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Abstract: The paper is a review of the procedures for the determination of volatile and semivolatile 14 

oxygenated organic compounds (O-VOCs) in effluent samples by gas chromatography. Current trends 15 

and outlook for individual steps of the procedure for the determination of O-VOCs in effluents are 16 

discussed. The available sample preparation techniques and their limitations are described along with GC 17 

capillary columns used for O-VOCs separation and selective and universal detectors used for their 18 

determination. The results of determination of O-VOC content in various types of real effluents are 19 

presented. The lack of legal regulations regarding the presence of the majority of O-VOCs is pointed out 20 

as well as the availability of just a few procedures allowing a comprehensive evaluation of the O-VOC 21 

content in effluents.    22 
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- Headspace Single-Drop Microextraction, HS-SPME - Headspace Solid-Phase Microextraction, LLE - 33 

Liquid-Liquid Extraction, LOD - Limit of Detection, LPME - Liquid Phase Microextraction, MS - Mass 34 

Spectrometry, MSPE - Magnetic Solid Phase Extraction, MTBE - Methyl Tert-Butyl Ether, MTBSTFA - N-35 

methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide, NPD – Nitrogen-Phosphorus Detector, O-FID – 36 

Oxygen-Selective Flame Ionization Detection, O-VOC - Oxygenated Volatile Organic Compounds, PA – 37 

Polyaniline, PEG - Polyethylene Glycol, PFBBr - Pentafluorobenzyl Bromide, PFBHA - O-(2,3,4,5,6-38 

pentafluorophenyl)methylhydroxylamine Hydrochloride, PID -Photoionization Detector, RT – Room 39 

Temperature, SBSE - Stir Bar Sorptive Extraction, SDME - Single-Drop Microextraction, S-DVB - 40 

Styrene/Divinylbenzene co-polymer, SHS - Static Headspace, SPE - Solid Phase Extraction, SPME - Solid-41 

Phase Microextraction, TBA-Br - Tetrabutylammonium Bromide, TBA-Cl - Tetrabutylammonium Chloride, 42 

TBA-HSO4 - Tetrabutylammonium hydrogensulfate, TD - Thermal Desorption, TFA - Trifluoroacetic Acid, 43 

TMCS - Trimethylsilyl Chloride, TMSA - N,O-bis(trimethylsilyl) Acetamide, TMSDMC - Trimethylsilyl-N,N-44 

dimethylcarbamate, TMSIM - N-trimetylosilylimidazole, TOF-MS - Time-Of-Flight Mass Spectrometry, VFA 45 

- Volatile Fatty Acids, VUV –Vacuum Ultraviolet Absorption. 46 
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 84 

1. Introduction 85 

Volatile and semivolatile oxygenated organic compounds, which include the organic compounds 86 

containing at least one oxygen atom, such as aldehydes, alcohols, phenols, esters, ethers, carboxylic 87 

acids and their derivativesare characterized by high toxicity, carcinogenic and mutagenic properties and  88 

malodorous  character [1-5]. Oxygenated organic compounds commonly occur in municipal wastewater 89 

[6-7] as well as in various kinds of industrial effluents, including refinery [8-14], textile [15], coke [16], 90 

chemical [17] and food [18] industries. All types of effluents have a very complex matrix, which hinders 91 

the determination of individual O-VOCs, whose concentrations can vary from high to trace. Moreover, 92 

most O-VOCs are hydrophobic, highly reactive and low-molecular-weight compounds are highly volatile 93 

[19].  94 

Despite their noxiousness, the content of the majority of O-VOCs in effluents is not regulated. The 95 

maximum allowed concentrations in industrial and municipal effluents involve primarily organochlorine 96 

compounds, hydrocarbons, heavy metals as well as total parameters, i.e., chemical oxygen demand, 97 

biochemical oxygen demand or total organic carbon. Among a wide variety of O-VOCs, currently, the 98 

only regulation of many countries concerns volatile phenols determined as the phenol index whose 99 

allowed values are from 0.1 to 15 mg/L and from 5 to15 to mg/L for industrial effluents discharged to 100 

environmental waters or soil and sewage systems, respectively [20-24]. 101 

Due to their negative impact on the environment, oxygenated organic compounds have recently 102 

been an object of considerable interest among the scientists developing new methods of degradation of 103 

O-VOCs in effluents and analytical procedures allowing their identification and determination at low 104 

concentration levels which is illustrated by the number of relevant papers published between 2004 and 105 

2019 (Figure 1). The importance of phenols in effluents is reflected by the number of papers on the 106 

presence of O-VOCs in effluents, over 50% of which deals with phenolic compounds (Figure 2).  107 

In order to assay the remaining groups of O-VOCs, the methods based on sensitive and selective 108 

techniques are needed, including gas chromatography, high-performance liquid chromatography [15-109 

16,25-26], ion chromatography [27] or capillary electrophoresis [28]. Owing to physicochemical 110 

properties of O-VOCs, gas chromatography is the preferred technique due to its lower cost of a single 111 

analysis, very high resolution and the possibility of fine-tuning selectivity of a procedure through the 112 

choice of a wealth of stationary phases as well as the availability of both universal and selective 113 

detection methods. However, in order to ensure sufficient sensitivity of a procedure, a sample 114 

preparation step providing isolation and enrichment of analytes is usually required.   115 
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The paper provides a review of the procedures for the determination of content of volatile and 116 

semivolatile oxygenated organic compounds in samples of domestic, industrial and municipal 117 

wastewater by means of gas chromatography. The available techniques at each step of the analytical 118 

procedure are discussed along with the outlook and general problems resulting from the use of various 119 

sample preparation and final determination methods. Applications of the discussed procedures to the 120 

analysis of real effluents are also included.  121 

  122 
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2. Sample preparation methods 123 

Among the available methods of introduction of liquid samples with aqueous matrices into the GC 124 

injection port, a direct aqueous injection (DAI) technique has gained some popularity. In this approach, 125 

on-column injection is typically used, recently along with programmed temperature vaporization (PTV). 126 

The syringe needle is introduced directly on-column (or into a deactivated pre-column such as an empty 127 

capillary column). Water is retained in the initial segment of the column and the analytes, released by 128 

the flowing carrier gas, are retained as a narrow band further down the column. This is a simple 129 

technique which does not require any special sample preparation. Thus, DAI can significantly reduce the 130 

time of analysis and decrease the loss of volatile analytes which can take place during sample 131 

preparation. However, DAI is not recommended for samples of wastewater since it precludes 132 

determination of compounds present at low concentrations and can cause contamination of a GC 133 

column with contaminants and inorganic salts thus shortening the column lifespan. There are just a few 134 

reports on the application of DAI in the analysis of wastewater but they only confirm the problems with 135 

peak tailing, the appearance of ghost peaks, shifts of retention times, etc. [6,29]. Special problems due to 136 

very low sensitivity can be observed in the determination of acetic acid, which is a very important O-137 

