
Melanoma skin cancer detection
using mask-RCNN with modified
GRU model

K. M. Monica1, J. Shreeharsha2, Przemysław Falkowski-Gilski3*,
Bozena Falkowska-Gilska4, Mohan Awasthy5 and Rekha Phadke6

1School of Computer Science and Engineering, Vellore Institute of Technology, Chennai, Tamil Nadu,
India, 2Department of Computer Science and Engineering, Rao Bahadur Y. Mahabaleswarappa
Engineering College, Ballari, Karnataka, India, 3Faculty of Electronics, Telecommunications and
Informatics, Gdansk of Technology, Gdansk, Poland, 4Specialist Diabetes Outpatient Clinic, Olsztyn,
Poland, 5Department of Engineering and Technology, Bharati Vidyapeeth Peeth Deemed to be University,
Navi Mumbai, Maharashtra, India, 6Department of Electronics and Communication Engineering, Nitte
Meenakshi Institute of Technology, Bangalore, Karnataka, India

Introduction:Melanoma Skin Cancer (MSC) is a type of cancer in the human body;
therefore, early disease diagnosis is essential for reducing the mortality rate.
However, dermoscopic image analysis poses challenges due to factors such as
color illumination, light reflections, and the varying sizes and shapes of lesions. To
overcome these challenges, an automated framework is proposed in this
manuscript.

Methods: Initially, dermoscopic images are acquired from two online benchmark
datasets: International Skin Imaging Collaboration (ISIC) 2020 and Human against
Machine (HAM) 10000. Subsequently, a normalization technique is employed on
the dermoscopic images to decrease noise impact, outliers, and variations in the
pixels. Furthermore, cancerous regions in the pre-processed images are
segmented utilizing the mask-faster Region based Convolutional Neural
Network (RCNN) model. The mask-RCNN model offers precise pixellevel
segmentation by accurately delineating object boundaries. From the
partitioned cancerous regions, discriminative feature vectors are extracted by
applying three pre-trained CNN models, namely ResNeXt101, Xception, and
InceptionV3. These feature vectors are passed into the modified Gated
Recurrent Unit (GRU) model for MSC classification. In the modified GRU
model, a swish-Rectified Linear Unit (ReLU) activation function is incorporated
that efficiently stabilizes the learning process with better convergence rate
during training.

Results and discussion: The empirical investigation demonstrate that the
modified GRU model attained an accuracy of 99.95% and 99.98% on the ISIC
2020 and HAM 10000 datasets, where the obtained results surpass the
conventional detection models.
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1 Introduction

In recent decades, skin cancer is one of the prevalent cancer types,
which is categorized into two types such as non-melanoma and
melanoma (Sreelatha et al., 2019; Ashraf et al., 2020). The accurate
classification of different skin cancer types holds significant importance
because it directly influences the choice of treatment to be pursued
(Saba, 2021). Melanoma, scientifically referred to as malignant
melanoma, is a type of cancer that originates from melanocytes.
Data presented by the American cancer society indicates a
consistent increase in melanoma rates over the past three decades
(Abayomi-Alli et al., 2021). Although melanoma constitutes only
around 1% of all skin cancer cases, it is responsible for a significant
majority of skin cancer-related deaths (Babar et al., 2021). The most
concerning aspect of melanoma is its capacity to extensively metastasize
throughout the body via the lymphatic system and blood vessels (Wei
et al., 2020). However, early detection translates to a high curability rate
for melanoma. The conventional diagnostic procedure for melanoma
involves a visual assessment conducted by a dermatologist, which is a
time-consuming process and error prone (Mijwil, 2021; Thiyaneswaran
et al., 2021).

Furthermore, there exist challenges when it comes to the detection
ofmelanoma (Albahar, 2019). These difficulties encompass factors such
as the morphology of individual lesions, the lighting conditions within
the medical examination space, the patient’s skin color, and the
expertise of the professional making the melanoma diagnosis (Divya
and Ganeshbabu, 2020; Khan et al., 2021a; Priyadharshini et al., 2023).
Currently, artificial intelligence is being continuously employed to aid
physicians and dermatologists in the more efficient analysis of data,
leading to enhanced accuracy and reliability in diagnoses across various
domains (Mohakud and Dash, 2022a). Specifically, deep learning is
implemented in skin cancer detection using diverse architectures, such
as CNNs, Recursive Neural Network (RvNN), Recurrent Neural
Network (RNN), etc. (Albahli et al., 2020; Cheong et al., 2021).
Deep learning encounters four significant challenges in skin cancer
detection: memory limitations, computational intensity, the vanishing
gradient problem, andmodel complexity (Iyer et al.; Khan et al., 2021b).
To address these challenges and attain accurate segmentation and
classification of skin lesions, this manuscript introduces a novel deep
learning-based automated framework.

