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Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms:
Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function
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We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to
the first order in the strength B of the external field, the only electric multipole moments, which are induced
by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized
Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747 (1997)], We derive a
closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy
eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric
functions 3 F;, of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us

for the ground state of the atom.
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I. INTRODUCTION

Calculations of atomic and molecular electromagnetic
susceptibilities are undoubtedly one of the most interesting
issues of theoretical physics. Analytical investigations of
various parameters characterizing a response of a particle to
external electric and magnetic fields were carried out already
in the early years of quantum mechanics. In Ref. [1], Van Vleck
discussed some properties of nonrelativistic hydrogenlike ions,
such as the polarizability and the magnetizability. The corre-
sponding relativistic analytical calculations were initiated at
the beginning of the 1970’s by Manakov et al. [2,3]. The main
tool used in these calculations has been a Sturmian expansion
of the second-order Dirac-Coulomb Green function (DCGF).
In 1997, Szmytkowski [4] proposed such a Sturmian series
representation of the first-order DCGF, which turned out to be
even more useful in perturbation-theory calculations in rela-
tivistic atomic physics. Thus far, it has been successfully used
to derive closed-form expressions for many susceptibilities of
the Dirac one-electron atom in the ground state, i.e., the static
and dynamic electric dipole polarizabilities [4—6], the induced
magnetic anapole moment [7], the dipole magnetizability [8],
the electric and magnetic dipole shielding constants [9,10], the
magnetic-field-induced electric quadrupole moment [11], and
the magnetic quadrupole moment induced in the atom by a
weak, static, uniform electric field [12].

Recently, we have shown that the applicability of this
method goes beyond the study of the atomic ground state.
In Ref. [13], we have analyzed the magnetic dipole moment
induced in the relativistic hydrogenlike atom by a weak, static,
uniform magnetic field. Actually, we derived analytically
an expression for the magnetizability of the atom in an
arbitrary excited state, which allowed us then to find numerical
values of this quantity for a few low-lying discrete energy
eigenstates [14]. In the present work, which is a natural
extension of the studies outlined in Ref. [13], we present the
calculations of the electric quadrupole moment induced in an
arbitrary discrete energy eigenstate of the Dirac one-electron
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atom by the same perturbation as in the aforementioned article.
In this way, we also generalize the considerations described in
Ref. [11].

The structure of the paper is as follows. In Sec. II, we present
a basic knowledge concerning the relativistic hydrogenlike
atom being in an arbitrary discrete energy eigenstate perturbed
by a weak, static, uniform magnetic field. Section III provides
an analysis of atomic electric multipole moments. We show
that in an unperturbed state the only nonvanishing electric
multipole moments are those of an even order, and the external
magnetic field induces also even-order electric moments
only. Therefore, in Sec. IV we calculate the moment of the
lowest possible order, namely the induced electric quadrupole
moment, using for this purpose the Sturmian expansion of the
first-order DCGF [4].

II. PRELIMINARIES

It has been already mentioned in the Introduction that
the system to be studied in this paper is the relativistic
hydrogenlike atom with a spinless, pointlike, and motionless
nucleus of charge +Ze, and with an electron of mass m, and
charge —e. In the absence of external perturbations, the atomic
state energy levels are

E® = EO — 20 2.1)
N
with
Ny = V/n? + 2ny, + k2 (2.2)
and
Ve = VK2 —(aZ)?, (2.3)

where n is the radial quantum number, « is an integer
different from zero, while o denotes the Sommerfeld’s fine-
structure constant. The atomic energy levels from Eq. (2.1) are
degenerate; the normalized to unity eigenfunctions associated
with the eigenvalue £ are

1{ PO,
0) — 0) - _ nk w
U(r) = v, ,(r) " (i QES)(r)Q_W(n,)) 2.4)
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Here, Q,(n,) (with n, =r/ric ==£1,£2,... and u =
—|x| + %, — k| + 3, .k — %) are the orthonormal spher-
ical spinors defined as in Ref. [15], while the radial functions,
which are normalized to unity in the sense of

[Carp9el el =1 e
0

have the form

PR = fue/ T+ encCrer)ee ™1

- Nn
x [Lffyﬁ)(xnkr) + K—KLleV”)(AnKr)}, (2.6)
n+ 2y,
Q) = fued/ T = e Guner)ee ™2
_N
L(ZVK) A _ K—”KL@VK) A , 2.7
X[ ot Rper) nt 2y, (Apic?) 2.7

where L )(,o) is the generalized Laguerre polynomial [16] [it
is understood that L(_zi/”)(p) = 0],