VOC, during monitoring wastewater treatment in anaerobic reactors [30]. A somewhat better approach 138 

to the determination of carboxylic acids in wastewater is thermal desorption (TD) due to an improved 139 

reproducibility of the results and minimization of the problem of retention time shifts. Nevertheless, 140 

similarly to DAI, also thermal desorption does not allow the determination of volatile fatty acids at 141 

sufficiently low concentrations [6].  142 

Consequently, isolation and enrichment of analytes from wastewater samples is the required step in 143 

a procedure. Owing to environmental concerns and according to green chemistry principles, sample 144 

preparation techniques should meet a number of requirements, including possibility of automation, 145 

small sample volumes and being so-called solventless sample preparation techniques, i.e., the 146 

techniques that either do not use organic solvents at all or use only small volumes of them [31-32]. A 147 

standard procedure for the determination of  O-VOCs in wastewater samples is shown in Figure 3.  148 

2.1 Gas extraction 149 

One of the sample preparation techniques meeting all the requirements of green chemistry is 150 

headspace analysis, which can be carried out either in static or dynamic mode.  151 

2.1.1 Static headspace 152 

The procedure of headspace analysis involves placing a sample in a vial which is then tightly 153 

closed with a crimp or screw cap equipped with a septum. In addition to the sample, the vial must also 154 

contain some headspace. The sample is then thermostatted at a specific temperature until 155 

thermodynamic equilibrium between the sample and the headspace is reached. Next, the headspace is 156 

sampled using a gas-tight syringe (which is also thermostatted) and injected the GC injection port. The 157 

time and temperature of equilibration depend on the rate of diffusion of volatile sample components. As 158 

a rule, these parameters are determined experimentally during the development of the procedure. Fully 159 

automated autosamplers for SHS are commercially available. A schematic diagram of the SHS procedure 160 

is shown in Figure S1. The use of static headspace analysis for the determination of O-VOC content has a 161 
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number of advantages, including universal applicability, simplicity and the possibility of automation, 162 

which is important in the case of a large number of samples. Moreover, in comparison with conventional 163 

extraction techniques, SHS does not cause losses of the most volatile organic compounds which are 164 

responsible for malodorous properties of wastewater due to their low odor threshold of O-VOCs [33-36]. 165 

On the other hand, a serious disadvantage of SHS is its insufficient sensitivity for compounds with higher 166 

boiling points and the problems related to variable composition of matrices of wastewaters [37-38]. As a 167 

result of low sensitivity of SHS for higher boiling O-VOCs, which are commonly present in various kinds of 168 

wastewater, the technique is rarely used in the analytics of effluents [37]. 169 

2.1.2 Dynamic Headspace 170 

 The problem of relatively low sensitivity of SHS was partially eliminated by using dynamic 171 

headspace analysis (DHS), which is often called purge-and-trap, in which analyte enrichment is achieved 172 

by a continuous shift of the equilibrium toward headspace [39]. In this way, the detection limit for the 173 

same compounds can be lowered by as much as three orders of magnitude compared to SHS. The DHS 174 

procedure involves transfer of analytes from the aqueous phase to the headspace by purging the sample 175 

with an inert gas followed by trapping volatile components in a trap (using sorption or cryofocusing). The 176 

purge can take place in a tightly closed vial equipped with a stopper with a septum through which a 177 

purge gas inlet is introduced. Alternatively, U-tube shaped concentrators equipped with sintered glass 178 

(for dispersion of the gas) just below the sample can be used. The purge gas outlet is typically made of a 179 

stainless steel or fused silica capillary. The purge gas (usually helium or hydrogen, less often nitrogen) 180 

flowing through the sample sweeps out volatile compounds and transfers them to a trap packed with a 181 

sorbent. A different approach involves the use of a short length of an empty deactivated capillary 182 

column made of fused silica and cooled with vapors of liquid nitrogen. The latter approach eliminates the 183 

problem of sorbent bed breakthrough and ensures narrower bands of analytes during the desorption 184 

step. The limitations of DHS include more expensive equipment, the use of liquid nitrogen and the need 185 

for drying the gas to remove water vapor carried from the sample. Volatile chemical compounds are 186 

then released from the trap by thermal desorption and introduced into the GC injection port. A 187 

schematic diagram of the procedure is shown in Figure S2. The main shortcomings of DHS other than the 188 

ones mentioned above include a relatively long time of extraction (as a rule longer than 10 min) and the 189 

possibility of analyte losses due to sorbent breakthrough if the extraction time is too long and/or the 190 

flow rate of the purge gas is too high. Additionally, as was the case with SHS, only volatile compounds 191 

with boiling points up to about 150 °C can be extracted [40]. Another limitation of DHS involves the 192 

problem with extraction of samples containing surfactants which require addition of a defoamer, such as 193 

1-tetradecanol [41-42]. An important element of any DHS system is a sorbent trap which allows isolation 194 

of analytes from the gaseous phase. This step is necessary since volatile compounds in the gaseous 195 

phase occur at high concentrations.  196 

2.1.2.1 Enrichment/trapping of oxygenated volatile organic compounds for dynamic headspace 197 

 To extract O-VOCs from wastewater samples commercially available sorbents characterized by a 198 

high specific surface area, such as carbon molecular sieves Carbosieve S-III and S-II, Carboxen (300 – 199 

1000 m2/g) [43], a porous polymer Tenax TA based on2,6-diphenyl-p-phenylene oxide(specific surface 200 

area 18 m2/g [12,44-45] or a composite material containing 70% Tenax TA and 30% graphite carbon 201 
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(Tenax GR), are predominantly used. Carbosieve S-II is recommended only for the sorption of most 202 

volatile compounds whereas the most universal sorbent which has found wide applicability in the 203 

analysis of wastewater is Tenax TA [12,44-45]. Another approach which is commercially available is the 204 

use of multibed sorbent traps in which the weakest sorbent retaining only heavier O-VOCs is the first in 205 

series followed by other sorbents ordered by increasing sorbent strength. Good results of extraction of 206 

O-VOCs can also be obtained by using other sorbents, such as a granular activated carbon obtained from 207 

macadamia nutshells [46]. However, the alternative sorbents were only tested with standard mixtures. 208 

The extraction is also affected by the time and temperature of purge and desorption of analytes. 209 

Extraction conditions should be selected depending on the kind and properties of analytes. Elution of 210 

analytes from sorbent traps should be carried out countercurrently to the extraction step.  211 

 An essential criterion for the selection of a sorbent is its water sorption capacity and the effect of 212 

water on the trapping efficiency of individual O-VOCs. Lowering the amount water vapor introduced 213 

onto the sorbent can be accomplished by using either micro condensers installed in the DHS-trap line or 214 

membrane dryers (usually Nafion). In order to avoid introducing water collected in the trap into the 215 

chromatographic system, an additional step, so-called dry purge is added, during which water vapor 216 

having low retention on the sorbent bed is removed from the bed by purging with a dry gas in the same 217 

direction as that during the extraction step. 218 

 Some examples of extraction conditions for extraction of O-VOCs are listed in Table 1. It is also 219 

possible to combine DHS-GC with an automated sampling device which allows performing wastewater 220 

sample analysis in situ. Such an approach eliminates the possibility of analyte losses during transport of 221 

samples to the laboratory and reduces the time of analysis [43]. The DHS technique coupled with gas 222 

chromatography allows the determination of a wide variety of O-VOCs, including alcohols, aldehydes, 223 

phenols, ketones, esters and ethers present at low concentrations in samples having a complex matrix, 224 

i.e., effluents from the production of petroleum bitumens [12], petrochemical effluents [45] or municipal 225 

effluents [43]. The detection limit values are typically in the order of single ppb. However, due to the 226 

problem with the determination of compounds having medium or low volatility in order to ensure 227 

comprehensive analysis of organic compounds occurring in wastewater, other types of extraction should 228 

also be considered. The Dynamic Headspace technique generally offers good reproducibility with RSDs 229 

varying from 2 to 10% evaluated in one batch, and from 3 to 15% related to batch-to-batch variation.  230 