The contributions are as follows:

• We implement a mask-RCNN model for partitioning
cancerous regions in dermoscopic images acquired from the
ISIC 2020 and HAM 10000 datasets. The mask-RCNN model
efficiently segments and differentiates skin lesions, even in
cases of high overlap between regions. The automated skin
lesion segmentation by the mask-RCNN model significantly
saves time for medical professionals and dermatologists.

• We integrate three pre-trained models (ResNeXt101, Xception,
and InceptionV3) to extract relevant feature vectors from the
partitioned regions. These three pre-trained CNNmodels capture
texture features from higher-level objects and hierarchical
features from lower-level edges. This hierarchy allows the
modified GRU model to learn complex representations in
dermoscopic images, resulting in high classification accuracy.

• We propose a modified GRU model to classify two types of
skin lesions in the ISIC 2020 dataset and seven types of skin

lesions in the HAM 10000 dataset. We use seven performance
metrics to evaluate the proposed model’s efficacy, namely:
Jaccard score, Dice score, Matthews Correlation Coefficient
(MCC), accuracy, sensitivity, f1-score, and specificity.

The current manuscript is prepared in the following manner.
Section 2 presents the literature survey, while Section 3 explains the
mask-RCNN model, pre-trained models, and the modified GRU
model. Sections 4, 5 provide the numerical results and the
conclusion of this manuscript.

2 Literature survey

Thanh et al. (2020) developed an efficient framework for the
automatic detection ofMSC. An adaptive principal curvature technique
was employed initially for detecting and removing hairs from
dermoscopic images. Subsequently, a color normalization technique
was applied to improve the visibility level of skin lesion regions for
discriminating various skin tones. Finally, the Asymmetry-Border-
Color-Diameter (ABCD) rule was utilized for effective MSC
detection. Evaluation metrics, namely the Jaccard score, Dice score,
and accuracy, confirmed the superiority of the developed framework in
MSC detection. However, the ABCD rule was not sensitive enough in
detectingMSC at an early stage. Additionally, not all melanomas adhere
to the ABCD rule, some may exhibit irregular borders and asymmetry.

Nawaz et al. (2022) incorporated the Fuzzy K-Means clustering
(FKM) technique with the RCNN model to achieve precise detection of
MSC. Initially, the RCNN model was employed for enhancing visual
information and removing noise from the collected dermoscopic images.
Further, the FKM technique was applied for precisely segmenting the
affected skin regions with variable boundaries and sizes. The developed
RCNN-FKM model’s performance was assessed utilizing three
benchmark datasets, and the results obtained clearly demonstrated
that the RCNN-FKM model surpassed the performance of existing
models. In this study, the FKM technique involves complex calculations
related to the conventional k-means clustering technique, due to the
introduction of membership degrees. Additionally, the FKM technique
was more sensitive to noisy images, because it directly affects
membership degrees and led to blurred or incorrect segmentation results.

Kumar et al. (2020) employed the Fuzzy C Means clustering
(FCM) technique for segmenting cancerous regions in dermoscopic
images. Subsequently, the segmented images were transformed into
vectors utilizing two global descriptors, namely the Gray Level Co-
Occurrence Matrix (GLCM) and the Local Binary Pattern (LBP).
Finally, cancer types were classified by implementing an Artificial
Neural Network (ANN) model with the differential evolution
algorithm. In medical applications, ANN was sensitive to lighting
conditions, noise, variations in medical image quality, and
other factors.

Murugan et al. (2019) applied the watershed segmentation
technique to delineate non-cancerous and cancerous regions in
dermoscopic images. Furthermore, feature extraction was carried
out utilizing the GLCM descriptor and the ABCD rule. The vectors
obtained from the GLCM descriptor and ABCD rule were passed
into Support Vector Machine (SVM), random forest, and K Nearest
Neighbor (KNN). Among these classification models, SVM yielded
superior classification results. However, SVM exhibits three
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significant issues in medical image classification: i) sensitivity to
outliers and noise, ii) limited flexibility, and iii) limited scalability.

Toğaçar et al. (2021) initially employed an autoencoder model
for reconstructing the collected ISIC dataset. Then, the structured
and original datasets were classified implementing the
MobileNetV2 model, which comprises spiking networks and
residual blocks. However, the MobileNetV2 model exhibits three
issues in disease detection: i) limited contextual understanding, ii)
poor trade-off between accuracy and speed, and iii) difficulty in
managing class imbalance.

Serte and Demirel (2019) designed a Gabor wavelet based CNN
model to achieve accurate detection of seborrheic keratosis and
malignant melanoma. Initially, the model decomposed input
dermoscopic images into seven sub-bands, which were
subsequently fed into eight parallel CNNs for skin lesion
classification. The developed Gabor wavelet based CNN model
was efficient in disease detection, but was computationally costly.
Arora et al. (2022) integrated speeded up robust features with the
quadratic SVM for skin cancer detection. However, the quadratic
SVM comprises the following issues in skin cancer detection: i) poor
interpolation between classes, ii) risk of overfitting, and iii)
computational complexity.

