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Abstract 

Computer integrated manufacturing (CIM) has enormous benefits as it increases the rate of 

production, reduces errors and production waste, and streamlines manufacturing sub-systems.  

However, there are some new challenges related to CIM operating in the Internet of 

Things/Internet of Data (IoT/IoD) scenarios associated with Industry 4.0 and Cyber-Physical 

Systems. The main challenge is to deal with the massive volume of data flowing between 

various CIM components functioning in virtual settings of IoT. This paper proposes decisional 

DNA based knowledge representation framework to manage the storage, analysis, and 

processing of data, information, and knowledge of a typical CIM. The framework utilizes the 

concept of virtual engineering object (VEO) and virtual engineering process (VEP) for 

developing knowledge models of various CIM components like automatic storage and retrieval 

systems, automatic guided vehicles, robots, and numerically controlled machines. The 

proposed model is capable of capturing in real time the manufacturing data, information and 

knowledge at every stage of production i.e. at the object level, the process level and at the 

factory level. The significance of this study is that it will support decision making by reusing 

the experience, which will not only help in effective real-time data monitoring and processing 

but also make CIM system intelligent and ready to function in the virtual Industry 4.0 

environment. 
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1. Introduction 
 
In the modern industrial environment, companies are adopting a higher level of automation and 

computerization for their production systems in order to achieve higher efficiency and superior 

performance. Computer Integrated Manufacturing (CIM) is one example of such approaches. 

CIM is defined as the manufacturing approach of using computers to control the entire 

production process. This integration allows individual processes to exchange data, information, 

and knowledge with each other and initiate actions. Although manufacturing can be faster and 

less error-prone by the integration of computers, the main advantage is the ability to create 

automated manufacturing processes. However, there is a substantial challenge for CIM system 

to have collaborating computational entities, which are in intensive connection with the 

surrounding world and its on-going processes, providing and using data-accessing and data 

processing services available in real time (Baxter, Gao et al. 2007, Nguyen 2005). Moreover, 

there is a need for a mechanism to enhance overall smartness of CIM by extracting knowledge 

from its raw data and information (Wim, Verhagen, Garcia et al. 2012). 

This paper proposes a framework, in which previous knowledge of the CIM along with 

information communication technology (ICT) features are utilized to induce intelligence to the 

CIM system operating in data-intensive environments of IoT. The proposed model enables 

micro level integration of various CIM components, which in turn will not only facilitate the 

real-time control and monitoring capabilities but also enhance effective decision making. 

 

2. Knowledge base concepts for intelligent computer integrated manufacturing 

CIM systems do not have any standard knowledge representation yet and like most 

manufacturing systems lack the capability for data, information and knowledge sharing and 

exchange (Danilowicz and Nguyen 1988, 2000, Qiu, Chui et al. 2008, Duong et al 2010). In 

this section, Decisional DNA based techniques of Virtual engineering object and Virtual 

engineering process that are used for developing the knowledge models for CIM are discussed. 

For the sake of completeness, we briefly introduce our bio-inspired concept of DDNA first. 

 

2.1 Bio-inspired Decisional DNA 

Artificial bio-inspired intelligent techniques and systems play an important role in our effort to 

bridge the gap between our current society and the one embedded in semantic networks and 

IoT/IoD. Two of the main challenges of the Semantic Web society are big data handling (Bello-

Orgaz,  Jung, and Camacho 2016, Nguyen et al 2017), and   smart storage of information and 
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knowledge in artificial systems, so it can be unified, enhanced, reused, shared, communicated 

and distributed between artificial systems (Shadbolt, Hall et al. 2006). Our DDNA concept 

introduces one of the key components of addressing the above challenge. This concept stems 

from the role of deoxyribonucleic acid (DNA) in storing and sharing information and 

knowledge.  In nature, DNA contains “...the genetic instructions used in the development and 

functioning of all known living organisms. The main role of DNA molecules is the long-term 

storage of information. DNA is often compared to a set of blueprints and the DNA segments 

that carry this genetic information are called genes.” (Sinden 1994). The idea behind our 

approach was to develop an artificial system, an architecture that would support discovering, 

adding, storing, improving, and sharing information and knowledge among machines and 

organizations through experience. We proposed a novel Knowledge Representation (KR) 

approach in which experiential knowledge is represented by Set of Experience (SOE; fig. 1) 

and is carried into the future by Decisional DNA (DDNA; fig. 2) (Sanín, Mancilla-Amaya et 

al. 2009, 2012). 

