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Abstract: The study presented herein concerns the mechanical properties of two common polymers
for potential biomedical applications, PLA and PETG, processed through fused filament fabrication
(FFF)—Material Extrusion (ME). For the uniaxial tension tests carried out, two printing orientations—
XY (Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles for
part positioning, coordinates, and orientation typically used in additive manufacturing (AM). In
addition, six specimens were tested for each printing orientation and material, providing insights into
mechanical properties such as Tensile Strength, Young’s Modulus, and Ultimate Strain, suggesting
the materials’ potential for biomedical applications. The experimental results were then compared
with correspondent mechanical properties obtained from the literature for other polymers like ASA,
PC, PP, ULTEM 9085, Copolyester, and Nylon. Thereafter, fatigue resistance curves (S-N curves) for
PLA and PETG, printed along 45◦, were determined at room temperature for a load ratio, R, of 0.2.
Scanning electron microscope observations revealed fibre arrangements, compression/adhesion
between layers, and fracture zones, shedding light on the failure mechanisms involved in the fatigue
crack propagation of such materials and giving design reference values for future applications. In
addition, fractographic analyses of the fatigue fracture surfaces were carried out, as well as X-ray
Computed Tomography (XCT) and Thermogravimetric (TGA)/Differential Scanning Calorimetric
(DSC) tests.
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1. Introduction

Biomechanics is a multidisciplinary field that applies the principles of classical me-
chanics to various biological problems, combining engineering mechanics with biology and
physiology. Different aspects of biomechanics utilise concepts and methods from applied
mechanics, such as statics for analysing the forces in joints and muscles, dynamics for
describing motion and forces in sports mechanics, the mechanics of deformable bodies for
evaluating the behaviour of biological materials, and fluid mechanics for studying blood
and airflow in the body [1].

Additionally, additive manufacturing (AM) is probably the current production pro-
cess that will revolutionise the industry in this century. It allows for the production of
small batches of highly customised components with very complex shapes and minor
postprocessing operations that meet each person’s anatomical requirements.

This study investigates the quasi-static mechanical properties of two polymers, PLA
and PETG, capable of being used in biomechanical applications obtained through AM. In
fact, the AM of polymeric materials has expanded into several areas of engineering, includ-
ing biomechanics, over the last few years. Biomechanical devices are crucial in improving
the quality of life of individuals with disabilities, injuries, or physical limitations, with their
vast and diverse range of applications from prostheses to surgical tools and implants [2].
However, there are still challenges to be overcome, especially issues related to strength,
toughness, and durability, where it is essential to ensure that these materials have an ade-
quate service life under real conditions of use. For example, the hip joint can be subjected
to magnitudes of 870% human body weight (BW) [3] or 1000% BW [4] during stumbling
or jumping, respectively, and there are also forces of varying amplitudes resulting from
the fatigue loading associated with walking at different speeds, running, and jumping, for
example. Therefore, whether AM or conventionally manufactured and whether made of
polymers [5] or metallic materials [6,7], prosthetic materials must be designed to endure
and support such physical demands. In addition, with the advancement of AM technol-
ogy, prostheses are becoming increasingly advanced and sophisticated, offering a greater
functionality and comfort for patients together with an improved design [8].

At the same time, the ASTM International Technical Committee F42 defined AM as
a mechanical process of joining materials to make objects from three-dimensional (3D)
model data, usually layer upon layer, instead of subtractive manufacturing methodolo-
gies [9]. This enables the production of end products, encompassing prototypes for design
verification—shape and fit checking, tools, and conceptual components [10] with increased
design complexity [11] that could not be easily obtained with a conventional manufacturing
process. Additionally, the absence of tooling requirements in AM leads to a reduction in
the production ramp-up time and costs, enables the production of small batches that are
both feasible and cost-effective, and offers the advantage of quickly modifying designs,
optimising products for specific functions, reducing waste, and using few raw materi-
als [11]. Furthermore, it holds the potential for simplified supply chains, shorter lead
times, lower inventories, and the ability to customise designs to meet specific require-
ments [12]. Nevertheless, AM does face certain limitations that restrict its wide-scale
application, namely surface finishing, as achieving the desired quality can be challenging
without post-processing. Moreover, the build space of AM machines also imposes physical
constraints on the component dimensions, thereby limiting the size of the produced parts
to small ones [13]. However, the issue of not producing large AM parts is gradually being
overcome [14].