Amin et al. (2020) initially resized dermoscopic images to
240 × 240 × 3 dimensions. The Otsu thresholding algorithm was
then integrated with the bi-orthogonal two dimensional wavelet
transformation technique for skin lesion segmentation. Pre-trained
deep learning models, specifically Visual Geometry Group (VGG)-
16 and AlexNet, were applied for feature extraction. Finally,
Principal Component Analysis (PCA) and various machine-
learning classification models were applied for feature
dimensionality reduction and skin cancer detection. As observed
in this literature, the pre-trained models extracted correlated and
redundant features, leading to ineffective model training.

Thurnhofer-Hemsi et al. (2021) implemented a
DenseNet201 model for precise detection of MSC. Additionally, Ali
et al. (2021) developed a deep CNN model based on transfer learning
for classifying malignant and benign skin lesions. In the developed deep
CNN model, firstly, a kernel or filter was applied for eliminating
artifacts and noise from dermoscopic images. Secondly, the denoised
images were normalized and extracted discriminative features for
precise image classification. The developed deep CNN model’s
performance was compared with a few pre-trained CNN models,
namely MobileNet, DenseNet, VGG-16. ResNet and AlexNet. The
deep CNN model achieved higher classification results on the
HAM10000 dataset, but was computationally expensive.

Sayed et al. (2021) have integrated the CNN model (Squeeze-
Net) with the bald eagle search optimization algorithm for
melanoma prediction. Similarly, in the works of Zhou and
Arandian (2021), Tan et al. (2019), and Mohakud and Dash
(2022b), the wildebeest herd optimization algorithm, improved
particle swarm optimization algorithm, and grey wolf
optimization algorithm were integrated with the CNN model for
precise classification of malignant and benign skin lesions.
Generally, the integration of an optimization algorithm with the
CNN model increases resource requirements and training time.

Chaturvedi et al. (2020) conducted multiclass skin cancer
detection utilizing five different CNN models, namely NASNet-
large, Xception, Inception-ResnetV2, InceptionV3, and

ResNeXt101 on the HAM10000 dataset. Among these models,
the ResNeXt101 model was efficient in MSC classification,
because it was attributed to its optimized architecture and has
better capability in gaining high classification accuracy. Rashid
et al. (2022) have employed the MobileNetV2 model for
melanoma classification. Several image augmentation methods
were used for tackling the class imbalance problem. The
efficiency of the MobileNetV2 model was validated on the ISIC
2020 dataset. Additionally, Kaur et al. (Kaur et al.) employed a less
complex and light-weighted CNN model for superior classification
of MSC. The developed model’s performance was tested on different
dermoscopic images, which were acquired from ISIC 2020, 2017,
and 2016 datasets. Five different evaluation metrics were used for
analyzing the efficacy of the developed CNN model. As discussed in
earlier literature, CNNmodels often entail high computational costs.
In order to highlight the above-mentioned problems and to achieve
better MSC detection, a novel deep learning based automated
framework is introduced in this manuscript.

3 Methods

In the application of MSC detection, the introduced deep
learning based automated framework comprises five steps,
namely image collection: ISIC 2020 and HAM10000 datasets,
image pre-processing: normalization technique, cancerous region
segmentation: mask-RCNN model, feature extraction: ResNeXt101,
Xception, and InceptionV3 models and MSC classification:
modified GRU model. The process involved in this framework is
shown in Figure 1.

3.1 Dataset description

The mask-RCNN and modified GRU model’s performance are
tested using two online benchmark datasets, namely ISIC
2020 dataset and HAM10000 dataset.

3.1.1 ISIC 2020 dataset
This dataset consists of 33,126 dermoscopic images, with

32,542 representing benign lesions and 584 depicting malignant
lesions. These 33,126 dermoscopic images were acquired from
2,000 distinct patients. In the ISIC 2020 dataset, 584 melanoma
images and 11,670 benign class images are used for numerical
examination. To manage the class imbalance problem,
4,522 melanoma images from the ISIC 2019 dataset are combined
with the 584 melanoma images from the ISIC 2020 dataset (Rotemberg
et al., 2021). Furthermore, several image augmentation methods are
employed to augment the training dataset, namely shear transformation,
horizontal flip, zoom transformation, rotation transformation, and scale
transformation. The settings of these image augmentation methods are
given in Table 1. Collectively, these methods generate approximately
6,564 augmented melanoma images. The sample images of the ISIC
2020 dataset are presented in Figure 2.