 

 
 

Fig. 1. SOE is the combination of 4 components that characterise decision making actions 

(variables V, functions F, constraints C, and rules R) and it comprises a series of mathematical 

concepts (logical element), together with a set of rules (ruled based element), and it is built 

upon a specific event of decision-making (frame element). 
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Fig. 2. Sets of Experience (Decisional Genes SOEKS) are grouped according to their 

phenotype, creating Decisional Chromosomes (dChromosomes), and groups of chromosomes 

create the Decisional DNA (DDNA). 

 

SOE and DDNA can be implemented on various platforms (e.g. ontology, reflexive ontology, 

software-based, fuzzy logic etc.) in multi-domains, which makes it a universal approach 

(Zhang, Sanin et al. 2016). 

We initially developed the concept and coined the expressions of SOE and DDNA in (Sanin 

and Szczerbicki 2008, Sanín, Mancilla-Amaya et al. 2009, Zhang, Sanin et al. 2016). Since 

then our research efforts resulted in widespread recognition of this innovative KR technique 

based on DNA metaphor that is presented as multi-technology shareable knowledge structure 

for decisional experience with proven security and trust in (Sanín, Mancilla-Amaya et al. 2012, 

Sanin, Toro et al. 2012, Sanchez, Peng et al. 2014, Shafiq, Sanin et al. 2014). 
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2.2 Virtual engineering object (VEO) 

A VEO is knowledge representation of an engineering artefact.  It has three distinct features 

(Shafiq, Sanin et al. 2014, Shafiq, Sanin et al. 2014a, Shafiq, Sanin et al. 2015): 

(i) the embedding of the decisional model expressed by the set of experience,  

(ii) a geometric representation, and  

(iii) the necessary means to relate virtualization with the physical object being 

represented. 

A VEO is a living representation of an object capable of capturing, adding, storing, improving, 

sharing and reusing data, information, and knowledge through experience, in a way similar to 

an expert in that object. A VEO can encapsulate knowledge and experience of all important 

features related to an engineering object. This is achieved by gathering data and information 

from six different aspects (chromosomes) of an object viz. Characteristics, Functionality, 

Requirements, Connections, Present State and Experience as illustrated in fig. 3. 

 

 
Fig. 3.    VEO Structure (Shafiq, Sanin et al. 2015) 

 

VEO of an engineering object implies that all knowledge and experience related to that object 

is stored in a structured manner in a repository. This information not only can be used for 

decision making regarding its better operational performance but also can be utilized in areas 

like maintainability, serviceability, and reliability of the object. The VEO concept involves the 
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interlinking of the body of knowledge of connected objects, with the aim of constructing 

subclasses consistent enough for the purposes of the classification scheme. 

VEO is developed on the notion of cradle-to-grave approach, which means that the contextual 

information and decision making regarding an engineering object from its inception until the 

end of its useful life is stored or linked to it. The knowledge representation technique of Set of 

experience knowledge structure (SOEKS)-Decisional DNA (DDNA) introduced in Section 2.1 

is used for developing VEO as it provides dynamicity to overcome issues of representing 

complex data and discrete objects. 

The changing machining conditions such as for example spindle thermal deformation, tool 

failure, chatter, and work piece deformation induced by clamping force, cutting force, and 

material inner stress have significant impacts on machining quality and efficiency. Fig. 4 in the 

following Section illustrates at the conceptual level of how VEO caters for decision-making 

problems, which may emerge during the machining process due to complex conditions at this 

level. 

 

 

2.3 Virtual engineering process (VEP) 

In a manufacturing environment, the collection of components/tools/objects constitute a 

process.  Further, a combination of processes constitutes a system as depicted in fig. 4.  