Usually, the linearity for quantitative analysis is over two orders of magnitude. 231 

2.2 Liquid extraction 232 

2.2.1 “Conventional” Liquid-Liquid Extraction 233 

Classical liquid-liquid extraction (LLE) is still very much in use in analytical procedures for the 234 

analysis of water and wastewater due to its simplicity and lack of complex equipment. The extraction 235 

procedure involves placing a sample in a separatory funnel to which an extraction solvent immiscible 236 

with water is then added. Next, the separatory funnel is shaken and left in a stand for the phase 237 

separation to take place. The extraction is usually performed repeatedly to transfer a maximum amount 238 

of the analytes from the aqueous phase to the organic phase. The procedure is depicted in Figure S3. LLE 239 

is time-consuming and labor-intensive which limits its widespread use. Other limitations include the 240 

possibility of emulsion formation and large volumes of very pure organic solvents used. Furthermore, the 241 
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enrichment factor for O-VOC analytes when using LLE is considerably smaller compared with other 242 

sample preparation techniques available [47]. The most important factor affecting the extraction yield is 243 

the selection of an appropriate solvent. The solvents used most commonly for the extraction of O-VOCs 244 

are volatile so that they are eluted before analytes, i.e., diethyl ether [48], dichloromethane (DCM) [49] 245 

or methyl tert-butyl ether (MTBE) [49-52]. Several papers mention problems with quantitative extraction 246 

of acetic and propionic acid by diethyl ether [48] whereas good results were obtained with MTBE for 247 

which the extraction yield was about five times higher than for DCM [49]. Bisphenol A and B were best 248 

extracted with chloroform [53]. Extracting solvents with high boiling points could co-elute with analytes 249 

which is particularly troublesome when universal GC detectors, such as FID, are used. The extraction 250 

efficiency can be improved by decreasing the solubility of O-VOCs in water by using the salting out effect 251 

(sometimes also used in SHS and DHS) [53] and/or by changing the pH of samples. However, despite such 252 

approaches, the detection limits of O-VOCs are often still too high. In addition, salting-out effect might 253 

not be so effective as it can be expected. Sometimes, the solubility is even increasing or minor changes 254 

are reported after the salt addition. 255 

 256 

2.2.2 Liquid-Liquid Microextraction techniques 257 

Due to disadvantages of LLE and general trends in sample preparation techniques, methods 258 

minimizing the volume of organic solvents used are becoming increasingly popular. Such techniques are 259 

generally called either liquid phase microextraction (LPME) or solvent microextraction (SME) [54]. The 260 

difference between LPME and classical LLE involves much smaller volumes of both samples and 261 

extracting solvents. In the determination of phenols and carboxylic acids, 3 µL of organic solvents were 262 

sufficient to obtain a high extraction yield of the analytes with a good reproducibility of results. The 263 

procedures also offered low LOD values when using the FID detector, ranging from 0.94 to 1.97 µg/L for 264 

phenols [55] and 0.0093 to 0.015 µg/L for carboxylic acids [56].  265 

2.2.2.1 Single-Drop Microextraction 266 

One mode of solvent microextraction is single-drop microextraction (SDME), which requires only 267 

0.3-3 µL of the extractant. The sample is placed in a tightly closed vial with a cap equipped with a 268 

septum. The extractant is drawn into a GC microsyringe, and the tip of the needle of the microsyringe is 269 

placed either inside the sample. The extractant is then extruded from the microsyringe forming a drop at 270 

the tip of the needle. The extraction is typically performed for 5 – 30 min. Following extraction, the drop 271 

is withdrawn into the microsyringe and the extract is injected into the GC [57]. A schematic diagram of 272 

the procedure is shown in Figure S3. Advantages of SDME include a high enrichment factor (mostly due 273 

to the phase ratio), simplicity and the possibility of automation [58]. The technique was successfully used 274 

in the determination of phenols in municipal wastewater with low detection limits (0.45 – 1.5 ng/mL) 275 

and a good reproducibility of results [59]. However, a significant problem in SDME is drop instability and 276 

a limited drop volume as well as the problem of solvent volatility. The problem of drop instability in 277 

SDME was partially solved by placing the drop in the headspace above the sample (Figure S3) (headspace 278 

single-drop microextraction, HS-SDME) [60] and the use of mixtures of solvents with different densities, 279 

such as chloroform and 1-octanol (1:1 v/v), which improved the stability of the hanging drop [61] and, to 280 

a greater extent, by placing the solvent in the lumen of a porous hollow fiber (hollow fiber-protected 281 
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liquid phase microextraction, HF-LPME). Selectivity of the extraction is achieved by selecting the 282 

appropriate solvent and the fiber material. The pores in the fiber preclude extraction of large molecules 283 

which in the case of wastewater facilitates subsequent GC analysis. An interesting approach is headspace 284 

knotted hollow fiber microextraction (HS-K-HFME), in which the knot-shaped commercially available Q 285 

3/2 Accurel polypropylene hollow fiber is filled with 25 µL of the extraction solvent (1-octanol). The 286 

excess solvent forms a large droplet (13 µL) which is held in the center of the knot (Figure S3). The knot-287 

shaped fiber has a larger contact area which increases the rate of mass transfer between the headspace 288 

and extraction solvent. This technique provided low LOD values for diethyl ether and ethyl acetate equal 289 

to 10 µg/L [62].  290 

2.2.2.2 Dispersive Liquid-Liquid Microextraction 291 

A relatively new mode of solvent microextraction is dispersive liquid-liquid microextraction 292 

(DLLME) [63]. In this technique, an aqueous sample is placed in a conical centrifuge tube and a mixture 293 

of disperser and extraction solvent is added. Then the mixture is agitated and centrifuged. Next, the 294 

sedimented organic phase is collected from the bottom of the tube (in some applications the extract is 295 

lighter than water and is collected from the top) and injected into the GC (Figure S3). Owing to its 296 

simplicity, a very short extraction time (several seconds) and often almost 100% analyte recovery DLLME 297 

has become one of the most common modes of liquid-liquid extraction [57]. DLLME was used, among 298 

others, in the determination of carboxylic acids [64-65] and 43 volatile oxygenated organic compounds in 299 

effluents from the production of petroleum bitumens, including alcohols, esters, ethers, ketones, 300 

aldehydes and phenols. Low LOD values ranging from 0.07 to 0.82 µg/mL were obtained for all the 301 

analytes except for acetaldehyde for which LOD was 2.06 µg/mL [11]. One of the drawbacks of DLLME is 302 

the possibility of losses of the most volatile analytes during extraction; therefore, it is recommended for 303 

the extraction of compounds with higher boiling points, such as phenols [66-67] or acrylates [68]. Until 304 

recently, a serious limitation of DLLME was the inability to automate it. However, some recent papers 305 

describe automated DLLME, which makes this sample preparation technique more efficient [69-75]. A 306 

comparison of parameters of various liquid-liquid extraction procedures is presented in Table 2. 307 