3.1.2 HAM10000 dataset
It is one of the extensively utilized publicly available datasets

for MSC detection (Tschandl et al., 2018). This dataset consists of
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10,015 dermoscopic images belonging to seven classes, namely:
Vascular Skin (VASC), Melanoma (MEL), Nevi (NV), Benign
Keratosis (BKL), Actinic Keratosis (AKIEC), Dermatofibroma
(DF), and Basal Cell Carcinoma (BCC). The number of

dermoscopic images in the seven skin cancer types are
presented as follows: VASC (142 samples), MEL
(1113 samples), NV (6705 samples), BKL (1099 images),
AKIEC (327 samples), DF (115 samples), and BCC
(514 samples). The sample dermoscopic images of the
HAM10000 dataset is shown in Figure 3.

3.2 Image pre-processing

After acquiring dermoscopic images from the ISIC 2020 dataset
and HAM10000 dataset, image pre-processing is conducted using a
normalization technique (Zhu et al., 2020). The acquired
dermoscopic images are resized to 256 × 256, where this process
dramatically enhances the proposed model’s performance by
speeding up the training process. In this context, a normalization
technique is employed for eliminating data duplicacy. Initially, the
dermoscopic images I(x, y) are transformed into grayscale images
I′(x, y), and further, its histogram value is computed, as mentioned
in Eq. 1.

Subsequently, the mean value of every dermoscopic image is
calculated utilizing the average function, and it is
mathematically expressed in Eq. 2. Furthermore, the co-
relation between dermoscopic images is computed utilizing
Eq. 3. When the co-relation between two dermoscopic
images is higher than 0.99, the similar/identical image is
eliminated, and lastly, the transformed grayscale images are
converted to color dermoscopic images.

h1 � histogram I x, y( )( ), h2 � histogram I′ x, y( )( ) (1)
h1 � mean h1( ), h2 � mean h2( ) (2)

Co − relation � ∑x ∑y I x, y( ) − h1( ) I′ x, y( ) − h2( )��������������������∑x ∑y I x, y( ) − h1( )2( )√ ∑x ∑y I′ x, y( ) − h2( )2( )
(3)

FIGURE 1
Design of the proposed framework.

TABLE 1 Image augmentation methods with their setting.

Methods Setting

Shear transformation 20o

Horizontal flip True

Zoom transformation 0.20

Rotation transformation 25o

Scale transformation Ranged from zero to one

FIGURE 2
Sample images of the ISIC 2020 dataset: (A) Benign class, and (B)
Malignant class.
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3.3 Cancerous region segmentation

After image pre-processing, the cancerous regions are precisely
segmented by implementing the mask-RCNN model. The mask-
RCNN model is an effective deep learning model implemented for
instance segmentation and object detection tasks in computer
vision applications, such as skin lesion detection (Wang et al.,
2021). The mask RCNN model is an updated version of the faster-
RCNN model, which is designed to perform pixel-level
segmentation with object localization. In the context of MSC
detection, the mask-RCNN model efficiently delineates and
identifies various skin regions (skin anomalies, melanomas, and
moles) in dermoscopic images. This model works by detecting
bounding boxes around the skin lesions utilizing the Region
Proposal Network (RPN) component (Su et al., 2021).
Furthermore, it refines these bounding boxes and creates
segmentation masks, which accurately outline the boundaries of
every lesion. The mask-RCNN comprises three major components
in MSC detection, which are briefly explained below;

• Backbone network: This model extracts hierarchical features
from pre-processed dermoscopic images using a CNN model
called ResNet.

• RPN: The RPN identifies potentially interesting regions (areas
containing skin lesions) within pre-processed dermoscopic
images. The selected proposals are then further refined in
subsequent steps.

• Mask head and Region of Interest (RoI) alignment: RoI
alignment is employed to pool regions of interest for
generating feature maps with fixed size. Subsequently, the
selected regions are processed by a mask head to predict pixel-
wise segmentation masks for every proposed skin lesion.

In the context of MSC detection, the mask-RCNN model is
trained utilizing annotated skin lesion images. These images are
annotated with both pixel-level mask annotations and bounding box
annotations. The mask-RCNNmodel then optimizes the parameters
of several components for precisely detecting and segmenting skin
lesions in unseen dermoscopic images. The sample segmented
dermoscopic images are shown in Figure 4.