 

 
Fig. 4. Correlation between physical and virtual world 

 

 Virtual engineering process (VEP) is a knowledge representation of manufacturing 

process/process planning of artefact having all shop floor level data and information regarding 

operations required, their sequence and resources needed to manufacture it as shown in fig 5. 
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VEP deals with the selection of necessary manufacturing operations and determination of their 

sequences, as well as the selection of manufacturing resources to “transform” a design model 

into a physical component economically and competitively (Shafiq, Sanin et al. 2015, Shafiq, 

Sanin et al. 2015, 2015a). 

Process planning is the combination of data and information regarding the operation required, 

manufacturing sequence, and machines required. In addition to this, for any given VEP 

information of all the VEO’s of the resource associated with the process is also required. 

Therefore, to encapsulate knowledge of the above-mentioned areas the VEP is designed (fig. 

5) having the following three main elements or modules: 

 

Operations: In this module of VEP all data and information related to the operations that are 

required to manufacture an engineering object are stored. This includes knowledge in the form 

of SOEKS related to operation process and scheduling. Furthermore, functional dependencies 

between operations are also part of operations. These are subcategorized and their interaction 

planning functions are given below: 

• Scheduling route- based on global and local geometry. 

• Processes- process capabilities, process cost. 

• Process parameters- tolerance, surface finish, size, material type, quantity, urgency 

 

 
Fig. 5. VEP architecture (Shafiq, Sanin et al. 2015) 
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Resources: Information based on the past experience about resources used to manufacture a 

component mentioned in operations module of VEP is stored here. The knowledge of the 

machine level stored in this section is as follows: 

• Machine and tool selections – machine availability, cost machine capability, size, 

length, cut length, shank length, holder, materials, geometry, roughing and finishing 

• Fixture selection -fixture element function, locating, supporting, clamping surfaces, 

stability 

Furthermore, as discussed in section 2.2 the information of VEO categorized under 

characteristics, requirements, functionality, present state, connections and experience is also 

linked with this section. 

 

Experience: In the experience module, links to the SOEKS of VEO’s along with VEP having 

past formal decisions to manufacture engineering components are stored. They represent the 

links to SOE’s based on past experience on that particular machine to perform given operation 

along with operational and routing parameter. 

 

2.4 Salient Features of VEO/VEP 

As discussed in the previous section, VEO/VEP works on the knowledge representation 

technique of SOEKS and Decisional DNA. Experimental case studies (Shafiq, Sanin et al. 

2015a) has proven that DDNA based VEO/VEP knowledge system will have following 

features: 

• Versatility and dynamicity of the knowledge structure, which provides flexibility to 

change according to the situation. 

• Storage of day-to-day explicit experience in a single structure, which makes it ever 

evolving. 

• Transportability, adaptability, and shareability of manufacturing data, information, and 

knowledge. 

• Predicting and decision-making capabilities based on the collected past experience. 

• Achieving decisional efficiency; having the right quality and quantity of knowledge at 

the right time. 
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3. Methodology for developing a framework for intelligent CIM 
 
CIM System is the computerized control and monitoring of production operation, using 

manufacturing automation. It incorporates several operations like Manufacturing (Machining 

process), Inspection, Quality Control, Assembly, Raw Material & Finished Good Storage, 

Material handling & Transfer Systems, Radio-frequency identification (RFID) Technology for 

real-time data management and CIMSIM Control System for remote monitoring and 

adjustment.  

The CIM system under study has the following components: 

• Automatic storage and retrieval system (ASRS) 

• Automatic guided vehicle (AGV) 

• Transfer conveyer 

• RFID tracking system 

• Machining operation (CNC-Lathe, CNC-Mill) 

A typical CIM process would be as follows: The Automatic Guided Vehicle (AGV) retrieves 

the pallet from the Automatic Storage and Retrieval System (ASRS). The pallet can be 

programmed for specific operation using RFID. The AGV then carries the pallet to specific 

operations such as machining, assembly, inspection or storage.  

The present study is conducted in four stages as presented in fig. 6. In stage 1 of the study 

detailed working, architecture, input and output parameters of CIM components were analysed. 