In addition, ASTM [9] defined eight different categories to accommodate the existing
and future AM machine technologies, such as Material Extrusion (ME), Material Jetting,
Binder Jetting, Sheet Lamination, Vat Photopolymerisation, Powder Bed Fusion, Directed
Energy Deposition, and Cold Spraying. In this study, the specimens for mechanical experi-
mental tests were obtained using ME, which utilises a filament of thermoplastic material as
the feedstock. This thermoplastic filament is fed into a temperature-controlled extrusion
head; after that, the filament is heated until it reaches a semi-liquid state, and it is then
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extruded and deposited in ultra-thin layers onto a build platform that solidifies quickly
upon deposition, creating a solid part. One of the critical advantages of ME is its versatility
in material selection, which has various types of thermoplastics at its disposal, offering
a wide range of mechanical and thermal properties. Additionally, there are many vari-
ables that influence the resulting mechanical properties, including filament manufacturing,
process parameters such as layer thickness, printing speed, printing head temperature,
build plate temperature, build orientation, raster angle, 3D-printing equipment, ageing,
and post-process treatments, and mechanical testing procedures [15].

During this investigation, a raster angle equal to 0◦ and two printing orientations—XY
(Horizontal, H) and YZ (Vertical, V)—were considered according to the general principles
for part positioning for quasi-static tensile specimens [16], where the first characteristic
dimension is the length of the specimen and the second characteristic dimension is the
width of the specimen [15] (Figure 1). For the fatigue tests, an alternating raster angle equal
to 45◦/−45◦ and an XY orientation was used (Figure 1).
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Figure 1. Printing orientations. Alternating raster angle: 0◦ (quasi-static tests, XY and YZ orientations)
and 45◦/−45◦ (fatigue tests, XY orientation).

2. Materials and Methods
2.1. Uniaxial Tensile Tests and Fatigue Tests

The experimental test specimens were 3D printed using an Anycubic Kobra printer,
Shenzhen, China, with a 100% infill density, a layer height of 0.25 mm, a shell thickness of
2 mm, a print speed of 50 mm/s, a filament diameter of 1.75 mm, and a nozzle diameter
of 0.4 mm. The printing temperature typically ranged from 215 ◦C to 220 ◦C, and the bed
temperature was 70 ◦C.

Commercial filaments of PLA and PETG from Stratasys [17] were used for the fabrica-
tion of all the specimens tested under the quasi-static uniaxial load and the fatigue loading.

The geometry of the specimens (Figure 2) used for the quasi-static and fatigue tests were
customised considering the geometries and recommendations outlined in the standards
ASTM D638-14 [18] and ASTM E466-96 [19]. Moreover, a finite element analysis was carried
out to verify the stress distribution on the specimen (Figure 2) and assess the assumed
geometric variables’ adequacy. Issues such as the grip cross-sectional area in relation to the
test section area, the radius of the blending fillets, the ratio of specimen test section width
to thickness, and the test section length in relation to the test section width of the specimen
were considered in the definition of the specimens’ geometry. As expected, structural
analysis (Figure 2) showed the maximum stress values in the test section area.D
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The quasi-static tensile tests were carried out with a uniaxial testing machine, Instron
5544, with a maximum load capacity of 2 kN. For the uniaxial tension tests carried out, two
printing orientations—XY (Horizontal, H) and YZ (Vertical, V)—were considered (Figure 1).
In addition, six specimens were tested for each printing orientation and material, providing
insights into mechanical properties—average and standard deviation—such as Tensile
Strength (UTS), Young’s Modulus, and Ultimate Strain. The testing speed was defined as
1 mm/min, according to ASTM D638 [18], to produce the specimens’ rupture in 3 to 7 min.