EQ  n+y 27
€pe = 45 = , Ae = 2.8
‘ mecz Nn/{ ‘ aONﬂK ( )
with ay denoting the Bohr radius, and
o Z n+2yn!
» n + 2% 2.9)

TV 2a0 N2(Npe — )T (n + 270)”

Now, let us assume that the atom is placed in a weak static,
uniform magnetic field B = Bn,. The energy eigenvalue
problem for bound states of such a system is constituted by
the Dirac equation

1
|:—ichot -V + Eeca (B x r)+ Bm.c*

Ze?
Arey)r

(with « and B being the standard Dirac matrices [17])
supplemented by the boundary conditions

- Ei|\IJ(r) -0  (2.10)

r—00

) =30, Pleer) =20, 2.11)

Because the functions from Eq. (2.4) are adjusted to the
perturbation H" = %eccx - (B x r) appearing in Eq. (2.10),
i.e., they diagonalize the matrix of that perturbation, the
solutions of the eigenproblem (2.10)—(2.11), to the first order
in B, may be approximated as

W(r) >~ WOF) 4+ v, E~EQ4+ED (212

The zeroth-order components E© and W@ (r) are given by
Egs. (2.1) and (2.4) (with the space quantization axis chosen
along the external magnetic filed direction), respectively,
whereas the corrections WV(r) and E" solve the inhomo-

PHYSICAL REVIEW A 93, 022504 (2016)

subject to the usual regularity conditions and the orthogonality
constraint

/ Pr vty = 0. (2.14)
]RS

The integral representation of WV (r) is

1 —
W) = _EeCB . / a&r' GO, rHr x )W O,
R3

(2.15)
where GO (r,r’) is the generalized Dirac-Coulomb Green
function associated with the energy level (2.1) of an isolated
atom.

III. ANALYSIS OF ELECTRIC MULTIPOLE MOMENTS
OF THE ATOM IN THE MAGNETIC FIELD

Let us now consider, which electric multipole moments
characterize the electronic cloud of the isolated atom, and
which of them may be induced in the system by an external
weak, uniform, static magnetic field. The spherical compo-
nents of the Lth-order electric multipole moment tensor are
defined as

4
Q= |51~ fR At Ympe, G

where Yy (n,) is the normalized spherical harmonic defined
according to the Condon-Shortley phase convention [18],
while

—eWi(r)U(r)
Jrs PV (r)

p(r)= 3.2)

is the electronic charge density for the perturbed state W(r).
Utilizing the first of the approximations from Eq. (2.12), taking
advantage of Eq. (2.14) and keeping in mind that ¥©(r) is
normalized to unity, one has

p(r) = p(r) + pV(r), 3.3)

with
pO(r) = —ew V1 (rHwr) (34

and
p V() = —e[W V(WO ) + VTP (3.5)

Consequently, it follows that

Quu = Q7 + Qs (3.6)
where
47
Oy =—e\/57 — /M Er O )Y ) wOr)
3.7)

is the multipole moment of the isolated atom, while

geneous differential equation Q(le)w = ég}w + (=) é(Ll)j M> 3.8)
7 2 .
—iche -V + Bmyc® — ¢  _EO v with
(Ameg)r ~ o
1 Qi = —ef / & WOy Y ()W (),
= —|-ecB-(r xa)— EV |wOr) (2.13) 2L+ 1 /g
2 ' ' (3.9)
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is the first-order correction induced by the perturbing magnetic
field. To obtain Eq. (3.8), we have used the following relation:

Yiu(n,) = (_)MYZ,_M(nr)

To analyze the electric moments of the unperturbed atom,
in the first step we put Eq. (2.4) into Eq. (3.7), yielding

QY = —e/ 2Z {<sz 1YL Rcpe) / Car et PO
2L + 1 " "y nie

Q[ YLm Q) / drrL[ij’g(r)]z}, (3.11)
0

(3.10)

where the shorthand bracket notation

(L [ Yias Qo) = f P, Q1) Y1) Qe (1)

4

" (3.12)
has been used for the angular integrals. Exploiting the identity,
Eq. (3.1.3) in Ref. [15],

n,-0Q,n)=—-Q ,,(n), (3.13)
it is easy to prove that
(ka,u|YLMQﬂ<’u’> = (QKM|YLMQK'[J,’)7 (314)

and so Eq. (3.11) may be cast into the form

4
Q(O) — e 2L—+1<QW|YLMQW>

< [ PR +[020F ) 313
0
|

o = 2,/2L+ 1e B/Rz d’r /];@ A VO ey ) GO r ., - (F x )W Q).
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The angular integral from the above equation may be conve-
niently evaluated from the general formula