2.3 Sorbent extraction 308 

2.3.1 Solid-Phase Extraction 309 

In order to isolate and enrich of oxygenated organic compounds from wastewater, liquid-solid 310 

extraction is commonly used, including solid-phase extraction (SPE). The first step in any SPE procedure 311 

involves conditioning of the sorbent bed using a solvent appropriate for a particular sorbent. This step 312 

aims at solvation of the sorbent to increase its sorption capacity. Next, a sample of wastewater is loaded 313 

onto the SPE column and the analytes are adsorbed onto the sorbent bed. The SPE cartridge is then 314 

washed with an aqueous solution to remove impurities, followed by elution of the adsorbed analytes 315 

with an appropriate organic solvent. The procedure for SPE extraction is depicted in Figure S4. SPE 316 

technique provides high selectivity due to a wide variety of sorbents available and the possibility of 317 

fractional elution with a series of solvents. For isolation of phenols the sorbents used most commonly 318 

include silica gel modified with octadecyl groups (C18) [76-80] as well as commercially available 319 

polymeric sorbents, such as styrene/divinylbenzene co-polymer (S-DVB) [81] or divinylbenzene/N-320 
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vinylpyrrolidone (DVB/N-VP) [82-84], which have also been successfully used to isolate fatty, benzoic and 321 

dicarboxylic acids [84]. For isolation of carboxylic, benzoic and hydroxybenzoic acids, a mixture of 322 

commercial SPE sorbents containing C18 and ethyl vinyl benzene-divinyl benzene polymer was used 323 

(EVB-DVB/C18) (1:1) [85]. Compared to classical LLE extraction, SPE provides greater enrichment factors; 324 

however, its main disadvantages are the need for large sample volumes (100 – 500 mL) [76-77,82] and, 325 

sometimes, the use of toxic organic solvents as well as a long extraction time which can exceed 2 h [82]. 326 

In standard SPE assemblies, the eluent flow is driven by reduced pressure, which entails the risk of losses 327 

of most volatile analytes. In order to shorten the extraction time to 20 min and reduce sample volume to 328 

10 mL, magnetic solid phase extraction (MSPE) can be used. In this technique, either the sorbents have 329 

magnetic properties or they are immobilized on magnetic cores. Sorbent particles are added to a 330 

wastewater sample and left in it until the analytes are adsorbed. Next, the sorbent particles are 331 

attracted by a magnet while the sample matrix is decanted. This is followed by analyte desorption using 332 

an appropriate organic solvent. The extract is then analyzed by GC. The MSPE procedure is depicted in 333 

Figure S4. Just 40 mg of Fe3O4@C@polyaniline magnetic microspheres were needed to obtain high 334 

recoveries (85.3–110.6%) and low LOD values (0.89 – 7.58 ng/mL) for phenols extracted from 10 mL of 335 

wastewater samples [86]. 336 

2.3.2 Stir Bar Sorptive Extraction 337 

Another extraction technique that can be used for the determination of phenols and carboxylic 338 

acids is stir bar sorptive extraction (SBSE). SBSE procedure calls for transfer of analytes from the aqueous 339 

phase to a sorbent layer (usually PDMS) coated onto a magnetic stir bar. During extraction wastewater 340 

samples are stirred magnetically using the stir bar. Next, the adsorbed analytes are recovered from the 341 

stir bar using either thermal desorption or extraction with an appropriate organic solvent (Figure S5). In 342 

SBSE the sorbent (PDMS) volume is 50 to 250 times greater than that in SPME, which results in higher 343 

recoveries and enrichment factors for the majority of O-VOCs. However, because of long extraction 344 

times (as much as 240 min) and relatively low extraction efficiency (for example, 1% for salicylic acid) 345 

disqualify SBSE as a sample preparation method for routine analyses of wastewater [87]. 346 

2.3.3 Solid Phase Microextraction 347 

Solid phase microextraction (SPME) is a miniaturized version of SPE. In this technique, analytes 348 

are sorbed onto a layer of extracting phase coated onto a fused silica fiber which is placed inside a 349 

needle held in a holder. After introduction of the needle into a sample the fiber is exposed to the 350 

sample. Next, the fiber is retracted into the needle which is then inserted into the GC injection port for 351 

thermal desorption of analytes. SPME can be performed in the direct immersion mode (DI-SPME) in 352 

which the fiber is immersed directly into an aqueous sample or in the headspace mode (HS-SPME) where 353 

in the fiber is placed in the headspace above the sample (Figure S6). The latter mode is more favorable 354 

for analysis of wastewater as it protects the fiber from mechanical damage by solids present in the 355 

sample and prevents extraction of analytes of low volatility or nonvolatile which could contaminate both 356 

the fiber and the chromatographic system [88]. However, DI mode allows the determination of the less 357 

volatile O-VOCs in wastewaters samples, which cannot be determined using the HS mode.  Regardless of 358 

SPME mode, the key role in extraction is played by the kind of sorbent and shape of the fiber [89]. A 359 
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number of fibers of varying polarities are now available commercially for extraction of various groups of 360 

chemical compounds. In the determination of volatile fatty acids numerous problems are posed by short-361 

chain acids, i.e., acetic and propionic acid [90-92]. Among five fibers, including polyacrylate, 362 

Carbowax/Divinylbenzene (CAR-DVB), Polydimethylsiloxane/Divinylbenzene(PDMS–DVB), 363 

Polydimethylsiloxane/Carboxen/Divinylbenzene (PDMS–CAR–DVB) and Polydimethylsiloxane–Carboxen 364 

(PDMS–CAR), only PDMS-CAR sorbent provided satisfactory extraction of C2 and C3acids [93]. The same 365 

sorbent was highly effective in the extraction of phenols [94]. In the determination of bisphenol A (BPA), 366 

tert-nonylphenol and formaldehyde in samples of wastewater the highest extraction efficiency was 367 

achieved using PDMS/DVB; however, the use of such a fiber can introduce errors due to the presence of 368 

BPA in epoxy resin that is used to attach the fiber to the holder. A decrease in the amount of released 369 

BPA is observed after multiple extractions which results in the aging of the fiber and deterioration of 370 

extraction efficiency. The fiber coated with PDMS/DVB is highly effective for about 100 extractions. 371 

Consequently, fibers coated with polyacrylate are recommended for extraction of BPA from wastewater 372 

[95-96]. For carboxylic acids with a longer chain and for aldehydes and volatile phenols the best results 373 

were obtained when using PDMS-CAR-DVB [90,97]. Other investigations demonstrated improved 374 

extraction efficiency for polyethylene glycol as a fiber coating. Selectivity of sorption of individual 375 

analytes present in the headspace, in addition to elimination of analytical signal of undetermined VOCs 376 

in the chromatogram, also affects the sorption capacity of the fiber, since only the analytes of interest 377 

will be accumulated. Compared to the fiber coated with PDMS-CAR, extraction using PEG provided lower 378 

detection limits for the majority of carboxylic acids (C2 –C7) [98] while LOD values for the same analytes 379 

extracted with CAR-DVB were lower by a factor of 300 compared with direct aqueous injection. Only 380 

extraction of formic acid yielded a twofold increase in sensitivity compared to  DAI [99]. Similar results 381 

were obtained in other investigations [88]. The use of fibers coated with polymeric materials has a 382 

number of disadvantages, including relatively low maximum desorption temperatures, which generally 383 

ranges from 240 to 280°C, instability and too low polarity which limits their usefulness for some 384 

compounds. High thermal stability is required for the thermal desorption step. Insufficient desorption 385 

temperature will cause peak broadening and tailing as well as discrimination of higher boiling analytes. 386 

