its hyperparameters op-
timized for the best performance. In the “Models Evaluation” block, the same procedure is repeated across 
multiple algorithms to identify the optimal model. The evaluation criteria for each trained model include 
mean root mean square error (RMSE), R2 score, and mean absolute percentage error (MAPE) defined as 
follows: 

	

RMSE =

√√√√ 1
N

N∑
i=1

|yi − ỹi|2 � (6a)

	
R2 =

∑N

i=1 |yi − ỹi|2∑N

i=1 |yi − ȳ|2
� (6b)

	
MAPE = 1

N

N∑
i=1

∣∣∣∣
yi − ỹi

yi

∣∣∣∣ × 100 � (6c)

	 
	where yi is the actual value, ỹi is the predicted value, and ȳ is the mean of the actual values for training and 

testing outputs. In this study, three widely used ML algorithms based on decision tree models are selected as 
follows

Fig. 5.  Decision tree prediction structure.

 

Fig. 4.  Training procedure and selection of the best SM model.
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•	 Decision tree

The Decision Tree (DT) model starts training at the root, where the most significant feature for making 
predictions is chosen. The tree then grows by splitting nodes based on this feature to minimize error, continuing 
until a stopping criterion, such as a maximum depth or minimum node size. Figure 5 shows the structure of the 
decision tree algorithm. In this tree-like structure, each internal node represents a test on a feature, each branch 
represents the outcome of the test, and each leaf node represents the final prediction.

•	 Bagging

Bootstrap Aggregating, or bagging, is an ensemble learning method, illustrated in Fig.  6. In bootstrapping, 
multiple new random subsets are created from initial training datasets, allowing each dataset to be selected more 
than once. For each subset, DT is trained, and the final prediction results from aggregating all the DT’s outputs. 
Training with random subsets enhances the model’s robustness for data variations.

•	 Random forest

As an extension of the bagging method, the Random Forest (RF) algorithm creates subsets by bootstrapping data 
and training each DT with a random subset of features. The random feature selection at each split ensures diverse 
decision nodes and reduces the correlation between trees, resulting in more robust predictions. After training 
a forest of DTs, the model’s final decision is the average of individual tree predictions. Unlike bagging, which 
uses all features for each tree, RF limits the features at each split, creating a unique and less correlated ensemble.

Optimization procedure
In this study, optimization aims to navigate the design procedure within a defined solution space and evaluate 
each step to get as close as possible to the global optimum. As shown in Fig. 2, the optimization process includes 
two main parts: calculating the cost function to assess the quality of each point and making decisions to 
determine the next step in the optimization path. This process continues until the stopping criterion is met.

Designing procedure
The procedure for designing the matching structure involves using an iterative optimization technique to 
determine the optimal geometric parameters. This approach compensates for impedance mismatches in the 
cascaded structure at specific scanning angles and frequencies. Figure 7 illustrates the design procedure for the 
matching structure. The blue blocks indicate the inputs, the grey ones represent the processes, and the output, 
containing optimal parameters, is the green block. The procedure starts with acquiring the GSM for the array 
and the intermediate layer. Using the array’s GSM, a suitable shape for the matching structure is determined to 
compensate for impedance mismatches. The next step involves defining the solution space, crucial for training 
the ML algorithm and the optimization procedure. The boundaries of this solution space are often specified 
by the limitations imposed on the matching layer parameters and other design constraints. This space can be 
multidimensional, with each point representing a unique set of parameters that meet the problem’s constraints. 
Each set of parameters corresponds to a specific matching layer configuration. By forming the WAIM using 
these parameters, SW  is evaluated by the well-trained DT-based model. With all three matrices in hand, the 
cascaded matrix is calculated at each frequency and direction. Subsequently, the loaded array’s input impedance 

Fig. 6.  Bagging method prediction structure.