47
1
L k|- 5)
1
0 3

2L + 1
kl—3 L |]—3
X ., L,l.), (3.16)
M -

<QK;1_ ’ YLMQK’;,L’>

)M+1/22ﬁ<

N|'~

n
where
_J1 for I+ L+l even
M, Loler) = {o for I, +L+L odd, 17
with [, = |K+% —% (and similarly for [.), whereas

Geo b o) denotes the Wigner’s 3 coefficient. Exploiting
the selection rules expressed in Eq. (3.17) and some basic
properties of the 3j coefficients, one infers that the only cases
when Q(LO,)V, does not vanish are those with M = 0 and with L
being an even number satisfying the inequality 0 < L < 2|k].
From the physical point of view, this means that the atom
being in the state characterized by the quantum number « has
the permanent electric multipole moments only of an even
order, up to 2|« | inclusive.

Next, we shall focus our interest on the first-order in-
duced multipole moments Q(Ll,)w According to the relation
in Eq. (3.8), for convenience, now we will consider the

component @(Ll})w Therefore, we insert Eq. (2.15) into Eq. (3.9)
and obtain

(3.18)

To be able to analyze the induced moments as in the case of the permanent moments, we have to invoke the partial-wave expansion

of the generalized Dirac-Coulomb Green function, which is

[e9] |k'|—1/2

50 ]
G(O)(r’ 47'[60 Z Z L( g(++)K/(r,r’)QK/W(nr)QK,M,(nlr)

50
k' = —oo W'=—[k'|+1/2
(k" #0)

Plugging Eqs. (2.4) and (3.19) into Eq. (3.18), then exploiting
the identity from Eq. (3.14) and the following relation:

(Q—Kumz -(n, x G)QK’/L’> = _(QK/L|nZ -(n, x G)Q—K’u/)

(3.20)

(which can be easily proved with the use of some properties
of the Pauli matrices), we arrive at

(1) _ L1
o, = 2‘/2L — 1(41‘[60)CB Z RE

X ( K’u’|nz . (nr X O')kau)( k/L|YLMQK’pJ>v
(3.21)

18”0 () (n)QL, ()

—ig ) () Qe (n,)SZTK,H,(n/,)> 519)
80 Qe )R ()

(

where we define

, [e¢] o0
RYY = /0 dr fo ar' (PO 00()

= o QRN
erG(KQ)(r,r)rL<P(O)(r,) , (3.22)

with

() N =0 /
_ (") (1)
GO = (gg)“ S ) (3.23)

81w’ (r,r’) g(__)K/(r’r/)

being the radial generalized Dirac-Coulomb Green function
associated with the combined total angular momentum and
parity quantum number «’.
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To tackle the first angular integral appearing on the right-hand side of Eq. (3.21), we shall exploit the relation, Eq. (3.1.6) in
Ref. [15],

N2 _ 2 __ 2
i, 5 )2 = =2y 4 LT oy TR G
n,-(n, x o) ,(n,)=i——Q_,,(n,)+i——Q, n)—i————Q, 1 ,(n, .
: " 42— T 12k + 1] e 12k — 1] b
and the fact, that the spherical spinors form the orthonormal set on the unit sphere, i.e.,
fi d’n, Qiu(n,.)Q,(r,u(n,):8,(,(/6“#/. (3.25)

After these steps, we obtain

1\2 2 1\2 2
~ [ 4w 2K vV (k=3) —n Vi+3) —n
Q(L]I)VI - 2L + 1(47160)63 Z le’l (QKIL|YLMQK'M)|: St e — 2 8[(’,7/(“1’1 + 2 8/{’,*1(71 .

42— 1% 202k — 1 212k + 1]
(3.26)

Due to the formula in Eq. (3.16), the remaining angular integrals (corresponding to each of the symmetries determined by the
Kronecker’s deltas) can be expressed in terms of the Wigner’s 3 j coefficients. Utilizing the selection rules embodied in Eq. (3.17)
and properties of the 3 coefficients, one deduces that in all the three cases Q(le)w does not vanish if and only if M =0 and L
is an even number, such that 2 < L < 2|«|. In other words, in a given « state of the Dirac one-electron atom, a weak, uniform,
static magnetic field induces only even-order electric multipole moments, with 2 < L < 2|k|. A detailed analysis of the induced
electric quadrupole moment (L = 2), which is the most interesting one, will be carried out in the next section.