2.3.3.1 Developments in Solid-Phase Microextraction for oxygenated volatile organic 387 

compounds analytics 388 

Therefore, a number of novel fiber coatings have recently appeared, such as carbon nanotubes, 389 

including multiwalled carbon nanotubes [100-102], ionic liquids [103] or based on calixarenes, i.e. amide 390 

bridged-C[4]/OH-TSO(25,27-dihydroxy-26,28-oxy(2′,7′-dioxo-3′,6′-diazaoctyl)oxy-p-tert-391 

butylcalix[4]arene/hydroxy-terminated silicone oil) [104], which eliminate the problems mentioned 392 

above and can be successfully used for the determination of O-VOCs in wastewater samples. An increase 393 

in volume of the extracting phase in SPME results in lowering detection limits and extending a linear 394 

range; however, until now the increase in the amount of sorbent required modification not only of the 395 

SPME apparatus but also of the thermal desorption module. The problem has recently been eliminated 396 

by the introduction of the PAL SPME Arrow system, which contains a stainless steel wire coated with a 397 

greater amount of a sorbent compared to a typical SPME fiber and ending with the arrow-shaped tip. 398 

This arrangement ensures compatibility with the commercially available thermal desorbers and liners. In 399 
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addition, the presence of a steel wire provides a much improved fiber stability [105-106]. The SPME 400 

Arrow system has not yet been used for extraction of O-VOCs from wastewater samples. Another 401 

important parameter is extraction temperature. An increase in extraction temperature can accelerate 402 

adsorption of analytes on the fiber but too high a temperature can result in desorption and losses of the 403 

most volatile sample components. Consequently, the procedures for the determination of volatile fatty 404 

acids made use of mostly room temperature and time ranging from 15 to 60 min [88-90,93,98-99] 405 

whereas extraction of phenols and aldehydes was carried out at substantially higher temperatures (from 406 

50 to 100°C) [94-97,102,104]. SPME technique requires splitless injection using narrow glass liners in 407 

order to create high carrier gas velocity around the fiber which allows rapid removal of desorbed 408 

analytes from the injection port [107]. However, some papers report successful use of the split injection 409 

[104]. So far, no formation of O-VOCs artifacts on the SPME fibers have been reported in the literature 410 

although such problems are known for other groups of volatile organic compounds, i.e., organosulfur 411 

compounds. This phenomenon should be taken into consideration in the investigations of more reactive 412 

O-VOCs. 413 

A compilation of solid-phase extraction procedures used for the determination of O-VOCs is 414 

shown in Table3. 415 

3. Derivatization 416 

Derivatization is carried out in order to improve physicochemical properties of analytes, including 417 

change in polarity, lowering of boiling point and improvement of thermal stability. Furthermore, by 418 

introducing a functional group containing for example a halogen, the sensitivity of the determination can 419 

be improved by using the selective electron capture detector (ECD) [108-109]. On the other hand, 420 

derivatization of wastewater samples having a very complex matrix can result in unwanted chemical 421 

reactions in the sample. In addition, introduction of a derivatizing agent can contaminate a sample and 422 

extend the time of sample preparation. Consequently, derivatization of analytes should be considered as 423 

a last resort used only for the analytes for which direct determination at low concentrations is very 424 

difficult or impossible, including compounds containing carboxyl or hydroxyl groups. Depending on the 425 

group of analytes investigated, various types of derivatization reactions are carried out, including 426 

silylation, esterification, alkylation or acylation. 427 

Derivatization methods have been described in a number of papers [47,110-114]. The most common 428 

reagents used for derivatization of O-VOCs, which block polar groups being proton donors (i.e., –OH and 429 

–COOH), include alkylsilanes, such as N,O-bis-(trimethylsilyl)trifluoroacetamide (BSTFA) [51-52,79,83,85-430 

86] N-trimethylsilylimidazole (TMSIM), trimethylchlorosilane (TMCS) [51-52], N,O-bis(trimethylsilyl) 431 

acetamide (TMSA) [53], hexamethyldisilazane (HMDS) [84] and N-methyl-N-(tert-432 

butyldimethylsilyl)trifluoroacetamide (MTBSTFA) [76-77,87]. They allow introduction of the trimethylsilyl 433 

group (TMS) to analyte molecules thus increasing volatility of the analytes, improving separation of 434 

isomers and enhancing sensitivity of detection when using a mass spectrometer operated in the positive 435 

chemical ionization mode. However, despite numerous advantages, silyl derivatives are very unstable 436 

and the analysis must be carried out within 12-24 hours, which limits the use of these reagents in routine 437 

determinations of a large number of samples [51]. 438 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


14 

 

Carboxylic acids can undergo direct 100% reaction yield in 2-3 min is diazomethane; however, it is 439 

not recommended due to its irritating, carcinogenic and explosive properties [47,113]. Consequently, 440 

diazomethane is often replaced with less hazardous reagents, such as pentafluorobenzyl bromide 441 

(PFBBr), which provides much lower yields and the reaction takes several hours [113,115]. The method 442 

of derivatization of carboxylic acids that is not time consuming and enables automation is the formation 443 

of ion pairs through the reaction of carboxyl or hydroxyl groups with tetraalkylammonium salts in the 444 

sample solution. The ion pairs formed after being injected into the hot (>280°C) GC injection port are 445 

converted into alkyl (often butyl) esters. The most common ion pairing reagents include 446 

tetrabutylammonium hydrogensulfate (TBA-HSO4) [56,64], tetrabutylammonium chloride (TBA-Cl) and 447 

tetrabutylammonium bromide (TBA-Br) [56,59,61]. The butyl esters formed have greater mass-to-charge 448 

(m/z) ratio compared to methyl esters which improves selectivity in GC-MS analysis [56,68,116]. Another 449 

interesting approach is the procedure based on the use of inexpensive and simple to synthesize deep 450 

eutectic solvent composed of choline chloride and 4-methyl phenol in 1:2 molar ratio (ChCh:4MPh1:2) 451 

for both the extraction of the analytes and their ion pair derivatization [65].Another class of reagents 452 

allowing derivatization of carboxylic acids to alkyl esters in aqueous are alkyl chloroformates. The alkyl 453 

esters formed can be readily extracted into nontoxic organic solvents [117]. 454 

4. Separation proces - Stationary phases 455 

The selection of a proper chromatographic column has a decisive effect on the results of both 456 

qualitative and quantitative analysis. Efficient separation of analytes is required for correct identification, 457 

accurate determination  and thus applicability of an analytical procedure. A number of commercial 458 

capillary columns with various types of stationary phases are now available, which are recommended for 459 

the analysis of individual groups of chemical compounds in order to ensure the best selectivity and 460 

resolution.  461 

 462 

4.1 Polydimethylsiloxane based stationary phases 463 

For direct injection of aqueous solutions without prior removal of the water matrix, a polar 464 

stationary phase, such as a wax-based sol-gel phase [118] or, alternatively, a stationary phase of low 465 

polarity, i.e., polydimethylsiloxane or 5% phenyl 95% polydimethylsiloxane should be used. This 466 

stationary phase practically do not interact with water so they are not damaged by aqueous samples 467 