3.4 Feature extraction

After segmenting the cancerous regions using the mask-RCNN
model, feature extraction is carried-out employing three pre-trained
CNN models: ResNeXt101, Xception, and InceptionV3. These pre-
trained CNNmodels transform pixel data from dermoscopic images
into sets of meaningful and relevant feature vectors. This process
reduces the framework’s complexity and addresses the “curse of
dimensionality” problem caused by increased memory requirements
and computational inefficiency. The theoretical explanation about
the pre-trained CNN models: ResNeXt101, Xception, and
InceptionV3 are presented below;

3.4.1 ResNeXt101
The ResNeXt101 model efficiently captures hierarchical and

complex patterns, and learns intricate high-level and low-level
features from segmented dermoscopic images to achieve accurate
MSC classification (Karanam et al., 2022). The
ResNeXt101 model includes dense layers with ReLU activation
function, Softmax, and dropout layers. The assumed parameters
of the ResNeXt101 model are, learning rate is 0.0001, epochs is
100, momentum is 0.9, and optimizer is Stochastic Gradient
Descent (SGD).

FIGURE 3
Sample images of the HAM10000 dataset: (A) AKIEC, (B) BCC, (C) BKL, (D) DF, (E) MEL, (F) NV, and (G) VASC.
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3.4.2 Xception
Xception is a depthwise separable CNN model, which captures

complex relationships and fine details in dermoscopic images. It
includes regularization techniques: depthwise separable
convolutions and batch normalization to overcome overfitting
problems (Salim et al., 2023). Xception learns high dimensional
feature vectors (global and local patterns) in dermoscopic images,
which play a crucial role in skin cancer detection. The assumed
parameters for the Xception model include a learning rate of 0.001,
100 epochs, and the Adam optimizer.

3.4.3 InceptionV3
This architecture employs a series of convolutions with varying filter

sizes for extracting feature vectors. InceptionV3 efficiently optimizes the
trade-off between performance and computation by leveraging different
kernel sizes. This model is fine-tuned using a learning rate of 0.001, the
optimizer of Adam, a momentum of 0.9, and trained for 100 epochs
(Ramaneswaran et al., 2021). These three pre-trained CNN models:
ResNeXt101, Xception, and InceptionV3 extracts nearly 7,820 and
8,320 feature vectors from the ISIC 2020 dataset and
HAM10000 dataset, respectively. In this scenario, these three feature
extraction models are selected by computing feature importance score,
which is shown in Figure 5. By inspecting Figure 5, in comparison to the
ResNeXt101, Xception, and InceptionV3 models, the existing models:
GLCM, LBP, Tamura, AlexNet, and VGG-16 have minimal feature
importance score on the ISIC 2020 dataset and HAM10000 dataset.

3.5 MSC classification

The extracted 7,820 and 8,320 feature vectors from the ISIC
2020 dataset and HAM10000 dataset are fed into the modified GRU
model for dermoscopic image classification. The conventional GRU
model is a type of RNN, which utilizes a gating process for

controlling the information flow in the network (Huang et al.,
2020). The conventional GRU model comprises two gates
(update and reset gates) that regulate the information retention
and update process. These gates also assist in remembering and
capturing relevant patterns in the extracted feature vectors
(Venkataramaia et al., 2020; Li et al., 2021).

In the modified GRU model, the traditional activation
functions, namely hyperbolic tangent and sigmoid are replaced
with the swish-ReLU activation function. This replacement offers
certain benefits due to its improved gradient flow and
smoothness. During data training, the swish-ReLU activation
function mitigates problems related to vanishing gradients that
offer more efficient and stable learning. Additionally, the
improved gradient flow enhances training stability, prevents
neurons from becoming completely inactive, and accelerates
the convergence rate. The swish-ReLU activation function
potentially decreases the number of iterations required to
achieve a certain level of accuracy in dermoscopic image
classification. It also provides a mild form of regularization
that reduces the risks of overfitting within the network.

Initially, the GRUmodel modulates the extracted feature vectors
into units without utilizing a memory cell. In this context, the swish-
ReLU activation function linearly interpolates between the prior and
current candidate functions, as mathematically specified in Eq. 4.

hjt � 1 − zjt( ) hjt−1 + zjt ~h
j

t (4)

Where, ~h
j

t denotes the current candidate function, as defined in Eq.
5. Additionally, the variable t stands for time, hjt−1 specifies the prior
candidate function of the modified GRU model, and hjt represents the
activation function of the modified GRU model. Moreover, the update
gate zjt within themodified GRUmodel determines the extent to which
the unit needs to modify its activation function. The mathematical
formulation of the updated gate zjt is provided in Eq. 6.

FIGURE 4
Sample segmented dermoscopic image: (A) pre-processed images, (B) output images of mask-RCNN model, (C) binary images of mask-RCNN
model, and (D) ground-truth images.
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~h
j

t � swish wAt + Ur rjt × ht−1( )( )j (5)
zjt � swish wzAt + Uzht−1( )j (6)

Whereas, rjt indicates reset gate, and its mathematical
formulation is given in Eq. 7.

rjt � swish wrAt + ht−1( )j (7)
Where, swish represents the swish-ReLU activation function, w

indicates a weight parameter, and U indicates a SGD optimizer. The
SGD optimizer U updates the weight parameter w using the gradient
function ∂L

∂w with a learning rate α of 0.001. Additionally, the modified
reset gate is expressed in Eq. 8, where, ∂L/∂wr indicates the gradient
loss function, At denotes the extracted feature vectors,
and wr+1 � wr − α∂L/∂wr.

rjt � swish wr+1At + ht−1( )j (8)
The assumed parameters of the modified GRU model are as

follows: batch size is 64, epochs is 100, dropout rate is 0.5, and decay
rate is 0.9. The numerical examination of the proposed model is
detailed in Section 4.