 

Scientific Reports |        (2025) 15:16601 7| https://doi.org/10.1038/s41598-025-00310-0

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


and the corresponding reflection coefficient are evaluated from the acquired equivalent matrix. To evaluate the 
quality of the result, a cost function is defined as follows:

	

∑
f

∑
θ

∑
ϕ

w(f, θ, ϕ) |Γ(f, θ, ϕ, ϵ, d)|2� (7)

where ϵ and d are the permittivity and the height of the gap layer, respectively. The weighting function (w) is 
defined by the difference between calculated (ΓdB) and the desired reflection coefficient (Γdesired) for each 
unmatched set of (f, θ, ϕ) as defined below:

	
w(f, θ, ϕ) =

{ 0 matched condition
|ΓdB| − |Γdesired| unmatched condition � (8)

Unlike the traditional cost functions that rely on averaging strategies, adaptive methods adjust the weights of 
the suboptimal reflection coefficients to avoid local minima21,23. By defining the cost function, the optimization 
can systematically explore the solution space, evaluate each iteration, and adjust parameters to converge on the 
optimal matching structure configuration. To improve accuracy, it is important to evaluate a number of excited 
modes, as shown in Ref.1. To achieve 95% dissipation of the highest-order evanescent mode beneath the WAIM 
interface, the number of highest-order can be calculated using Eq. 9.

	
M = 2DxDy

d2 � (9)

where M shows the highest excited mode number, Dx and Dy  are the unit-cell dimensions, and d is the height 
of the gap layer.

Examples and results
In this section, three designs based on the methodology are presented, demonstrating the method’s potential 
to improve the array’s scanning range. All examples utilize 3D structures instead of conventional 2D surfaces 
to highlight the capabilities of 3D structures in reducing the array’s scanning loss. In contrast to 2D surfaces, 
3D structures feature variations in the direction of EM wave propagation. The first two examples use a U-slot 
microstrip antenna as the element of array. The first one assumes air as the intermediate layer, while the second 
one highlights the capability of the methodology in taking into account the effects of the gap layer dielectric 
constant. To demonstrate the versatility of the proposed method in designing for different array structures, the 
third example investigates a circular waveguide array and presents a design aimed at enhancing its radiation 
performance.

U-slot patch with air gap
In this example, a U-slot patch antenna is used as the array element. The unit cell is designed at 10 GHz and 
illustrated in Fig. 8. The array has a square lattice with a 14 mm period, less than half of the wavelength, to 
prevent grating lobes. The radiating part is printed on a Rogers RT Duroid 5880 laminate with a thickness of 
3.175 mm. Figure 9 shows the color-coded graphs of the array’s active VSWR across various frequencies and 
scanning angles within three principal planes (E, D, and H), spanning 9–10.25 GHz. The initial contour signifies 
a VSWR of 2, denoting a matched impedance, while subsequent contours represent VSWR values of 4 and 6. The 
array demonstrates a scanning range of approximately 35◦ within the selected bandwidth across all planes. The 
design goal is to extend the scanning range to 70◦ between 9 and 10.25 GHz (13% fractional bandwidth) across 

Fig. 7.  Flowchart of the methodology.
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three principal planes. In the first design, air is used as the material of the intermediate layer. According to Fig. 7, 
the initial step is to provide the inputs (GSMs for the array’s element and the gap layer).

Based on Eq. 9, 25 modes are applied to ensure accurate calculations. The next step involves defining the 
configuration of the matching structure. The shape needs to offer the compensatory impedance required for 
matched conditions. Observing the frequency behavior of the array’s impedance at extreme angles, shown in 
Fig. 10a, illustrates that a significant part of the unmatched impedance has capacitive behavior. To provide the 
necessary inductive impedance, one option is to place a set of two vertical metallic slabs above the array18,47. 
Figure 10b illustrates the configuration of the two metallic strips, designed to provide the required impedance 
for all three planes.