[119]. Another option is to use apolar-deactivated guard column, which enables complete evaporation of 468 

water prior to introduction of analytes onto the column [119-120].  469 

The use of PDMS as a stationary phase is recommended for the separation of phenols due to strong 470 

dispersive forces which leads to elution of the majority of analytes according to their boiling point, thus 471 

facilitating identification [100,109]. The most common stationary phases used for the separation of 472 

volatile oxygenated organic compounds, except for carboxylic acids, from wastewater samples are 5% 473 

phenyl 95% dimethylpolysiloxane and 5% phenyl 95% dimethylarylenesiloxane, which have low polarity. 474 

 475 

4.2 Polyethylene glycol based stationary phases 476 
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Some carboxylic acids (C2 – C8) are sufficiently volatile and thermally stable to be determined by GC 477 

without derivatization. However, their high polarity and ability to form hydrogen bonds precludes 478 

obtaining symmetrical peaks with most popular stationary phases of low and medium polarity. 479 

Consequently, polar stationary phases based on polyethylene glycol (PEG) are recommended for the 480 

separation of volatile fatty acids [120-124]. Alkane monocarboxylic acids tend to adsorb in the injection 481 

port or on the column, therefore, many reports recommend the use of PEG modified with 2-482 

nitroterephthalic acid (called free fatty acid phase – FFAP), which deactivates its basic sites [43,49,88-483 

90,93,98-99,103,125]. FFAP was also successfully used for the separation of phenols [60]. Another 484 

interesting approach is to connect several capillary columns in series, including a column with a polar 485 

stationary phase connected to a short deactivated column, followed by a PDMS column and another 486 

deactivated column. The use of such a sequence allows complete separation of carboxylic acids C2- C8. 487 

Furthermore, using a polar stationary phase in the first column resulted in obtaining narrow and 488 

symmetrical peaks [126]. A significant disadvantage of polar stationary phases is their relatively low 489 

maximum operating temperature (<260°C) which makes them unsuitable for the analysis of higher 490 

boiling compounds, such as long-chain carboxylic acids or dicarboxylic acids [127].  491 

The most recent (and most expensive) approach is the coupling of time-of-flight mass 492 

spectrometer (TOF-MS) with comprehensive two-dimensional gas chromatography (GCxGC). Two-493 

dimensional GC separation of analytes greatly improves peak capacity and enables a very effective 494 

separation. Typically, analytes are separated on a column with the stationary phase of a low polarity in 495 

the first dimension, followed by the separation of each fraction on a more polar stationary phase in the 496 

second dimension. However, a reverse order of polarity of the stationary phases is sometimes used. The 497 

technique GC x GC-ToF-MS was used to determine isomers of nonylphenol. This approach allowed to 498 

minimize co-elution of analytes and to identify a larger number of isomers which could not be separated 499 

in the SIM mode by GC-MS [128-129]. 500 

 501 

4.3Ionic liquids 502 

An alternative to stationary phases based on polyethylene glycol are novel stationary phases based 503 

on ionic liquids which, due to unique properties of ionic liquids, are polar or extremely polar. At the same 504 

time, columns with ionic liquids as the stationary phase can operate at higher temperatures compared to 505 

conventional polar columns  [130-132]. When separating a model mixture containing 36 O-VOC 506 

compounds, the highest selectivity was obtained with an ionic liquid (1,5-di(2,3-507 

dimethylimidazolium)pentane bis(trifluoromethylsulfonyl)imide) as the stationary phase compared to 508 

traditional stationary phases of low and medium polarity. Co-elution was observed only for several 509 

compounds with substantially different mass spectra due to occurrence of specific fragment ions, which 510 

did not interfere with quantitative analysis. Moreover, the use of the column with the ionic liquid 511 

resulted in elution of C5to C8n-alkanes in dead time which reduced matrix interference since these 512 

alkanes are commonly present in petroleum refinery effluents [9,11-12,133].  513 

Oxygenated organic compounds are also separated on stationary phases based on carbon nanotubes 514 

whose properties can be modified by binding various functional groups improving their selectivity 515 

toward alcohols and esters and reducing the time of analysis. However, most of the papers published 516 

report the use of such stationary phases for the separation of model mixtures [134-136]. 517 
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A list of the most popular commercially available stationary phases for separating selected groups of 518 

O-VOC is compiled in Table 4. 519 

5. Detection 520 

A popular detector used in the analyses of wastewater is the universal flame ionization detector 521 

(FID) [55,60-61,66,68,85,93]. However, due to its lack of selectivity toward oxygenated organic 522 

compounds and a considerably lower sensitivity, it is not recommended for the determination of O-VOCs 523 

in samples with very complex matrices, such as wastewater [85,93].  524 

 525 

5.1 Oxygenate selective Flame Ionization Detector 526 

The only GC detector selective exclusively to oxygenated compounds is oxygenate selective 527 

flame ionization detector (O-FID) [137]. The detector includes a cracking reactor which converts any 528 

oxygenated compounds to carbon monoxide and a special FID with a microreactor for the catalytic 529 

hydrogenation of CO and detection of methane Hydrocarbons give no signal. Peaks in the chromatogram 530 

represent solely oxygenated organic compounds and the peak areas depend upon the analyte content 531 

and the number of oxygen atoms in a molecule [137-138]. GC-O-FID enables the determination of O-532 

VOCs at concentration levels 0.17-15% (m/m) [139]. Such high LOD values disqualify this detector for 533 

determination of volatile oxygenates in wastewater samples, in which the analytes occur at 534 

concentrations in the order of ppb and ppm. Thus far, no procedures for the determination of O-VOCs in 535 

wastewater making use of analyte enrichment and derivatization combined with GC-O-FID have been 536 

reported. 537 

 538 

5.2 Mass Spectrometry 539 

At present, a mass spectrometer is the detector most commonly used in the determination of 540 

volatile oxygenated organic compounds in wastewater. When using selected ion monitoring (SIM) mode, 541 

the MS can selectively detect analytes in the presence of co-eluting matrix components. Moreover, when 542 

used with an analyte isolation and enrichment procedure, GC-MS allows determination of analytes at a 543 