PLA and PETG were chosen for the fatigue testing due to their wide usage in various
applications and low cost. High-cycle fatigue tests were performed with an MTS servo-
hydraulic testing machine with a load frame capacity of 100 kN, a load ratio, R, equal
to 0.2, and a load frequency of 7 Hz. Thereafter, fatigue resistance curves (S-N curves)
for PLA and PETG, printed along alternating 45◦/−45◦ angles, were determined at room
temperature. To carry out the fatigue tests effectively, at least three different stress levels
were established, including 60%, 45%, and 30% of the tensile strength (UTS) for the two
materials, and each stress level underwent three repeated tests (3 specimens per stress level)
to ensure statistical significance and robust data collection.

2.2. TGA/DSC Samples

The test was carried out with a Simultaneous Thermal Analyzer (STA 6000 Perkin
Elmer, Waltham, MA, USA) with nitrogen as the purge gas at a flow rate of 20 mL/min.
The heating was from 30 ◦C to 600 ◦C with a heating rate of 10 ◦C/min. The PETG’s
sample weights were around 6.88 ± 0.48 mg and PLA’s sample weights were around
6.03 ± 0.76 mg. The Thermogravimetric Analysis (TGA) and the Differential Scanning
Calorimetric (DSC) were evaluated. Three samples of each material were analysed.

2.3. X-ray Computed Tomography (XCT)

The XCT tests were carried out with a SkyScan1174v2 scanner, Bruker (Billerica, MA,
USA). The scan parameters selected were a source voltage of 50 kV, source current of 800 µA,
image pixel size of 30.11 µm, exposure of 8000 ms, and rotation step equal to 0.900 deg.
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2.4. SEM Images and Fractographic Analyses

The SEM images of the fractured surfaces were taken using a Hitachi High-Tech Model
SU3800 (Hitachi, Tokyo, Japan) under a low-vacuum mode for non-conductive materials at
30 Pa of pressure and with an accelerating voltage of 20 kV. Using this mode, images were
captured at different magnifications.

In addition, a fractographic examination of the fracture surfaces was performed accord-
ing to the entire fracture surface method [20]. They were subsequently measured using the
Sensofar S-Neox optical profilometer (Sensofar, Barcelona, Spain) with the focus variation
method (FVM) [21]. The fracture surfaces were observed under 10× magnification and
stitched with a 7 × 3 grid to map the entire fracture area, with a pixel size of 1.38 µm/pixel.
Sensofar (.plux) source files were transferred into the surface texture analysis software
MountainsMap (version 7.4, Digital Surf, Besançon, France) and resampled into height
maps at a resolution automatically set by the software. The main fractographic features are
reflected by the surface topography parameters [22].

3. Results and Discussion
3.1. Uniaxial Tensile Quasi-Static Tests

Table 1 and Figure 3 present the values of the Tensile Strength, Young’s Modulus,
and Ultimate Strain of the two materials tested, PLA and PETG, grouped by the printing
orientation (XY or YZ).

Considering the results of the uniaxial tensile tests, the following conclusions may
be drawn:

• For the XY and YZ printing directions, the Tensile Strength and Young’s Modulus
(average values) obtained for PLA (55 MPa|2350 MPa) were higher than the cor-
responding values obtained for PETG (37 MPa|1200 MPa) by approximately 48%
and 96%, respectively;

• PLA may, therefore, be used for components under induced stresses up to 55 MPa and
when greater rigidity is required, as PLA revealed higher Young’s Modulus values
(average value: 2300 MPa);

• PETG may be used for components under induced stresses up to 33 MPa and when
higher deflections are allowed, since PETG revealed lower Young’s Modulus values
(average value: 1200 MPa);

• The average ultimate strain values obtained for PLA and PETG, either printed along
XY or YZ, were around 4.3% and 6.5%, respectively. Therefore, PETG showed more
ductile behaviour than PLA;

• The experimental results obtained for PETG and PLA were in the same order of mag-
nitude of the manufacturer’s specifications [17], with deviations of −18%, and +22%,
respectively. However, it is important to stress that the manufacturer’s values are
typically provided for the XZ orientation, while the tests were conducted in the XY
and the YZ planes;

• Moreover, comparing the mechanical properties of PLA and PETG with other poly-
meric materials, the tensile strength value of ULTEM® 9085 was the highest of the
common AM polymeric materials tested and was about 70 MPa [23]; a second group of
materials—PC and PLA—demonstrated tensile strength values around 55 MPa [24,25];
a third group included ASA, PP, ABS, and PETG, with tensile strength values of
approximately 35 MPa [24,25]; and a fourth group of materials included Nylon and
Copolyester with tensile strength values of about 20 MPa [25]. Therefore, the experi-
mental tensile strength results (Table 1 and Figure 3) compare well with the published
data [23–25].