Knowing the WAIM’s shape, the solution space boundaries are defined based on the problem’s constraints. 
We restrict the height of each slab to a quarter wavelength to maintain a low-profile structure. In addition, the 
overall width of the WAIM should not exceed the unit cell size. Table 1 shows the variation range of the WAIM 
geometrical parameters to produce the desirable impedance at the desired frequencies. This solution space is 
utilized to prepare datasets required for training the ML models to predict the WAIM’s characteristics. The 
solution space is utilized to prepare the dataset for training the ML models to predict the WAIM’s characteristics. 
A total of 160 training data points is used to cover the input space, and 40 test data points are chosen to effectively 
evaluate the model’s predictive ability under unseen conditions. The input vector includes the structure’s 
geometrical variables and scanning angles, xi = [wx, wy, gx, gy, lx, ly, hx, θi, ϕi]. The corresponding WAIM’s 
GSM, extracted from EM simulation, serves as the output, comprising extracted GSM at 21 equally spaced 
frequencies between 9 and 11 GHz.

To achieve an accurate model, three algorithms, including DT, bagging, and RF, are trained using the 
same training datasets. After training and tuning the corresponding hyperparameters, the model with the 
least prediction error is selected to act as a surrogate for the EM solver, as shown in Fig. 4. Table 2 shows the 
corresponding evaluation metrics, RMSE, R2, and MAPE score for each method.

The RF model yielding the minimum prediction error is selected as the WAIM characteristic predictor at the 
frequency range between 9 and 11 GHz. Table 3 outlines the range of hyperparameters for each ML model, with 
the selected values highlighted in bold.

By calculating the loaded array’s input impedance and the reflection coefficient to assess the quality of WAIM 
configuration on improving the overall array’s condition, the cost function is calculated at eleven equally spaced 
frequency samples between 9 and 10.25 GHz, and eight observation angles (θ = 0, 30, 45, 55, 60, 65, 70, 75) in 
three radiation planes, resulting in 24 observing angles in total. These observation angles match those used for 
training the SM. The distance between different observation angles is determined based on the extreme variation 
of angular behavior in the array’s impedance response at large scanning angles. The design goal is set to maintain 
the VSWR below two at each observation angle and across all frequencies, setting |Γdesired| in Eq. 8 to −10 dB.

A genetic algorithm is used as the final step to optimize the WAIM parameters. After 350 generations, GA 
meets its termination criteria, and the optimal parameters for the metallic strips are identified. The full-wave 
simulated VSWR results, shown in Fig. 11, illustrate the matching condition of the loaded array. The expansion 
of the region covered by the first contour (VSWR equal to 2) compared to Fig. 9 shows that the scanning range 
reaches 70◦ for all three planes, achieved within 13% of bandwidth. As can be seen, the results exceed the 
target by 5◦ in two planes, providing impedance matching up to 70◦ on all three planes. Table 4 presents the 
parameters of the designed array.

Figure  12 compares the broadside and extreme scanning angles performance calculated by our method 
with the full-wave simulations. The circles show the calculated VSWR, while the lines represent the full-wave 
results. The excellent agreement with the simulated results indicates that the SM is well-trained and accurately 
predicts the WAIM characteristics. A key factor contributing to the model’s accuracy is its consideration of 
modal interactions within the WAIM structure, unlike methods in Refs.20,22, which assumed excited modes 
as isolated transmission lines. Figure 13 highlights this by comparing the full-wave simulated results with the 
VSWR calculated from both methods. Considerable discrepancies can arise when modal interactions are not 
considered, highlighting the importance of including higher mode interactions in the calculations, as their 
coupling levels are no longer negligible.

Fig. 8.  Perspective and top view of the coaxial-fed U-slot.
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Fig. 9.  VSWR representation of unit cell element as a function beam scanning direction and frequency in the 
desired bandwidth at (a) E-plane, (b) D-plane, (c) H-plane. The area surrounded by the first contour shows 
VSWR less than 2.