IV. EVALUATION OF THE INDUCED ELECTRIC QUADRUPOLE MOMENT

Before calculating the induced electric quadrupole moment, it will be natural to determine the permanent moment of the atom.
For this purpose, we shall insert L = 2 and M = 0 into Eq. (3.15) and consider the angular and the radial parts separately. To
tackle the angular integral, we will exploit Eq. (3.16) and utilize some basic properties and the following expression for the 3 j
coefficients [19]:

ioJ 2\, m 203m* — j(j + )]
m -m o)== NOESET . . 4.1
J+3)2j+2)2j+1D2;2j —1)

In turn, to determine the radial part of the formula (3.15), we shall use Egs. (2.6)—(2.9) and take into account the recurrence
formula for the Laguerre polynomials, Eq. (8.971.5) in Ref. [20],

LP(p) = L (p) — L (o) 42)
and the orthogonality relation, Eq. (7.414.3) in Ref. [20],

Tn+p+1)

o0
/ dp p’e " LY ()L (p) = 8 [Re f > —11. 4.3)
0 n!

Combining the partial results, as shown in Eq. (3.15), we obtain

0 ea% 4K2 — 12“2 -1

' = =7 gae L0+ 1)+ (B =67 + D+ 3" = 3+ yN + (7 =€) (= 1)) @)

We turn now to the derivation of the expression for the induced electric quadrupole moment Q(zlo) = QM. At first we attack
the angular integrals appearing in Eq. (3.26). According to the formula given in Eq. (3.16), they can be evaluated using the 3
coefficients. In this special case, i.e., when L = 2 and M = 0, an extremely useful relation is the following one [19]:

(j+1 j 2)2(_)jm+12m 6(j +m+1)(j —m+1) @.5)
m  —m 0 2] +HQ2j+3)2j +2)2j + 1)2j° '

Utilizing Egs. (3.16) and (4.5) in Eq. (3.26), having regarded the identity (3.8), we arrive at

3[(2k — 1)* — 4p?] 3[(2k + 1) — 4p2]

oW — et
T 202K + D2k 4+ 3)

(SK’ K
2 — 1 D02k — )2k —3)

(4meg)cBu Z |:1<(4/<2 —12u%—1)

8¢ —w—1 |REL. 4.6
4 — 1 ’ '} « *6)

P
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The expression for RL! given by Eq. (3.22) contains the generalized radial Dirac-Coulomb Green function. Because the Sturmian
expansion of that function depends on the relationship between numbers « and «’ [4]:

S (S
G,((Q)(F,r’) = - /L(Q),S(?)/(r/) T(,O),(r/) (for o o, )
n’;oo M,(l(?‘)c, —1 Tn(’(/]()/(r) ( n'k' CPn'k s )
> z (0)
- 1 S5 (r) N\ /5009
G(O) r’r/ - 20 o (9) S((’)) ! T(,O) N) + <6nk - _) nK S(O) r T(O) r!
o "/;oo Hoe = W\T,20) (e Syer) - Te) 2J\190) (SO0 TR6)
(n" # n)
100 SO0
" « S(O) r T(O) r’ + " ](O) 7’ K(O) 7’ for K/ =K), 4.8
(K,S‘?(r) (S0 TL0) TOG) (IO KQ)) ( ) ws)

it will be justified to rewrite Eq. (4.6) in the following form:
QW =0+ 90, +04_, (4.9)

and consider the first term on the right-hand side of above equation separately from the sum of the other two components. In
Eqgs. (4.7)-(4.8)

~ / PR 2V, K/_Nn’l(’ 2V,
SS,),L(I") = 8n'«’ 1 + em(()"m(r)yk e Auer /2 |:L(n/)1_)1()"m(r) + ml“(’ﬁ )()"nkr):| (410)
and
~ PR ’ K — Nn/K’ ’
T0) = s/ T = € Quner Y e ”[L‘Z?:i(mn S ,L},ff”)wr)} (4.11)
with
- Nue(I0'| + 2y)|n'|!
Bwe = i (4.12)
ZZNH’K’(Nn’K’ — kK )F(ln/| + 27/16’)

are the radial Dirac-Coulomb Sturmian functions associated with the hydrogenic discrete state energy level E, and

' 4 Ny
5,9,)(/ _ |7’ln|—‘:))//i( —:‘N 'k ’ 4.13)

where

Ny = :':\/(In/l + v + @27 = £V || + 200’ [y + k7 (4.14)

is a so-called apparent principal quantum number, which assumes the positive values for n’ > 0 and negative for n’ < 0; for
n’ =0, in the definition (4.14) one chooses the plus sign if ¥’ < 0 and the minus sign if ¥’ > 0. Moreover, the functions
19@),79() and K9 (r), also appearing in Eq. (4.8), are defined as [4]