• The differences between the Young’s Moduli for the different polymeric materials
referred to above were around 1500 MPa [24,25]. In fact, PLA revealed the highest
Young’s Modulus values (around 2600 MPa [24,25], which were similar to the average
value of 2350 MPa presented in Table 1 and Figure 3, and ASA/Nylon/Copolyester
revealed the lowest (500 MPa) [25]. PETG Young’s Modulus was about 1500 MPa [25],
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which also compares reasonably well with the experimental data (1200 MPa, Table 1
and Figure 3).
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Table 1. Mechanical properties of PLA and PETG under tensile testing (average ± standard deviation).

XY

Tensile Strength
[MPa]

Young’s Modulus
[MPa]

Ultimate Strain
[%]

PLA 54.9 ± 1.73 2451.4 ± 81.12 4.1 ± 0.17
PETG 32.9 ± 1.77 1109.6 ± 36.27 7.3 ± 1.38

YZ

Tensile Strength
[MPa]

Young’s Modulus
[MPa]

Ultimate Strain
[%]

PLA 54.9 ± 4.82 2245.7 ± 114.80 4.5 ± 0.32
PETG 40.9 ± 1.64 1290.7 ± 36.02 5.7 ± 0.66

In addition, statistical analyses between the printing directions, XY and YZ, were
evaluated on GraphPad Prism 9 software with a two-way ANOVA with a Fisher’s Least
Significant Difference test, where statistically significant differences are represented by
p < 0.01 and p < 0.001. Comparing the results obtained, PETG showed statistically sig-
nificant differences across all the parameters analysed, namely Tensile Strength, Young’s
Modulus, and Ultimate Strain. Specifically, the vertically printed specimens (YZ) exhibited
a higher Tensile Strength (p < 0.001) and Young’s Modulus (p < 0.01) compared to the
horizontally printed ones (XY). Conversely, for the Ultimate Strain, the horizontally printed
PETG specimens (XY) showed higher values (p < 0.01).

In the case of PLA, statistically significant differences were only observed in the
Young’s Modulus (p < 0.001), with the horizontally printed specimens (XY) demonstrating
superior values.

This discrepancy was likely due to variations in the interlayer temperature and hatch
distance, which can affect the adhesion between layers, the existence of voids, and the
consistency of the deposited filament’s geometry, leading to differences in mechanical
performance [26].

3.2. Uniaxial Tensile Fatigue Tests

PLA and PETG were chosen for the uniaxial tensile fatigue testing under load control
due to their wide usage in various applications and low cost. To carry out these tests
effectively, at least three different stress levels were established, including 60%, 45%,
and 30% of the ultimate tensile strengths of those two materials obtained from the quasi-
static uniaxial tensile tests. Each stress level was intended to undergo three repeated
tests. The thickness of each test specimen was constant. However, some specimens were
approximately 5 mm thick, while others were about 7 mm thick. This explains the variation
in the forces applied within each stress level tested (Tables 2 and 3).

For PETG and the above-chosen test levels, maximum stress values, σmax, of approx-
imately 20.4 MPa, 15.3 MPa, and 10.2 MPa were applied, respectively (Table 2); when
considering PLA, the maximum stress values applied were equal to 32.4 MPa, 24.3 MPa,
and 16.2 MPa (Table 3). Cyclic loading was applied during the fatigue tests, oscillating
between the maximum stress and the minimum stress, σmin, set at 20% of the maximum
stress applied (load ratio, R = 0.2), see Tables 2 and 3. The fatigue life results obtained for
both materials are shown in Figure 4.D

o
w

nl
o

ad
ed

 f
ro

m
 m

o
st

w
ie

d
zy

.p
l

http://mostwiedzy.pl


Polymers 2024, 16, 1868 8 of 17

Table 2. Fatigue results obtained for specimens made of PETG. Load ratio, R, equal to 0.2. Frequency,
f = 7 Hz. Maximum force (Fmax), minimum force (Fmin), amplitude force (Fa), and medium force
(Fmed).