 

Scientific Reports |        (2025) 15:16601 10| https://doi.org/10.1038/s41598-025-00310-0

www.nature.com/scientificreports/
D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://www.nature.com/scientificreports
http://mostwiedzy.pl


DT Bagging RF

RMSE R2 MAPE RMSE R2 MAPE RMSE R2 MAPE

Training 0.014 0.990 0.922 0.020 0.977 1.626 0.009 0.995 0.787

Testing 0.061 0.782 3.745 0.042 0.824 3.279 0.033 0.916 2.161

Training time (s) 95.06 547.71 1120.24

Table 2.  Evaluation metrics corresponding to the three networks.

 

Geometrical variables

Training data 
(160 samples)

Testing data (40 
samples)

Min Max Step Min Max Step

wx, wy 1.00 5.00 0.5 1.25 5.25 0.5

gx, gy 1.00 4.00 0.5 1.25 4.25 0.5

lx, ly 1.00 7.50 0.5 1.25 7.25 0.5

hx 0.00 7.00 1.0 0.50 7.50 1.0

Table 1.  Training and testing data range.

 

Fig. 10.  (a) Smith Chart representation of array at extreme angles between 9 and 10.25 GHz. (b) Configuration 
to compensate the impedance mismatch.
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To demonstrate the improvement in the delivered power to free space, the co-polarized component of the 
array’s realized gain is analyzed1 as follows:

	
G(θ, ϕ) = 4πA cos θ

λ2

∣∣ST E
21 (θ, ϕ) sin ϕ + ST M

21 (θ, ϕ) cos ϕ
∣∣2� (10)

Figure 14 illustrates the relative gain improvement as a function of scanning angle for different frequencies, 
indicating enhanced power transfer with the WAIM. The addition of the matching structure improves the 
array’s delivered power, particularly at extreme angles, across the desired bandwidth without compromising the 
broadside performance.

Table 5 presents a detailed performance comparison with other relevant works to validate our methodology. 
Although this matching has a higher profile compared to traditional 2D surfaces, its significant achievements in 
scanning angles, bandwidth, and gain improvements at extreme scanning angles highlight the potential of 3D 
structures for WAIM design.

U-slot patch with the gap filled with dielectric
The second example assumes a dielectric layer between the array and the WAIM. This setup demonstrates the 
methodology’s capability to analyze the intermediate layer and highlights the advantage of deploying ML models 
to design the same WAIM configuration for various array structures. Using the same design setting as the 
previous example, the dielectric permittivity of the gap layer is set to 2.2. In the previous example, a model was 
trained to predict the WAIM behavior over the band of interest 9–11 GHz. This model is now used to evaluate 
the WAIM, eliminating the need for additional dataset preparation. The GA meets the stopping criterion after 
passing 260 generations of calculations. The full-wave simulation of the resultant structure’s VSWR is shown 
in Fig. 15. In this figure, the first two contour values represent the VSWR equal to 2 and 4, respectively. As 
indicated, the scanning range is improved to 70◦ over the desired frequency range.

Table 6 lists the parameters of the designed array. For validation, Fig. 16 compares the simulated results from 
the HFSS (shown as solid lines) with the VSWR predicted by our method (represented by circles of the same 
colors). The excellent agreement between both results demonstrates that this methodology effectively considers 
the effects of the gap layer in the design process. This capability is particularly valuable in designing a supporting 
structure for the complex WAIM structures, addressing one of the challenges associated with using matching 
layers to enhance the scanning range of arrays. The relative gain improvement as a function of scanning angle 
for different frequencies is shown in Fig. 17, indicating enhanced power transfer by adding the WAIM structure.