4 Results

The mask-RCNN and modified GRU model’s efficiency is
simulated utilizing the Matlab 2020a software, and the experimental
investigation is conducted on a computer equipped with an Intel Core
i7multi-core processor, NVIDIAGeForce RTX 4080 graphics card, and
16 GB memory. The mask-RCNN and modified GRU model’s
performance is analyzed utilizing seven different performance
metrics, namely: Jaccard score, Dice score, MCC, accuracy,
sensitivity, f1-score, and specificity on the ISIC 20201 and
HAM100002 datasets. Additionally, the modified GRU model’s
performance is validated with 20%:80% of data testing and training.

4.1 Performance metrics

The Jaccard score estimates the ratio of the ground-truth mask
B to the intersection of the segmented mask A. The Jaccard score
ranges between zero to one, where zero represents no overlap and
one states an overlap between the ground-truth and predicted
masks. The Jaccard score is defined in Eq. 9, where,A ∪ B states the
union (image pixels are encompassed by both ground-truth and
segmented masks) and A ∩ B represents the intersection (image
pixels agreed by both masks). Correspondingly, the Dice score
estimates the similarity between the ground-truth mask and
segmented mask by mask-RCNN model, and its formula is
given in Eq. 10, where, |A| indicates the image pixels in the
segmented mask and |B| denotes the image pixels in the
ground-truth mask.

J A, B( ) � A ∩ B| |
A ∪ B| | (9)

D A, B( ) � 2 × A ∩ B| |
A| | + B| | (10)

The performance metrics: MCC, accuracy, sensitivity, f1-score,
and specificity are commonly utilized for evaluating the efficacy of
the classification model that is the modified GRU. These
performance metrics are closely related to the information
obtained from a confusion matrix. A confusion matrix is a table,
which visualizes the effectiveness of a classification model by
summarizing the number of False Negative (FN), False Positive
(FP), True Negative (TN), and True Positive (TP) predictions.

The MCC accounts for all four confusion matrix values (FN, FP,
TN, and TP). MCC provides a balanced result, even when the classes
are imbalanced in the ISIC 2020 and HAM10000 datasets. Accuracy
is a ratio of the total predictions to the number of correct
predictions. The mathematical formulas of MCC and accuracy
are denoted in Eqs 11, 12.

MCC � TP × TN − FP × FN�������������������������������������
TP + FP( ) TP + FN( ) TN + FP( ) TN + FN( )√ × 100

(11)
Accuracy � TP + TN

TP + TN + FP + FN
× 100 (12)

FIGURE 5
Calculation of feature importance score.

1 ISIC 2020 dataset: https://challenge2020.isic-archive.com/

2 HAM10000 dataset: https://www.kaggle.com/datasets/kmader/skin-
cancer-mnist-ham10000

Frontiers in Physiology frontiersin.org07

Monica et al. 10.3389/fphys.2023.1324042

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

https://challenge2020.isic-archive.com/
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/datasets/kmader/skin-cancer-mnist-ham10000
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://doi.org/10.3389/fphys.2023.1324042
http://mostwiedzy.pl


Sensitivity estimates the proportion of correctly predicted
positive cases to the actual positive cases. F1-score is a harmonic
mean of sensitivity and precision values. Specificity estimates the
proportion of correctly predicted negative cases to the actual
negative cases. The formulas utilized to compute sensitivity, f1-
score, and specificity are represented in Eqs 13–15.

Sensitivity � TP

TP + FN
× 100 (13)

F1 − score � 2TP
FP + 2TP + FN

× 100 (14)

Specificity � TN

TN + FP
× 100 (15)

4.2 Segmentation analysis

In this context, the numerical results of various segmentation
models (K-means, FCM, FKM, superpixel clustering, Otsu
thresholding, and mask-RCNN) are presented in Table 2. The
segmentation model’s results are evaluated using two different

performance metrics, namely Jaccard score and Dice score. As
described in Table 2, the mask-RCNN model achieved 0.96 and
0.97 of Jaccard score and Dice score on the ISIC 2020 dataset.
Similarly, the mask-RCNN model obtained 0.97 and 0.98 of Jaccard
score and Dice score on the HAM10000 dataset. The obtained
numerical outcomes are superior to the comparative models such as
K-means, FCM, FKM, Superpixel, and Otsu thresholding. The mask-
RCNN model adeptly handles several object orientations, shapes, and
sizes within similar dermoscopic images. Therefore, it is more effective
in scenarios where objects exhibit diverse appearances. The pixel-wise
segmentation performed by the mask-RCNN model extracts rich
semantic information, enabling more in-depth analysis in
MSC detection.