19() = e [-0lPSQ) + £PHTL ()], (4.15)
IOr) = enc[—0S) SO + £ HTL ()], (4.16)
KOr) = €| 60SQ(r) + oS0 TV ()], (4.17)

where 0 = k £ (2€,,) 7! and EP(r) = mc(1 £ €p)r/h L aZ.
Now, let us focus on the first component of the induced quadrupole moment, i.e. Q,((l). In view of Egs. (3.22), (4.6), (4.9), and
the formula (4.8) for the Green function, suitable in this case, it will be convenient to write it in the following form:

4c? — 12p% — 1 4 .
Q. = UmeeBrep—r [T + L0+ T + L7, (4.18)
with the components
o0 1 ) 0
Y= ) 5 / dr [ PQ()S,00(r) + QT (r)] / dr' [ QS ) + BREHTN], (4.19)
’ M e 0 0
n = —oo0 "'n'k
(0 #n)
1 = 2 0 0 0 0 * ’ o 0)..7\ ). 0)/../ 0)/../
I = (em - 5) /0 dr [PPSO + 00T fo dr' r'[QRG SR + PRCHTLCN], (4.20)
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[e.¢] o0
) = f dr P[P ) + QKD ()] f dr' r'[QWHSN ) + BLGNTR (], @.21)
0 0
[o.¢] oo
70 = / dr r?[PRS ) + ORT ()] / dar' ORI L0 + PRCDKD ()], (4.22)
0 0
Making use of Eqgs. (4.15)—(4.17) and the relations
Nn Nn/c
SW(r) = @Pmn, T0r) = “"_OTQ;%), (4.23)
after some algebra, one can prove that
ITW+19 =0 (4.24)
and
(b) aNy [* ., ©) (1 YO (5 * 2([ pO) T2 ©)(,1? * 2([ PO 17 O T?
7 = 7 drr'P,)(r")Q,.(r") drr ([Pm{ (r)] — [QnK(r)] ) 4+ 3€uc drr ([PW (r)] + [sz(r)] ) .
0 0 0

(4.25)

Utilizing Egs. (2.6)—(2.9) and the relations (4.2)—(4.3) satisfying by the Laguerre polynomials, after some rearrangements the
above formula becomes

4
70 = %(n + YOINue — 261 + yOI[ (100 + 20y, — 3k* + Ty + 5)Ny. — 3(n + v + Y + 2cNy)]. (4.26)

To find the expression for R,((oo), we put Egs. (2.6)—(2.9) and (4.10)—(4.13) into Eq. (4.19) and exploit the relations (4.2)—(4.3).
This gives

Joo _ @ Na T+ 2y +1) ¢ 0 11(AD 81 n—2+ A St + AL S+ AL St + AL 81 2) 427)
« 7+ 64n!(N, — k) Nue(Nyie — T (| + 2 + 1) ’ '
‘wEn
with the coefficients
A = n*(n — 1Ny — {0 — 20 + 2% — 2) + (Noie — K140 + Ye — Dene — & + Ny} (4.28)

AD = 2(Nye — 1O[200 + YNk — €) + € A ]+ (1 — D+ 2y — D40+ ye — 1) + €ne(Noe — 1)1}
X AN 4 N[Ny — k)N — 1) — (0 — D)1 + 2y — D]+ (N — €)2n + 2y, — D}, (4.29)

Ag) = 2(Ny — K)Z{Em( 2 + y)2K 4+ Nuye — Ny )] + (Npe + k) (Npye — Noo)}
x{2(n + VK)(NnK + l€nc (26 — Npe — Nyrie) + 31 — (Npie + NI’L’K)A;+)}’ (4.30)

K

AD = —(n + 2§ + 12 (Noe — 2120 + 2% + 1 = (N + Nu) 2k + N = Nyl

x{4(n + V) (Nue + Nue) + 265 ASD + (Noe — 1)l (Nuie + i) + 41}, (4.31)
AD = —(Npe — 121 + 27 + D0 + 20 + 2241 + Ve — Déne + Nue + N, (4.32)

where we have defined A = 3n? + 6ny, +3n + 3y, + 2)/,(2 + 1. After tedious calculations, the expression in Eq. (4.27) may
be cast into a much simpler form

4
aa
L2 = =5+ vo[100n + v + (136 + 1012) (2 + 120)® + Ny (6 = 37,7 +2) N
—2k[(k* = ) (K> + v )* — (v2 — 1)NL) + (n + y)* (10N, — 8k* +2y7 + S)N .. ]}. (4.33)
Combining Egs. (4.24), (4.26), and (4.33), as the formula in Eq. (4.18) requires, we obtain
Kzu(/cz—y,f)(4/cz—12,u2— 1)I
2(4k? — 1) ¢

4
aa
QY = —j(me)cB (5n% + 100y, + 4y + 1)N,, — k(1 + y)[2c(n + i) + 3Ny 1} (4.34)
We turn now to the derivation of the expression for the two remaining components of oM In view of Egs. (3.22), (4.6), (4.7),
and (4.9), their sum may be written as

_ 3(4meg)cBu Z [ (2 — 1) —4p2 2k + 1)> —4u?