Circular waveguide with air gap
The third experiment explores the application of the proposed methodology to waveguide arrays, demonstrating 
its generality in designing matching structures for different array element configurations. This design aims to 
improve the scanning range of the waveguide array at the frequency range between 9 and 11 GHz. The radiating 
element in this configuration is a circular waveguide with a radius of 6.2  mm, filled with a dielectric with 
permittivity of 2.5421. The unit cell of the waveguide antenna is shown in Fig. 18. Here, the array lattice is a 
14 × 14 square to prevent the grating lobe in the desired scanning range. To achieve the GSM of the circular 
waveguide, the unit cell is simulated at multiple scanning angles across three principal planes. The simulated 
VSWR values are presented in Fig.  19, illustrating that the waveguide is unmatched throughout the entire 
scanning range across different frequencies.

To further demonstrate the effectiveness of the 3D matching structure used in the previous examples, the 
same configuration, as shown in Fig. 10b is utilized to enhance the impedance matching condition. Utilizing the 
simulated GSM of the array obtained from the commercial software and the trained ML model for the WAIM 
structure from the previous cases, the optimization successfully converged after 290 generations. The parameters 
of the WAIM structure are detailed in Table 7.

To evaluate the improvement in the scanning performance of the array, the designed structure was simulated, 
and the VSWR results for the three principal radiation planes are presented at Fig. 20. The expansion of the 
first contour coverage, indicated in dark blue, across all scanning angles within the desired frequency range 

ML model Hyperparameter Range

DT

max_leaf_nodes [100, 200, 500, 1000]

max_depth [20, 30, 50, 100]

max_features [0.5, 1, 2, 4, 8]

Bagging

n_estimators [20, 50, 100, 200]

max_depth [20, 30, 50, 100]

max_features [0.5, 1, 2, 4, 8]

RF

n_estimators [20, 50, 100, 200]

max_depth [20, 30, 50, 100]

max_features [0.5, 1, 4, 8]

Table 3.  Model’s hyperparameter ranges.
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(particularly between 9.5 and 10.5 GHz) demonstrates the scanning range enhancement of the waveguide array. 
This improvement is achieved through the loaded matching structure, designed using the proposed methodology.

Another way to demonstrate the radiation enhancement of the loaded array is by comparing the gain 
performance in both cases: with and without WAIM. This comparison is illustrated in Fig.  21. As shown, 
improving the impedance matching of the array leads to a significant gain enhancement particularly at extreme 
angles. In these angles, the gain increases by approximately 5 dB across different radiation planes. This result 

Fig. 11.  VSWR of full-wave simulation of the unit cell of loaded structure as a function beam scanning 
direction and frequency in the desired bandwidth at (a) E-plane, (b) D-plane, (c) H-plane. First contour shows 
VSWR less than 2.
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highlights the effectiveness of the proposed matching structure in significantly improving the radiation 
performance of the circular waveguide array.

Discussion
Time and hardware reduction
One of the main advantages of the proposed methodology is its reduced computation time compared to 
traditional approaches that rely on full-wave simulations of the entire structure. Table 8 compares the required 
time and hardware usage for both design approaches. Moreover, to highlight the advantage of using surrogate 
models over numerical codes in WAIM evaluation, the expected time of the method in Ref.23 is also included in 
Table 7. For all full-wave evaluations in this study, the FEM solver of ANSYS HFSS software is used on a PC with 
32 GB RAM and a Core i7 CPU. To provide a sensible comparison of different approaches, we compare the time 
and resources spent to calculate the cascaded GSM for one scanning angle. Compared to the full-wave approach, 
the proposed method reduces the average evaluation time for a single scanning angle of the array from 10 min 
to 0.3  s. This significant improvement highlights the impracticality of relying on FEM full-wave simulation 

Fig. 13.  Accuracy comparison of this method with previous one22 for various scanning direction at H-plane.

 

Fig. 12.  Comparison between the outcome of proposed method and full-wave simulation results.