4.3 Classification analysis

The numerical results of various classification models on both
ISIC 2020 and HAM10000 datasets are depicted in Table 3. The
proposed classification model’s results are compared with other
models such as RNN, ANN, Long Short Term Memory (LSTM)

TABLE 2 Numerical results of various segmentation models

Models ISIC 2020 dataset HAM10000 dataset

Jaccard score Dice score Jaccard score Dice score

K-means 0.73 0.69 0.70 0.72

FCM 0.74 0.72 0.72 0.82

FKM 0.82 0.85 0.85 0.87

Superpixel 0.84 0.92 0.87 0.89

Otsu thresholding 0.90 0.94 0.89 0.92

Mask-RCNN 0.96 0.97 0.97 0.98

TABLE 3 Numerical results of various classification models.

ISIC 2020 dataset

Models MCC (%) Accuracy (%) Sensitivity (%) F1-score (%) Specificity (%)

RNN 93.80 94.38 94.66 96.48 96.80

ANN 96.72 96.82 96.79 97.42 97.60

LSTM 98.76 98.88 97.97 97.90 98.83

GRU 99.58 99.22 98.98 99.13 98.58

Modified GRU 99.84 99.95 99.82 99.86 99.94

HAM10000 dataset

RNN 95.30 96.43 97.20 97.67 97.43

ANN 97.95 97.90 97.94 98.66 98.19

LSTM 98.66 98.46 98.78 98.80 98.60

GRU 99.12 99.28 98.86 99.12 99.25

Modified GRU 99.88 99.98 99.97 99.90 99.87
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network, and GRU. By reviewing Table 3, it is evident that the
modified GRU model has obtained impressive classification
outcomes on both the ISIC 2020 and HAM10000 datasets.
Specifically, the modified GRU model attained 99.84% and
99.88% of MCC, 99.95% and 99.98% of accuracy, 99.82% and
99.97% of sensitivity, 99.86% and 99.90% of f1-score, and 99.94%
and 99.87% of specificity on the ISIC 2020 and
HAM10000 datasets, respectively. These obtained results are
superior to the existing classification models, namely RNN,
ANN, LSTM, and GRU.

In the application of MSC detection, the modified GRU model
has the potential to capture spatial and temporal patterns in
dermoscopic images that helps in achieving high classification
results. Additionally, the proposed modified GRU model has a
deep understanding of both image processing techniques and
RNN architectures that reduces overfitting and vanishing
gradient problems with faster convergence. Furthermore, the
efficacy of the modified GRU model is analyzed utilizing various
K-folds on ISIC 2020 and HAM10000 datasets. The results of K-fold
cross validation is mentioned in Table 4. As stated in Table 4, the
modified GRU model achieved an efficient result in MSC detection,

particularly in 5-fold (20%:80% of testing and training) related to
other types such as 2-fold (50%:50% of testing and training), 4-fold
(25%:75% of testing and training), and 8-fold (12.50%:87.50% of
testing and training). In the context of MSC detection, performing
K-fold cross validation effectively mitigates overfitting and
overcomes class imbalance problems.

4.4 Comparative analysis

The proposed modified GRU model’s effectiveness is compared
with existing models developed by Thurnhofer-Hemsi et al. (2021),
Ali et al. (2021), Chaturvedi et al. (2020), Rashid et al. (2022), and
Kaur et al. (Kaur et al.). Thurnhofer-Hemsi et al. (2021) integrated
transfer learning with five CNN models (MobileNetV2,
InceptionV3, GoogleNet, Inception-ResNetV2, and DenseNet201)
for precise detection of skin cancer. Empirical analysis confirmed
that the DenseNet201 model achieved a high classification accuracy
of 95% on the HAM10000 dataset. Ali et al. (2021) employed a deep
CNN model for precise classification of malignant and benign skin
lesions. Compared to conventional pre-trainedmodels, the deep CNN
model obtained a testing accuracy of 91.93%. Additionally,
Chaturvedi et al. (2020) performed skin cancer detection using
various pre-trained CNN models, including Xception, NASNet-
large, InceptionV3, Inception-ResnetV2, and ResNeXt101.
Empirical analysis revealed that the ResNeXt101 model achieved a
high accuracy of 93.20%. In comparison to these aforementioned
studies, the proposed modified GRU model achieved an exceptional
accuracy of 99.98% on the HAM10000 dataset, as depicted in Table 5.