Spec.
#

Thickness
[mm]

Stress
Level

σmax
[MPa]

σmin
[MPa]

Stress
Range, ∆σ

[MPa]

Fmax
[N]

Fmin
[N]

Fa
[N]

Fmed
[N] Ncycles

1 5.06
60% UTS 20.4 4.08 16.31

1012.2 202.4 404.9 607.3 12,132
2 5.04 1008.3 201.7 403.3 604.9 12,496
3 4.98 996.8 199.4 398.7 598.1 15,483

4 7.10
45% UTS 15.3 3.06 12.23

1064.6 212.9 425.8 638.7 17,040
5 5.06 758.5 151.7 303.4 455.1 41,250
6 5.06 758.3 151.7 303.3 454.9 35,140

7 7.13
30% UTS 10.2 2.04 8.16

712.8 142.6 285.1 427.7 79,271
8 5.09 509.1 101.8 203.6 305.5 124,889
9 5.14 514.1 102.8 205.7 308.5 193,323

Table 3. Fatigue results obtained for specimens made of PLA. Load ratio, R, equal to 0.2. Frequency,
f = 7 Hz. Maximum force (Fmax), minimum force (Fmin), amplitude force (Fa), and medium force
(Fmed).

Spec.
#

Thickness
[mm]

Stress
Level

σmax
[MPa]

σmin
[MPa]

Stress
Range,

∆σ [MPa]

Fmax
[N]

Fmin
[N]

Fa
[N]

Fmed
[N] Ncycles

10 7.10
60% UTS 32.4 6.48 25.92

2255.8 451.2 902.3 1353.5 2040
11 5.10 1619.9 323.9 647.9 971.9 1331
12 5.13 1627.7 325.5 651.1 976.6 972

13 5.08
45% UTS 24.3 4.86 19.44

1209.2 241.8 483.7 725.5 6880
14 5.13 1221.5 244.3 488.6 732.9 5900
15 5.15 1225.6 245.1 490.3 735.4 5380

16 5.09
30% UTS 16.2 3.24 12.96

807.6 161.5 323.1 484.6 43,600
17 5.13 814.4 162.9 325.8 488.7 48,893
18 5.18 821.9 164.4 328.8 493.2 37,970

19 5.16 20% UTS 10.8 2.16 8.64 546.6 109.3 218.7 327.9 525,170

As shown in Figure 4, PLA demonstrates a higher fatigue strength, withstanding
higher stresses than PETG for the same fatigue life. Additionally, the slope of the PETG
curve indicates a more rapid decrease in the fatigue life as the stress levels decreasd
compared to PLA. In addition to the standard S-N curve represented by the full lines, a
fatigue design curve was drawn for a 95% survival probability, determined from the mean
curve with a confidence level of 95%. In the case of PLA, the scatter associated with the
experimental data is smaller than that for PETG, which explains why the fatigue design
curve is closer to the S-N curve.

The results found in scientific databases regarding the high-cycle fatigue (HCF) of PLA
and PETG under uniaxial tensile loads are extremely scarce. Some studies combine PLA
with flax fibres [27] or PCL [28]; others include PLA coating with an AM60 magnesium
alloy [29]. No HCF results were found for PETG. Algarni [30] studied the PLA fatigue
behaviour for specimens with large, medium, and sharp notches, which differs from
the results obtained in this investigation. Only in the paper by Azadi et al. [31] was it
possible to find some HCF results for PLA obtained under fully reversed stress-controlled
bending loading (R = −1). Moreover, the layer thickness was 0.15 mm, the infill percentage
of the parts was 50%, and the specimens were cylindrical. Nevertheless, the authors
found a Basquin’s exponent equal to −0.288, which compares with the value determined
experimentally in this study (−0.192). Additionally, Afrose et al. [32] observed that, under
low-cycle fatigue loading, the PLA specimens built in 45◦-orientations achieved the highest
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fatigue life compared to those PLA specimens built in the X- and Y-orientations. From
the results presented by the authors [32], it was possible to adjust a power law with an
exponent equal to −0.165, which compares reasonably well with −0.192.
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Figure 4. Fatigue strength of PLA and PETG. Load ratio, R, equal to 0.2.