 

Variable Value (mm) Variable Value (mm) Variable Value (mm) Variable Value (mm)

wx 2.9 lx 7.4 Dx 14 A 5.5

wy 4.4 ly 4.1 Dy 14 B 4.6

gx 1.8 hx 5.2 Px 10 C 0.6

gy 1.9 d 4.5 Py 6.5

Table 4.  Dimensions of designed loaded array.
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to optimize WAIM for array structures, requiring evaluation for several scanning angles and optimization 
generations. Compared to Ref.23, our method reduces the calculation time for a single scanning angle by 500% 
while maintaining a generalized design approach. This indicates that, unlike Ref.23, this method is much faster 
than conventional numerical codes, and more importantly, it does not require any specialized expertise to adapt 
to the new WAIM configurations. It only requires data preparation and model training. Moreover, the trained SM 
using DT requires minimal datasets, saving the data preparation time for new configurations. Table 9 provides a 
detailed computational cost breakdown for each step of this methodology. Preparing 200 datasets takes around 
20 h, and training the ML models and selecting the best SM takes around 30 min. Once the SM is trained, it 
needs 0.3  s to evaluate the WAIM behavior at each scanning angle. A single generation of the optimization, 
including the WAIM evaluation at 24 angles and calculation of the GSMs, requires 9.6 s. Considering the 350 
generations, for the first example, to find the optimal solution, our method can design the matching structure 
in 56 min. As illustrated in the examples, this method can be applied to other types of arrays as well. Depending 
on the complexity of the array and the WAIM structure, the required time for array evaluation and dataset 
preparation may vary. However, the GSM evaluation time for a single scanning angle—which is the key factor in 
determining the overall optimization time—will not change significantly.

In terms of computational resources, our method requires 9.7 MB for the optimization and GSM calculations, 
while the approach in Ref.23 and full wave calculation need 43 MB and 18.2 GB, respectively. The key to this 
achievement is that our methodology eliminates the evaluation of the underlying array in each generation of the 
optimization process. Moreover, it uses a well-trained ML model to avoid resource-consuming EM calculations 
in predicting the WAIM characteristics. On the other hand, including the middle layer in the modeling has a 
negligible impact on the overall design time. Our method can evaluate the optimal parameters for the middle 
layer to achieve the best input impedance in a fraction of a second. This is a significant advantage compared to 
the traditional full-wave simulation methods, which require analyzing the whole structure for different values 
of the gap layer’s parameters, including the dielectric constant and height. This process adds significantly to the 
design time, which is not included in the overall time of full-wave design.

Sensitivity analysis
Another aspect of the design that should be thoroughly studied is the sensitivity of different parameters. This 
assessment provides insights on the variables and their variations that significantly impact the array performance. 
In this regard, this information is particularly valuable from the fabrication perspective. To add this to our design, 
a sensitivity analysis is carried out by evaluating the importance of different features of the machine learning 
model trained for the WAIM, illustrated in Fig. 22. In this analysis, each feature is assigned a score based on its 

Ref. No.

Max. 
Scanning 
angle (◦) Bandwidth (%)

Gain improvement 
at extreme scanning 
angle (dB)

E D H E D H

Reference20 45 81 65 10 NA NA NA

Reference13 70 NA 70 13 NA NA NA

Reference23 70 70 70 6 0 − 0.25 ∼ 0.6

This work 77 75 70 13 ∼ 0.5 ∼ 1 ∼ 2

Table 5.  Performance comparison with other works.

 

Fig. 14.  Relative gain improvement of the array by adding WAIM.
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impact on the model’s output. The score is determined by introducing variations to a single feature and keeping 
all other features constant, allowing us to calculate the sensitivity of the model to changes in each parameter.

As demonstrated, besides the scanning angles which have significant effects on the outcome of the trained 
model, among the structural parameters the width of both strips, wx and wy , have the most impact on the final 
results. After that, we should be careful about parameters such as hx, lx, ly . These findings suggest that careful 
attention should be given to the precise fabrication of the strip widths, as small variations in these parameters can 

Fig. 15.  VSWR results of full-wave simulation of the designed array by considering a dielectric in the 
intermediate layer (a) E-plane, (b) D-plane, (c) H-plane. First contour shows VSWR less than 2.
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lead to considerable discrepancies from the desired results. By prioritizing these key parameters, the proposed 
design can achieve reliable performance by reducing fabrication-induced errors.