µg/L or even ng/L level [51-53,56,62,85]. A major advantage of a mass spectrometer over the other GC 544 

detectors is its ability to identify unknown compounds in the SCAN mode based on comparison of the 545 

obtained spectra with vast mass spectral libraries when the electron ionization (EI) is used. On the other 546 

hand, in the SIM mode identification of analytes is carried out by comparison of their retention times 547 

with those of standards, taking a confidence interval of ± 0.2 % tR [min], as well as on the basis of 548 

selected characteristic values of mass-to-charge ratios and comparison of their intensities. As a rule, 549 

several characteristic ions are selected for each compound in a given interval of retention time. It should 550 

be noted, however, that the detector sensitivity decreases with an increase in number of monitored 551 

ions. Therefore, a reasonable approach is to select two characteristic mass-to-charge values, of which 552 

one is used for integration of the peak while the other is used to confirm the peak identity based on the 553 

ratio of intensities with an assumed confidence interval of 15 to 30 %. Such an approach constitutes a 554 

sufficient confirmation of peak identification while allowing the determination of analytes at suitably low 555 

concentration levels [11-12].  556 
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The second type of ionization commonly used in a mass spectrometer is positive or negative 557 

chemical ionization (CI), which does not ensure such a high reproducibility of ionization as was the case 558 

with EI, which results in the absence of commercially available mass spectral libraries and identification 559 

is carried out on the basis of an intense molecular ion which is possible due to soft ionization. The 560 

studies in which two modes of ionization, EI and positive CI in which ammonia was used as a reagent gas, 561 

were compared revealed only slight differences in reproducibility of the results obtained in the SIM 562 

mode for 22 carboxylic acids, LOD values lower by a factor of ca. 25 and a wider linear range for EI-MS 563 

[85]. A comparison of positive(reaction gas CH4) and negative (reaction gas NH3) chemical ionization in 564 

the determination of volatile fatty acids demonstrated lower detection limits when negative chemical 565 

ionization was used [93].  566 

A complex matrix composition of wastewater sample often precludes direct identification due to 567 

co-elution of many analytes. To accomplish peak resolution and obtain pure spectra, chemometric 568 

models such as Parallel Factorial Analysis (PARAFAC) [140] or Multivariate Curve Resolution Alternating 569 

Least Squares (MCR-ALS) [141-142] can be used. A different approach involves the use of a time-of-flight 570 

mass spectrometer which offers a much improved resolution and the determination of m/z with an 571 

accuracy of 0.1 mDa [143].  572 

 573 

5.3 Detectors based on ultraviolet light 574 

Theoretically, oxygenated organic compounds could also be determined without derivatization 575 

by a photoionization detector (PID). However, this method has not found a wide use in process analysis 576 

of wastewater.  577 

Another universal detector allowing both qualitative and quantitative determinations is a 578 

vacuum ultraviolet detector (VUV) introduced in 2014. Detector VUV allows the measurement of 579 

absorption spectra in the 125 to 240 nm range [144-145]. All compounds absorption in this region have 580 

unique absorption spectra, especially low-molar-mass oxygenates, including esters, aldehydes, ketones 581 

and short-chain volatile fatty acids. So far, this technique was applied to study the compounds exhaled 582 

with human breath [146]. Additionally, GC-VUV has found use in the analysis of fatty acid methyl esters 583 

in edible oils [147], hydrocarbons in diesel fuels [148], pesticides [149], polychlorinated biphenyls [150] 584 

and investigation of isomers whose separation is difficult by other standard procedures [151]. Thus far, 585 

however, GC-VUV has not been used for the determination of O-VOCs in wastewater samples although 586 

due to its specific properties and the possibility of determination of oxygenated compounds at low 587 

concentrations it could be utilized for routine analyses of O-VOCs in samples of wastewater.   588 

 589 

5.2 Other detectors 590 

Electron capture detector (ECD), which is based on absorption of electrons by electrophilic 591 

molecules, is highly selective toward compounds having a high electron affinity, such as organochlorine 592 

compounds for which ECD is specific. ECD is selective to O-VOCs; however, this selectivity is insufficient 593 

for analysis of samples having a very complex matrix. The presence of water in extracts, even at trace 594 

levels, is also a problem due to a large ECD response to water. Therefore, analytes should be converted 595 

into derivatives containing atoms of chlorine, bromine [152] or fluorine [153] to obtain high sensitivity of 596 

detection. However, this approach has not found a widespread use in the analysis of wastewater. 597 
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Theoretically, other selective detectors, such as a nitrogen-phosphorus detector (NPD), 598 

chemiluminescence detector (CLD), flame photometric detector (FPD) or apulsed flame photometric 599 

detector (PFPD) and sulfur chemiluminescence detector (SCD), could be used for the determination of O-600 

VOCs in wastewater samples after conversion of analytes into suitable derivatives. Nonetheless, despite 601 

their high sensitivity these detectors have not found use in routine analyses of wastewater samples. 602 

Research is continuing on the development of novel types of GC detectors, such as an 603 

amperometric detector based on a silica sol-gel solid electrolyte. This detector is not selective toward 604 

hydrocarbons but it enables identification of compounds such as phenol or p-cresol at low 605 

concentrations. Thus, it could be successfully used for the analysis of O-VOCs in among others, 606 

petroleum refinery effluents which have a matrix rich in hydrocarbons [154]. 607 

Thelist of detectors along with their advantages and disadvantages is depicted in Figure 4. 608 

6. Quantitative analysis 609 

Quantitative analysis of O-VOCs in wastewater samples is usually carried out by a calibration 610 

curve (external standard) method. However, when using some GC detectors, including mass 611 

spectrometer, the detector sensitivity can gradually deteriorate after a dozen or so analyses. Thus, to 612 

ensure reliability of the results, calibration should be often repeated which makes application of the 613 

developed procedures to routine analyses more challenging. The problem can be minimized by using the 614 

internal standard method which allows a much longer stability period of the procedure provided that the 615 

detector response changes to the same extent for analytes and the standard. An internal standard is 616 

selected on the basis of similarity of its physicochemical properties to those of analytes, such as boiling 617 

point, volatility, octanol-water partition coefficient, etc. It must also be absent from real samples, be 618 

separated on the chromatogram from analytes, be chemically stable and the detector response to the 619 

internal standard must be similar to those of analytes. Examples of internal standards selected for the 620 

determination of specific groups of compounds are compiled in Table 5. The internal standard method 621 

works best for complex, multistep procedures, since it corrects for analyte losses which take place at 622 

every step of an analytical procedure and also accounts for variations in sample volume during the 623 

injection step. Another approach is to use isotope dilution which is a version of internal standard method 624 

wherein the internal standard differs from the analyte solely in its isotope composition (deuterated 625 

derivatives of analytes are used most often). Using the internal standard method introduces an 626 

additional step to the analytical procedure (addition of an internal standard/standards to the sample) 627 

but current commercial automated equipment, such as an P&T extraction module, allow automatic 628 

addition of internal standards [106]. However, the internal standard method may not find application in 629 

the analyses of wastewater samples making use of universal detectors, such as FID, due to very complex 630 

matrix composition and the difficulty of selecting an internal standard which would not co-elute with the 631 

matrix components. Another common method of quantitative analysis is the standard addition method 632 

which involves addition to a sample known amounts of the analyte, followed by chromatographic 633 

analysis. This method has not found widespread use in the quantitative analysis of wastewater since it is 634 

tedious and time-consuming but it useful during the development of new analytical procedures because 635 

it allows a comparison of the agreement of the results obtained by the procedure being developed for 636 
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real samples with other methods. In such a case the results obtained by the standard addition method 637 

are accepted as the expected value. 638 

7. Oxygenated volatile organic compounds content in various kinds of wastewater 639 

The presence of various groups of O-VOCs and their content is closely related to the kind of 640 

wastewater. Chemical plants typically generate high volumes of wastewater containing chemicals being 641 

the main products as well byproducts [43]. For example, wastewater from coke manufacturing plants 642 

contains considerable amounts of phenol whose concentration can be as high as 213.23 mg/L and large 643 

amounts of cresols [55,67,104]. These values significantly exceed the maximum allowed concentrations 644 

in industrial effluents discharged to the environment [20-24]. Phenols also commonly occur in the 645 

effluents from the petroleum industry, including refineries [68,155], effluents from the production of 646 

bitumens [11-12] and petrochemical wastewater [45,78,156]. The content of phenolic compounds is 647 

lower compared to coke wastewater but petroleum wastewater also contain other kinds of toxic O-648 