This stage was necessary for stage 2 where knowledge models of physical components of CIM 

are developed. These models are interconnected via the internet and are capable of sending and 

receiving data and hence forms internet of things (IoT) (Hermann, Pentek et al. 2015). In stage 

3 real-time semantic analysis and visualization of the captured data is done. And finally, in 

stage 4 the inferred knowledge from the past experience is utilized in controlling, monitoring 

and future decision making etc. 
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Fig. 6. Framework for the intelligent CIM in IoT setting 

 

 

3.1 Components of computer integrated manufacturing as knowledge entities 
 

As discussed in section 2.2, VEO is a knowledge representation of engineering artefacts. In 

this study, each physical component of CIM is considered as a VEO and correspondingly the 

following knowledge models are developed: ASRS-VEO, AGV-VEO, Robot-VEO, Lathe-

VEO, Mill-VEO, and Arm-VEO. Fig. 7 illustrates the structure of Lathe-VEO knowledge 

model having information regarding its characteristic, functionality, requirement, connections, 

present state and experience of the Lathe. Furthermore, adhering to the structure of SOEKS-

DDNA, for each module data and information is structured according to variables, function, 

constant and rules related to every formal decision. A sample of CSV files of experience 

module of ASRS-VEO, Lathe-VEO, and Mill-VEO are shown in the appendix-1, appendix-2, 
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and appendix-3. On the same pattern information of characteristics, requirement, connections, 

present state, functionality related to ASRS-VEO are gathered. 

Similarly, knowledge models for AGV-VEO, Robot-VEO, ASRS-VEO, Mill-VEO, and Arm-

VEO are developed as shown in fig. 8. 

 
 

Fig. 7. Structure of ASRS-VEO 

 

In a typical CIM setup, the parts to be manufactured are indistinguishable. We propose to 

develop VEP of every part, that provides a label an identity for each part and determines its 

path through the production process. The VEP information will accompany the part to the 

intended place where it will be used to fulfil its purpose. Appendix-4 shows a sample CSV file 

having VEP experience module. The part is no longer an ambiguous entity and its information 

can be accessed at any stage of its life cycle. This VEP information can be stored on RFID tag, 

which helps to keep the part in control throughout machining and assembly operations. RFID 

signals keep track of which parts are completed and ready for shipping. Factory’s entire 

logistics system is also steered by RFID that makes is easier to get the overall picture of the 

flow of wares and thus reduce the warehouse stock. With the help of VEP and RFID machines 

and products can increasingly communicate among themselves without people (see stage 2 for 

fig. 6). This technique makes production a zero defect system, mistakes can be recognized 
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immediately and can be corrected. This is also one of the features of building Industry 4.0 

(Posada, Toro et al. 2015). Industry 4.0 is the  integration and assimilation of a number of 

smaller concepts such as  “Cyber physical systems (CPS)”,"Internet of things (IoT)", “Internet 

of services (IoS)”, “Internet od data ((IoD)“smart products” etc (Kagermann, Wahlster et al. 

2013, Max Blanchet, Thomas Rinn et al. 2014).  

As mentioned before the architecture of VEO is envisaged on cloud computing, thus all the 

part data can be accessed on the Internet. Once the product is delivered to the customer and it 

is used in the manufacturing process, the assembly generated automatic information that can 

be accessed through the Internet as well, and the manufacturer can monitor parts performance 

and decided what kind of product can be required in the future. Moreover, digital 

manufacturing footprints of machine components and products that are produced in a CIM-

DNA are also attained as shown in fig.8. 

 
Fig. 8. Knowledge representation architecture of CIM 

 
4. Extracting knowledge and semantic analysis of data 

 
Vast amounts of data travel constantly through the factory via VEOs and VEPs.  Once the data 
is collected, it is necessary to prepare it for its exploitation. First of all, there is a necessity of 
some filtering, as all the raw data is not useful. The outliers and any other fragment of data that 
is considered noise are eliminated.  The next step is to extract knowledge from the collected 
data, which is achieved by querying the CIM-DNA knowledge repository.   
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Given a pair of Sets of Experience CIM-DNA (entire CIM repository) and querySOEj (SOE 
made up of query) ∈ S, it is possible to generate a similarity metric of the variables called SV ∈ 
[0,1] by calculating the distance measure between each of the pairwise attributes k ∈ CIM-
DNAi and querySOEj. The Euclidean distance measure has been selected based on its simplicity 
and extended use. Besides, a normalization form was included following the notion of the range 
of comparison, that is, the maximum function. The similarity metric takes the following 
equation (1): 