(1 (1
51(’ —K AN aNA AN
Qe T9 2k — D2k —3) T 2 F D2k £ 3)

LT 2k — 1)

8,{/,_,(_1:|R,Cr, (4.35)
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where we define
% 1 * 0 0 * 0 0 0
Re= ) —5— 1 f dr [ PO SO)r) + 00T ()] / dr' r'[1$, 00" SOy + POGHTE.()]. (4.36)
oo M — 1 J0 0

To evaluate the first radial integral on the right-hand side of above equation, we shall exploit Egs. (4.10)—(4.11) and (2.6)—(2.7),
with the Laguerre polynomials written in the form

n k
®B) _ =) (n+ B\ &
L) =3 —- (n )Rt (4.37)
k=0
and transform the integration variable according to x = A,,r. After these steps, we obtain
°° 2fuc8 - )
dr r*[POr S, (1) + 00T ()] = 222 P (n + 2y,
/0 (PRS00 + QROT0) = ZEETO+ 20 ) e v 27,41
o ’ f— Nn’K’ ’
x / dx 7R | CD LR () E T T cQp @y | (4,38
0 '] + 2y

with
C" = (= k) + €nlic — Nyo) and  C2 = €,c(n — k) + (k — Ny, (4.39)
Utilizing the following formula, Eq. (7.414.11) in Ref. [20],

Ty +Drn+p—-v) _ (—y Fy+ DMy —p+1)
n'T'(B—y) nl'ly —B—n+1)
and again the relation (4.14), after some rearrangements we get

| doorerrpo - Re(y) > —11  (4.40)
0

n

2fucqne T +2y0) 3 ()T + v +k+3)
k\(n — k)T (k + 2y, + 1)

o0
dr r*[ PO S((/)), N+ 09 T(,O), | =
/0 [Pa (S () + Q) Ty ()] Mo (W [=DUNye + 1)
DI+ 7 =% —k=3)

Fye —ve—k—=2)

[CV Ny + ) = PN + Ve — vie — k = 3)].

(4.41)
Proceeding in a similar way, one arrives at
o0
[ ar i 00015000+ PO 0)
0
_ oz FoeBne ['(n+2y,) Z (T +ve+p+2) (0 [+ % — Ve — P —2)
Nuc Mo (=D +6) e= plin = pIT(p + 27+ 1) T =y —p =1
< { (i + 1[0 = PY N +6) + (6 = Nu)(11'| + Yo — ¥ — p — 2)]
— (15 = D[ = Nu) N + ) + (= p)(In'| + e — v — p — D]} (4.42)
Inserting Egs. (2.9), (4.12), (4.13), (4.41), and (4.42) into Eq. (4.36), with some labor we obtain
R Qa8 nIT(0+ 2y + DN, Z Z X ()Y (p)
Zt 64N —k) i T = e =k =T =y —p = 1)
y i C(n'|+ye =y =k =3 | + v =¥ =P =2 k' = Ny
= [ ['C(|n'| 4+ 2y + D(R'| + Yo — Vie — 1) Ny
< [CP (N + &) = COU | + vie — vie —k = 3)]
X{(|I’l/| + Yo — Ye — l’l)[(K - NnK)(Nn’K’ + K/) + (n - P)(|n/| + Yo = Ve — P — 2)]
— Ny + Nu)l(n = p) (N + &) + (k = Nu)(I'| + Vi = Ve — P — D)1}, (4.43)
where
¥ T(e+ve +k+3 = T e + Ve 2
Xk = (=) Ve + v +k+3) and  Y(p) = (=) Ve + v +p+ )‘ (4.44)
kl(n —k)! Tk+2y+1) pln—p) T(p+2y+1
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This result may be cast into another, much more perspicuous form, if in the series > .___ (...) one collects together terms with

the same absolute value of the summation index n’ (the Sturmian radial quantum number). Proceeding in that way, after much

labor, using Eq. (4.14) and the extremely useful identity y2 — y2 = x> — k2, one finds that