3.3. TGA/DSC Results

The derivative of the TGA (DTGA) curves of PLA (Figure 5) showed thermal de-
composition (Td) at 357.57 ± 0.69 ◦C, and by TGA, it was possible to obtain a residual
waste of 1.27 ± 0.9%, meaning that PLA almost totally decomposed. Since PLA is a semi-
crystalline thermoplastic, the DSC curves showed a glass transition temperature (Tg) of
69.25 ± 0.93 ◦C, an exotherm peak associated with a cold crystallization temperature (Tc)
of 102.74 ± 0.46 ◦C, and a melting temperature (Tm) of 174.71 ± 1.35 ◦C (Figure 5).
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On the DTGA curve of PETG, the Td was 419.27 ± 1.86 ◦C, and was accompanied by a
residual waste of 11.12 ± 1.46%, meaning that the PETG did not totally decompose. Since
PETG is an amorphous material, it only presented a Tg of 73.46 ± 0.78 ◦C.

The printing process can significantly influence the material properties, greatly impact-
ing the mechanical stability of the polymers. However, the observed values aligned with
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the existing literature for PLA and PETG [33–35], and with Ronca et al., who demonstrated
that thermal properties remain unaffected by the printing process [36].

3.4. XCT Results

The morphometry results revealed a total porosity of 9.3% for the specimens made of
PLA and 12% for those made of PETG (Figure 6). These values were obtained for 350 layers,
with lower and upper grey thresholds of 70 and 255, respectively, and considering a total
Volume-of-Interest (VOI) volume of 2.1667 × 1011 µm3 for all samples observed.
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Although the infill percentage was 100%, the XCT tests measured total porosity values
of 9.3% (PLA) and 12% (PETG). These indicate the proportion of void space within the
material, which can significantly impact its mechanical properties and performance. In fact,
a high porosity typically leads to a reduced strength, stiffness, fatigue strength, and fracture
toughness. Therefore, these porosity values should be considered when interpreting the
mechanical testing results, as they could explain the variations in performance between
samples or compared to theoretical predictions, as stated by Garcias et al. [37], where a
penalizing fatigue coefficient was suggested to be applied to porosity/defects introduced
by additive manufacturing.

3.5. SEM and Fractography Results

Figures 7 and 8 show SEM images of the fractured surfaces caused by fatigue loading.
Fair interlayer diffusion and a good diffusion between the pairs of deposited material
for each layer height can be seen. This arrangement of pairs of the deposited material
also confirmed visible air voids already detected by the XCT results. From the images,
perceptible nucleation points and fatigue striation due to fatigue crack propagation can
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also be seen. The arrangement of the material and failure mechanisms were similar in PLA
and PETG.
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where it will be subjected to repetitive loading. Moreover, voids can also reduce the
material’s fracture toughness, making it more susceptible to unstable and non-predicted
catastrophic failure. Nevertheless, while materials with a high porosity and significant
air voids may not be ideal for structural applications that demand a high strength and
durability, they can still find utility in specific biomechanical applications and situations
where lightweight materials are advantageous, and the mechanical load is less demanding.
Comparing these findings with other studies [37], it is evident that the presence and
distribution of air voids/defects and nucleation points are critical factors influencing the
performance of materials. Moreover, studies have also shown that reducing the porosity
through optimized processing conditions and enhancing the strength of the fibre bond can
significantly improve the mechanical properties of these materials [38,39]. Hence, the SEM
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results indicate that understanding and controlling the additive process parameters are
crucial for optimizing the material properties for specific applications.
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Regarding the 3D fractography results, pseudo-colour views of the surface and 3D
views, respectively, ordered from left to right, for representative specimens are presented
in Figure 9. On the scales, it can be observed that the largest differences in surface height
occurred for the specimen PETG H (see Figure 9a) and the smallest for the specimen PLA V
(see Figure 9e).