 

𝑆𝑆𝑉𝑉�𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷𝐷𝐷, 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗� =  �𝑤𝑤𝑘𝑘

𝑛𝑛

𝑘𝑘=1

�
�𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖2 − 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗𝑗𝑗2 �

𝑚𝑚𝑚𝑚𝑚𝑚�|𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖𝑖𝑖|, �𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗𝑗𝑗��
2�
0.5

 ∀𝑘𝑘

∈ 𝐶𝐶𝐶𝐶𝐶𝐶_𝐷𝐷𝐷𝐷𝐷𝐷 𝑖𝑖 ∧  𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝐸𝐸𝑗𝑗 

 

The parser is written in JAVA programming language to read the information from the CSV 
files and convert them into SOEKS. Moreover, using formula (1) it calculates the similarity 
between a query SOEKS and the SOEKS collected in the CIM-DNA knowledge repository.
  

5. Results and discussion 

Table 1 gives a sample query that was executed to find the most similar SOEKS. For example, 
in query 1, VEP similarity is calculated for a product CLY-1 when total time = 12 min, 
tolerance = -0.1 and Finish = 1.8.  Fig. 9 illustrates the execution of this query. CIM-DNA 
returns the top most similar SOEKS which in this particular case is VEP-Code no 9 having 
similarity 0.877. The query also returns the codes of ASRS-VEO, Robot-VEO, Lathe-VEO, 
Arm-VEO, and Mill-VEO for the most similar VEP-Code (see Table 1). This enables to fetch 
all the micro level details of each component corresponding to most similar VEP- SOEKS. 

Table 1. Sample query with input variables corresponding output 

 
INPUT OUTPUT 

Query Product 
Code 

VEP 
Variables 

VEP 
Variable 
values 

Top VEP 
Similarity 

VEP 
code 

ASRS-
VEO 
code 

Robot 
VEO 
code 

Lathe 
VEO 
code 

Arm-
VEO 
code 

Mill-
VEO 
code 

1 CLY-1 
Total Time 12 

.877 VEP9 ASRS14 R4 L3 A6 M3 Tolerance -.01 
Finish 1.8 

 
The approach helps to categories the past decisions taken on the CIM and then prioritise them 
according to the situation.  
 

(1) 
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Fig. 9. Calculation of similarity for each VEP-SOEKS 
 

The main contribution of this work is to demonstrate and implement knowledge-based CIM 
environment in data-intensive Iot/IoD scenario. The CIM-DNA which is the representation of 
manufacturing process collective computational intelligence is created by capturing the 
experience of engineering objects and engineering processes and then using this information 
for the construction of VEO and VEP. The Set of Experience Knowledge Structure and 
Decisional DNA are applied as the knowledge representation structure for gathering the 
experience. Further, VEF-VEP is used as a tool for decision-making processes that can enhance 
different CIM systems with predicting capabilities and facilitate knowledge engineering 
processes. Moreover, CIM-DNA readily copes with self-organizing production and control 
strategies; this is a strong linking instance of product life-cycle management, industrial 
automation and semantic technologies as required for cyber-physical systems and Industry 4.0. 
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Appendix-1: Experience of ASRS-VEO 
 

ASRS-VEO 
Code Product Code Pallet Position Next Station  Receiving Station Total Time  