_— aag n!T(n + 2y, + 1)N,m Z Z X(K)YV(p)
‘ INC2

Z4 32(Nm<_ k=0 p=0 ’—Vx—k—Z)F(VK’—VK—P—l)
>(Zl“(n + Ve = Ve —k =3I +ye —vc—p—2)
'\ + 2y + D0 + Vi — Ve —n)

n'=0
${CONue = )N — k)0 + v — v —k =30 + v =Y — p—2)
+[CP (= p) + &)+ 2C (N — k) — CP(n — p)n — k — 3)]n' (0 + 2y,
+CPn — P + v — v —k =30 + v — v — p =20 + Yo — ye —n)
— P — pin' (' + 27)0 + v — v —m)}. (4.45)

It is possible to simplify the above formula. To achieve the first modification, we notice that the sum of the two series Y~ _(...)
formed by using the last two components from the curly braces equals zero. Next, we may express the remaining two series in
terms of the hypergeometric functions 3 F, of the unit argument. Since it holds that [21,22]

P <a1,a2,a3 ) _ _TGord) i [(a1 +mT (a2 +ml(as +n)
2\ buby 7)) T T(@)T(@)(as) = nll(by +m(by + n)

[Re (by + by —a; —ay —a3) > 0], (4.46)

Eq. (4.45) becomes

n

B a_aé n!'l'(n 4+ 2y, + 1)N3
R = 3N — T 2y + Z ZX("W 2

=0 p=0
Clgz)(NnK - K)(an( - K/) Yo — Ve — k—2 Ve — Ve — D — 17VK’ — Y — I,
X 3F ,1
Vo — Ve — N V/—J/K—n+12VK+1
L G0 = P+ K + 20 N = 1) = P = P~k = 3)
Voo — Ve —n+1
Yo = Ve —k=2Y —Ve—DP— 1LV —Ve—n+1,
X 3F2< VK’ _ VK —n +2127/K’ + 1 al . (447)

The first 3 F, function may be eliminated with the help of the recurrence formula

Py (611,612,613 — 1; 1>= (@ —a3)(as — 03)3F2<a1,a2,a3‘ 1) rGre—a —a+1)

[Re(b —a; — ap) > —1]

as,b az(b — a3) az + 1,0’ (b —a)lb—a)T'(b —ay)
(4.48)
and therefore Eq. (4.47) can be rewritten as
R - aag N3 [ N nl(n+2y, + 1)
- z4 32(Nye +«7) (Npe — K)(VK’ — Ve —n+ I)F(zyk’ +1)
SN B Yo = Ve —k=2Y0—=Ve—P— LYo —Ve—n+1,
x) ) X<k>y<p>3F2< G S A ; 1)] (4.49)
k=0 p=0
where
Rk = [CO(Npe + 1) = CP(n — k — 3)]X(k), (4.50)
V(p) = [(n — p) + k") + 2(Nue — )1V(p) (4.51)
and

()P0 Qy +k+ p+5C
e = !0 + 2y, + 1 . 4.52
Wi = nil(n + 2y )ggk' 10— )l — Ik + 27 + DD(p + 27, + 1) (4.52)
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The above expression for W, has a very similar form to the formula defined in Eq. (A.1) in Ref. [13]. Basing on the analysis
carried out in the Appendix to that article, after some further straightforward calculations, Eq. (4.52) may be cast to the form

o) _
Wae = X = arcn ey [0+ 100" = 397 4] + Naa[630n + 70+ 7001 4 30°
—21(2y2 = 5)(n + 7)* —10(3y2 = S)mn +vo) +3(rve — 1) (2 — 4]} (4.53)

If Eq. (4.49) is inserted into Eq. (4.35), the sum of the two considered components of Q! is

3« 7’( )816 ,—k+1 +77 51{ ,—k—1
(1) (D _ K
Q—K+] + Q—K 1= 64 Z4 (47T60)CBM 1)2 Z Ny + '
n!T(n + 2y, + 1 S o
| W + (ot 2y + D) ROV (p)
Nox — 00 — 7o —n+ DI Qe + 1) 2 2
= p_
VK’_VK_k_za VK’_VK_p_la VK/_VK_n"'l_
X3F2< Ve — Ve —n+2, 20 + 1 1) 454

where n(i) =[2k F 1) — 4u>12k = 1)/(2x F 3). Finally, putting Eqgs. (4.34) and (4.54) into Eq. (4.9), and utilizing also
Eq. (4. 53) we find that the electric quadrupole moment induced by a weak dipole magnetic field in the Dirac one-electron atom
in the state characterized by the set of quantum numbers {n,k,u}, is given by

oW = — ot_af)‘_(47reo)cB,u O +Z nw KKt +77/<u S~
MR Z% 64(4K% — 1)? Oncu Ny + &/

3n!T'(n + 2y, + DN? o~
«| ©u ¢ (0 + 2 & DNy FRI(p)