Rashid et al. (2022) employed the MobileNetV2 model for the
classification of benign and melanoma skin lesions on the ISIC
2020 dataset. Numerical examination reveals that the
MobileNetV2 model achieved an accuracy of 98.20% on the ISIC
2020 dataset. Similarly, Kaur et al. (Kaur et al.) developed a light-
weighted CNN model for superior classification of benign and
melanoma skin lesions on the ISIC 2020 dataset. The results
indicate that the developed light-weighted CNN model
performed efficiently on balanced and large skin cancer datasets
like ISIC 2020. In this context, the light-weighted CNN model

TABLE 5 Results comparison on the HAM10000 dataset.

Models Dataset Classification accuracy (%)

DenseNet201 (Thurnhofer-Hemsi et al., 2021) HAM10000 (7 classes) 95

Deep CNN (Ali et al., 2021) 91.93

ResNeXt101 (Chaturvedi et al., 2020) 93.20

Modified GRU 99.98

TABLE 6 Results comparison on the ISIC 2020 dataset.

Models Dataset Classification accuracy (%)

MobileNetV2 (Rashid et al., 2022) ISIC 2020 (2 classes) 98.20

Light-weighted CNN (Kaur et al.) 90.48

Modified GRU 99.95

TABLE 4 Results of K-fold cross validation.

Dataset Measures (%) K = 2 K = 4 K = 5 K = 8

ISIC 2020 MCC 96.76 96.80 99.84 98.20

Accuracy 97.66 97.68 99.95 97.68

Sensitivity 97.85 98.06 99.82 97.44

F1-score 98.30 97.42 99.86 97.32

Specificity 97.79 98.10 99.94 98.50

HAM10000 MCC 97.12 98.12 99.88 98.34

Accuracy 98.98 97.87 99.98 98.09

Sensitivity 96.45 97.45 99.97 98.12

F1-score 97.80 98.05 99.90 97.96

Specificity 98.73 98.33 99.87 98.22
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achieved a classification accuracy of 90.48% on the ISIC
2020 dataset. In comparison to these existing models, the
proposed modified GRU model achieved an exceptional accuracy
of 99.95% on the ISIC 2020 dataset, as mentioned in Table 6.

4.5 Discussion

The precise segmentation and classification of skin lesions are
crucial aspects of this research. The primary benefit of utilizing
the mask-RCNNmodel in image segmentation is precise instance
segmentation. Conventional semantic segmentation groups
image pixels into categories, whereas the mask RCNN model
outlines and differentiates individual object instances in
dermoscopic images. This mechanism leads to more detailed
and accurate segmentation results, which are vital in tasks like
MSC detection. Additionally, as discussed in the quantitative
section, the modified GRU model is more efficient in
dermoscopic image classification compared to other
classification models. The modified GRU model effectively
captures the temporal relationships and dependencies in
dermoscopic images that results in enhanced classification
performance. Moreover, both the mask-RCNN model and
modified GRU model consumes minimal computational time
during segmentation and classification, as depicted in Tables 7, 8.

5 Conclusion

In the current scenario, early detection and prognosis of
melanoma efficiently reduce the mortality rate and improve
survival rates. The primary objective of this manuscript is to
segment and classify lesion regions. The proposed framework
relies on deep learning models for both segmentation (mask-
RCNN model) and classification (modified GRU model) steps.
Furthermore, three pre-trained models (ResNeXt101, Xception,
and InceptionV3) are employed to extract relevant feature
vectors from dermoscopic images. This process reduces
unnecessary processing, rendering the proposed framework
computationally efficient. Seven distinct performance metrics
are utilized to analyze the efficiency of the proposed models
(mask-RCNN and modified GRU). Empirical investigation
demonstrates that the mask-RCNN model achieves more
accurate segmentation results than existing models in light of
Jaccard score and Dice score. Additionally, the modified GRU
model achieves an impressive classification accuracy of 99.95%
and 99.98% on the ISIC 2020 and HAM 10000 datasets with
limited computational time. In future work, the proposed
modified GRU model can be validated on an enormous
dataset with more labeled skin lesions by including feature
selection step in order to gain high classification accuracy.
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TABLE 7 Computational time for region segmentation.

Computational time for segmentation (seconds)

Models ISIC 2020 dataset HAM10000 dataset

K-means 12.02 16.43

FCM 13.24 16.10

FKM 10.53 12.35

Superpixel 8.51 9.26

Otsu thresholding 9.22 10.21

Mask-RCNN 6.20 7.25

TABLE 8 Computational time for image classification.

Computational time for image classification (seconds)

Models ISIC 2020 dataset HAM10000 dataset

RNN 10 12.04

ANN 11.28 13.40

LSTM 9.44 9.32

GRU 7.50 8.36

Modified GRU 5.24 6.03
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