The dependence of the areal surface topography parameters from the manufacturing
method is presented in Figure 10. Areal surface topography parameters are usually identi-
fied by an initial capital letter S. In this study, the root-mean-square height (Sq), maximum
peak height (Sp), maximum valley depth (Sv), maximum height of the surface (Sz), and
arithmetic mean height (Sa) were considered. Figure 9 shows examples of specimens sub-
jected to fracture surfaces topography analysis, which includes different materials, different
printing directions, and different types of applied loading.
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Figure 10. The dependence of the areal surface topography parameters from the printing direction
and the loading type for PETG and PLA.

For all specimens and all surface topography parameters obtained in this study, the
PETG specimens had higher values (black markers) when compared with their counterparts
made of PLA. For each of the analysed specimens, the surface topography parameters were
the highest for H (after tensile test) and the lowest for V (after tensile test), respectively. The
unique exception was related to the Sv and Sz values for the PLA specimen tested at 30%
of its UTS (red circle marker). This was due to the large peak height found in the fracture
surface of this specimen to which these parameters are sensitive.

4. Conclusions

As the summary and introduction state, this study was dedicated to determining the
mechanical (tensile and fatigue) and physical (TGA, DTGA, DSC, XCT, and SEM) properties
of two widely available, lightweight, and cost-effective materials, PLA and PETG. These
materials hold promise for future use in biomechanical applications that are not subjected to
high loads, such as prostheses, surgical tools, and implants manufactured through additive
manufacturing (material extrusion).

PLA and PETG have been widely used in additive manufacturing for several years
to create specimens and components. However, the information about these materials,
particularly regarding fatigue, is very scarce. Therefore, the study successfully achieved its
objectives, leading to the following key conclusions:

• The uniaxial tensile tests yielded valuable data, including critical parameters, such
as the maximum Tensile Strength, Young’s Modulus, and Ultimate Strain, for two
printing orientations (XY and YZ). These results suggest that all materials studied
exhibited promising mechanical characteristics suitable for general biomechanical use;

• For the XY and YZ printing directions, the Tensile Strength and Young’s Modulus
(average values) obtained for PLA (55 MPa|2350 MPa) were higher than the cor-
responding values obtained for PETG (37 MPa|1200 MPa) by approximately 48%
and 96%, respectively;
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• PLA may, therefore, be used for components under induced stresses or up to 55 MPa
and when greater rigidity is required, as PLA revealed higher Young’s Modulus values
(around 2300 MPa);

• PETG may be used for components under induced stresses up to 33 MPa and when
higher deflections are allowed, since PETG revealed lower Young’s Modulus values
(around 1200 MPa);

• The average ultimate strain values obtained for PLA and PETG, either printed along
XY or YZ, were around 4.3% and 6.5%, respectively. Therefore, PETG showed more
ductile behaviour than PLA;

• In addition, uniaxial tensile fatigue testing (R = 0.2) under load control was conducted
on the PLA and PETG materials at three stress levels, with the results depicted in the
form of stress–life (S-N) curves. These curves may point to the suitability of these
materials for continuous and durable use in biomechanical applications depending on
the spectrum loading applied;

• XCT, SEM, and fractography analyses of the tested materials uncovered essential fea-
tures, including fibre arrangements, compression issues related to interlayer adhesion
and hatch distance, voids within fibre connections, and failure mechanisms;

• The surface topography parameters for the PETG specimens had higher values than
PLA, irrespective of the printing direction or type of loading.
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Abbreviations

ASA Acrylonitrile Styrene Acrylate
AM Additive Manufacturing
FFF Fused Filament Fabrication
HCF High-cycle Fatigue
ME Material Extrusion
PC Polycarbonate
PETG Polyethylene Terephthalate Glycol
PLA Polylactic Acid
PP Polypropylene
VOI Volume-of-Interest
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