(Npie — K)(VK’ — Ve —n+ 1)F(2yk’ +D k=0 p=0
Vo —Ve—k—=2, v —Ve—DP—L Ve —Ve—n+1,
><3F2( yr—yk—n+2 e b1 ;1) |1, (4.55)
with
O, =323 (k* — )4 — 12u* — D{(5n® + 10ny, 4+ 4y + 1)N,; — k(0 + v)[2c(n + vi) + 3Nul}  (4.56)
and

O5Y = 6(Nue — )N fdic(n + v [0 + ) = 3y2 + 5] + [63(n + y)* + 70(n + i)’
—21(2y2 = 5)(n + ¥)* — 10(3y2 = 5)(n + y) +3(y2 = 1) (¥2 — 4)]Nuc}- 4.57)

With the above result, we are able to obtain values of the induce electric quadrupole moment in any discrete energy state of the
atom.

As every new results, the expression for Qﬁ,lk)ﬂ should be subjected to some kind of verification. The only test, which allows
one to support the correctness of our formula is to check its form for some particular states of the atom and compare the resulting
formula with other results available in the literature. To accomplish the goal, we shall insert n = 0,k = —1 and u = +1/2
into Eq. (4.55), arriving at the expression for the electric quadrupole moment induced in the ground state of the relativistic

hydrogenlike atom, which is
ocao (4meg)cBT 2y, +5)
360 T'Cyi+1)

6 + DI+ + 21+ +3) v-v-2.n-n-Lyr-rn+l
x| 1= F. (1) |, (4.58)
=+ DICyi +59TCy + 1) vm—1+2,2n+1

Q11 = Q) = s

Transforming the hypergeometric function with the aid of the following formula:

F) ap,daz,as 1) =_ a3(b — az) F ap,ar,az — 1. 1 OB —a; —a+1)
a3+ 1.b° (a1 — a3)(az; — az) as,b’ (a1 —a3)(a; — a3)I'(b — a)l'(b — az)
[Re(b — a; — ap) > —1], (4.59)
022504-9
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Eq. (4.58) can be rewritten as

QY = sgn(u)

a2ea§£ 'y +95) _
Z4 by 14401 2yy)

X3F2(J’2—J/1—2, vn-—v—-1,y-—

v—n+1,2m+1
where

bo—@MB

is the atomic unit of the magnetic induction (i is the vacuum
permeability and w g is the Bohr magneton). The above result,
linear in the perturbing field strength B, is identical to the
corresponding formula obtained by us some time ago by direct
calculations [11].

It is worthwhile to recall here one of the most interesting
concluding remarks from the above-mentioned article, i.e.,
that in the nonrelativistic limit (when y, — |«|) the expression
from Eq. (4.60) tends to zero. This confirms the earlier results
of calculations of that quantity for the one-electron atom,
obtained on the basis of the nonrelativistic theories [23-25], in
which the leading term in the expansion of the induced electric
quadrupole moment in powers of the field strength is quadratic
in B.

V. CONCLUSIONS

In this work, we have analyzed the electric multipole
moments induced in the relativistic hydrogenlike atom in
an arbitrary discrete energy eigenstate by a weak, uniform,
static magnetic field. We have shown that, to the first order
in the perturbing field, only even-order electric multipole
moments can be induced in the system. Next, we have derived
analytically a closed-form expression for the induced electric
quadrupole moment for any state of the Dirac one-electron

PHYSICAL REVIEW A 93, 022504 (2016)

W+ +rI)Fn+ -+ + v +3)

)

2h
=0l _ 20 66T
47 ag 2eag

nlQy +35I'2y, +1)

(4.60)

4.61)

(

atom. The result has the form of a double finite sum involving
the generalized hypergeometric functions 3F, of the unit
argument; for the atomic ground state it reduces to the formula
for the considered quantity found by us some time ago [11].

We have discussed this physical effect on the basis of the
relativistic theory and in a general overview. There are some
articles [23-25], in which this physical problem is treated in
a nonrelativistic manner, but they concern only the atomic
ground state. The result presented in this work not only has
been obtained by taking into account the relativity, but also
generalizes the existing formula for Q(B) to an arbitrary
state of the atom.

The calculations of the actual value of the induced electric
quadrupole moment that we have carried outin Sec. IV provide
another example of the usefulness of the Sturmian expansion
of the generalized Dirac-Coulomb Green function [4] for
analytical determination of electromagnetic properties of the
relativistic hydrogenlike atom in an arbitrary discrete energy
eigenstate.
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