ASRS1 CYL-1 R1C1 Lathe Milling 13.53 

ASRS 2 CYL-1 R1C2 Lathe Milling 8.70 

ASRS 3 CYL-1 R1C3 Lathe Milling 6.77 

ASRS 4 CYL-2 R1C4 Lathe Milling 9.67 

ASRS 5 CYL-2 R1C5 Lathe Milling 8.70 

ASRS 6 RECT-1 R2C1 Lathe Milling 14.50 

ASRS 7 RECT-1 R2C2 Lathe Milling 13.53 

ASRS 8 RECT-2 R2C3 Lathe Milling 6.77 

ASRS 9 RECT-2 R2C4 Lathe Milling 11.60 

ASRS 10 RECT-2 R2C5 Lathe Milling 8.70 

ASRS 11 MISL-1 R3C1 Lathe Milling 12.57 

ASRS 12 MISL-2 R3C2 Lathe Milling 8.70 

ASRS 13 MISL-3 R3C3 Lathe Milling 14.50 

ASRS 14 MISL-4 R3C4 Lathe Milling 12.57 

ASRS 15 MISL-5 R3C5 Lathe Milling 10.63 

 
Appendix-2: Experience of Lathe-VEO 
 

Lathe-VEO Code Product Code Program Code Feed Speed Machining Time 

L1 CYL-1 L-T-1 0.12 577 5.64 

L2 CYL-1 L-T-2 0.07 1199 3.63 

L3 CYL-1 L-TT-1 0.10 574 2.82 

L4 CYL-2 L-TT-2 0.11 1326 4.03 

L5 CYL-2 L-G-1 0.12 1333 3.63 
L6 RECT-1 L-T-3 0.08 1371 6.04 
L7 RECT-1 L-T-4 0.09 810 5.64 

L8 RECT-2 L-TT-3 0.09 661 2.82 

L9 RECT-2 L-TT-4 0.10 1103 4.83 
L10 RECT-2 L-G-2 0.06 1155 3.63 
L11 MISL-1 L-T-5 0.11 1231 5.24 
L12 MISL-2 L-T-6 0.11 1388 3.63 
L13 MISL-3 L-TT-5 0.09 1282 6.04 

L14 MISL-4 L-TT-6 0.10 689 5.24 

L15 MISL-5 L-G-3 0.11 1156 4.43 
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Appendix-3: Experience of Mill-VEO 
 

Mill-VEO Code Product Code Program Code Feed Speed Machining Time 
M1 CYL-1 M-1 0.08 889 4.36 

M2 CYL-1 M-2 0.06 1239 2.81 

M3 CYL-1 M-3 0.1 896 2.18 

M4 CYL-2 M-4 0.11 912 3.12 
M5 CYL-2 M-5 0.08 872 2.81 
M6 RECT-1 M-6 0.06 1352 4.68 
M7 RECT-1 M-7 0.1 1153 4.36 

M8 RECT-2 M-8 0.1 926 2.42 

M9 RECT-2 M-9 0.12 1295 4.83 
M10 RECT-2 M-10 0.07 1284 5.80 
M11 MISL-1 M-11 0.12 924 3.38 
M12 MISL-2 M-12 0.12 978 7.25 
M13 MISL-3 M-13 0.06 1151 5.32 
M14 MISL-4 M-14 0.06 1055 7.25 
M15 MISL-5 M-15 0.11 812 7.25 

 
Appendix-4: Experience of VEP 
 

VEP code 
Product 

Code 

Part 

Material 

Lathe-

VEO Code 

Mill-VEO 

Code 

Total 

Time 

(min) 

Tolerance 

(mm) 
Finish 

VEP1 CYL-1 Aluminum L1 M1 14.53 0.01 1.82 

VEP 2 CYL-1 Aluminum L1 M2 9.7 -0.02 1.82 

VEP 3 CYL-1 Aluminum L1 M3 7.77 -0.03 1.82 

VEP 4 CYL-1 Aluminum L2 M1 10.67 0.00 1.82 

VEP 5 CYL-1 Aluminum L2 M2 9.7 0.01 2.73 

VEP 6 CYL-1 Aluminum L2 M3 15.5 0.00 1.82 

VEP 7 CYL-1 Aluminum L3 M1 14.53 0.01 2.73 

VEP 8 CYL-1 Aluminum L3 M2 7.77 -0.01 2.73 

VEP 9 CYL-1 Aluminum L3 M3 12.6 -0.02 1.82 

VEP 10 CYL-1 Mild steel L1 M1 9.7 0.03 2.73 

VEP 11 CYL-1 Mild steel L1 M2 13.57 0.05 1.82 

VEP 12 CYL-1 Mild steel L1 M3 9.7 -0.03 1.82 

VEP 13 CYL-1 Mild steel L2 M1 15.5 0.01 2.73 

VEP 14 CYL-1 Mild steel L2 M2 13.57 0.04 1.82 

VEP 15 CYL-1 Mild steel L2 M3 11.63 -0.03 1.82 
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