Conclusion
The proposed methodology provides an efficient approach to designing WAIM structures to improve the 
scanning range of arbitrary arrays. The Floquet modal expansion and GSM analysis were employed to model 
the multi-layer structure, enabling the calculation of overall input impedance using the GSM of the three 
layers, regardless of their shapes. Additionally, integrating a decision-tree-based ML model significantly 
reduces computational cost and eliminates the need for human expertise in numerical code development to 
analyze the WAIM structures. The methodology considered sufficient excited harmonics incorporated all 
modal interactions within the WAIM structure. It utilized an accurate SM by evaluating different ML models, 
enhancing the overall accuracy. Through the GA optimization procedure, this method effectively achieved 
an optimal structure to improve the array’s scanning range. Unlike the previous approaches, this model can 
evaluate the array performance for different materials utilized to fill the gap layer, not just air. This capacity 
is essential as it considers the effects of the matching layer’s supporting structure, increasing accuracy from a 
fabrication perspective. The verification through three different array configurations demonstrates the versatility 

Fig. 17.  Relative gain improvement of the array by adding WAIM.

 

Fig. 16.  Comparison between the outcome of proposed method and HFSS simulation results.

 

Variable Value Variable Value Variable Value Variable Value

wx 2.9 gx 1.8 lx 7 hx 5.4

wy 4.1 gy 1.9 ly 3.7 d 4

Table 6.  Dimensions of the designed loaded array.
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and effectiveness of the proposed framework. Compared to the previous approaches, the proposed method 
significantly reduces computational time and resources, offering a low-cost, feasible solution. This methodology 
establishes a robust foundation for developing advanced tools to design wide-angle scanning arrays.

Despite these advantages, some limitations should be acknowledged. While the proposed WAIM structure 
exhibits flexibility and has been successfully applied to multiple array configurations, certain array structures 
may require alternative WAIM designs to achieve optimal performance. Future research could explore 
the development of a more universal WAIM configuration that can be applied to a broader range of array 
architectures. Additionally, while this work establishes a robust numerical and ML-driven framework, further 
validation through physical prototyping and experimental measurements is necessary to confirm the practical 
feasibility of the designed WAIM structures.

Fig. 18.  Metallic waveguide filled with dielectric as the array element with rw = 6.2 mm and hw = 25 mm.
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Fig. 19.  VSWR results of full-wave simulation of the waveguide array without WAIM at (a) E-plane, (b) 
D-plane, (c) H-plane.
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Variable Value Variable Value Variable Value Variable Value

wx 4 gx 2 lx 4.5 hx 0

wy 2 gy 0.8 ly 4 d 3

Table 7.  Dimensions of the designed matching configuration for waveguide array.
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Fig. 20.  VSWR results of full-wave simulation of the loaded waveguide array at (a) E-plane, (b) D-plane, (c) 
H-plane.
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This method Full wave

Dataset preparation time 20 h –

ML training time 29 min 23 s –

GSM evaluation time for a single scanning angle 0.3 s 10 min 15 s

GSM evaluation time for all directions 9.6 s 4 h 6 min

Design time 56 min 1435 h

Table 9.  Computational cost breakdown comparing this method and the full-wave approach.

 

This method Reference23 Full wave

GSM evaluation for a single scanning angle 0.3 s 1.2 s 10 min 15 s

RAM usage (peak) 9.7 MB 43 MB 18.2 GB

Table 8.  Time and resource comparison of three approaches for designing loaded array.

 

Fig. 21.  Relative gain improvement of the waveguide array by adding the WAIM.
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Data availability
All data generated or analyzed during this study are included in this published article. For any further data, you 
can contact the corresponding author, Sina Hasibi Taheri (sina.hasibitaheri@mq.edu.au)
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