VOCs, including alcohols, benzoic acids, acrylates, aldehydes, ketones and ethers at concentrations in the 649 

order of µg/mL [11,12,68] or µg/L in the case of MTBE [155]. On the other hand, wastewater from the 650 

paper industry contains mostly palmitic and stearic acids [51-52]. The same compounds are also present 651 

in wastewater from the production of antibiotics at concentrations equal to  80 µg/L and 95.8 µg/L for 652 

palmitic and stearic acid, respectively [56]. Oxygenated organic compounds, including phenols, benzoic 653 

acids, ketones and esters were detected in wastewater from the textile industry, with 2,6-di-tert-butyl-4-654 

ethylphenol and butyltetramethylphenol having the highest concentrations (1.23 µg/L and 0.58 µg/L, 655 

respectively) [156] whereas the tannery wastewater contained alcohols, phenols, carboxylic acids and 656 

ketones at concentrations ranging from 0.01 to 0.03  µg/L [156-157]. 657 

Strongly contaminated industrial effluents have to undergo preliminary treatment before being 658 

sent to municipal or industrial wastewater treatment plants (WWTP) in order to meet the required 659 

specifications. The limits set pertain mostly to total parameters and not individual compounds; thus, the 660 

concentrations of particular analytes are relatively high. In WWTP industrial wastewater is combined 661 

with domestic wastewater, rain water and snowmelt, forming so-called municipal wastewater, wherein 662 

both typical compounds found in domestic wastewater and compounds originating from industrial 663 

wastewater can be identified.Common components of municipal and sanitary wastewater are phenols, 664 

whose concentrations can be as high as  433 µg/mL and carboxylic acids at concentrations up to 275 665 

µg/mL [43,49,90,98]. In addition, municipal wastewater also contained MTBE at 25 µg/mL [158] and 666 

acetone at 0.62 µg/mL [43]. 667 

Examples of various kinds of wastewater along with concentrations of main O-VOC components are 668 

compiled in Table 6. 669 

The majority of procedures described in this review pertains to the determination of carboxylic acids 670 

and phenols in wastewater. There are just a few reports dealing with the presence and concentrations of 671 

other O-VOC compounds in various types of wastewater. There exist no procedures that would allow a 672 

comprehensive evaluation of content of various kinds of O-VOCs in wastewater samples. The conclusions 673 

from reviews discussing investigations of advanced oxidation processes [159-160] used for chemical 674 
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degradation of organic pollutants in industrial effluents reveal that due to the lack of recent procedures 675 

for detailed characterization of the effluents, the research is often based solely on changes in total 676 

parameters, i.e., biochemical oxygen demand and chemical oxygen demand or total organic carbon. 677 

Dissemination of chromatographic procedures based on gas chromatographs commonly available in the 678 

laboratories of industrial facilities and sample preparation techniques not requiring special equipment 679 

should result in an increase in the scope and degree of detail of the results of analyses.  680 

The described analytical methods can also be used for the determination of O-VOCs in other 681 

aqueous samples which have a very complex matrix. One of the examples is leachates from landfills which 682 

contains large amounts of toxic organic compounds including phenols [129,161-162], dioxanes [163] and 683 

carboxylic acids [164]. The methods could also be used for the determination of contaminations in 684 

different types of environmental samples, i.e. airport runoff water containing glycols [165], groundwater 685 

[166], rivers [167] and lakes located near factories [168] as well as for the determination of O-VOCs in 686 

process water for evaluating and controlling the process such asproduction of biogas [169]. 687 

8. Summary and outlook 688 

Industrial, domestic and municipal wastewater contains a number of toxic volatile and semivolatile 689 

oxygenated organic compounds with widely varying concentrations in very complex matrices which 690 

makes their determination a serious challenge. Consequently, there is a continuing need to develop 691 

novel, effective procedures for the determination of low concentrations of O-VOCs in wastewater 692 

samples. A necessary step of each such procedure is extraction of analytes since direct analysis of such 693 

complex matrices can contaminate the GC system. Among the existing procedures for isolation of 694 

analytes from the aqueous matrix, headspace techniques are not the best choice despite full automation 695 

due to discrimination of compounds having a medium or low volatility. Classical LLE, which enables 696 

enrichment of both volatile and semivolatile analytes, is being gradually replaced by microextraction 697 

techniques as a result of consumption of large volumes of solvents and toxicity of some of them. At 698 

present, the technique most often used during the development of new procedures is DLLME due to its 699 

simplicity, short time and small volumes of organic solvents used. However, DLLME is difficult to 700 

automate which constitutes its main disadvantage. Literature search revealed several attempts at 701 

automation of DLLME, however, these designs are still at a development stage aiming at improvements 702 

in reproducibility, recovery and an increase in the number of samples processed. Hopefully, new and 703 

improved automated DLLME systems will become available in the near future. Other types of solvent 704 

microextraction, including SDME, HS-K-HFME, and LPME were also discussed in this review but all these 705 

modes are characterized by a long extraction time which is a significant disadvantage if a large number 706 

of samples has to be analyzed.  707 

Among liquid-solid extraction techniques, similarly to LLE, the most common solid-phase extraction 708 

is being replaced by miniaturized versions which consume less sample and organic solvents. There is 709 

considerable interest in new stationary phases for SPME which is likely to be continued, especially in the 710 

area of polar sorbents which will have improved selectivity toward, for example, carboxylic acids. 711 

In general, derivatization is not recommended in the analysis of wastewater due to complex sample 712 

matrix and a likelihood of unwanted chemical reactions. Furthermore, in most cases the derivatization 713 
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procedure is complex and time-consuming. Nevertheless, the determination of some compounds, such 714 

as carboxylic acids with more than 9 carbon atoms or dicarboxylic acids at low concentrations in 715 

wastewater samples is very difficult. Therefore, in such cases a good approach is to use 716 

tetrabutylammonium reagents which results in formation of derivatives in the GC injection port. This 717 

approach is not labor-intensive and be automated which limits the activity of the analyst during the 718 

sample preparation step thus eliminating a number of errors and improving repeatability of results.   719 

The availability of a variety of analytical procedures for the determination of individual groups of O-720 

VOCs in wastewater samples requires performance of a number of time-consuming analyses. 721 

Consequently, the approach involving combination of gas chromatography with MS in electron impact 722 

ionization mode is becoming increasingly more popular. This approach allows not only quantitative 723 

analysis in the SIM mode but also identification of unknown analytes based on matching their mass 724 

spectra with those present in comprehensive spectral libraries. However, a complex matrix often 725 

precludes correct identification of analytes due to numerous co-elutions. An improved resolution can be 726 

obtained by using GC-TOF-MS but the high cost still hinders its widespread use. Therefore, chemometric 727 

models combined with GC-MS in the EI mode constitute a viable alternative, which allows obtaining a 728 

complete resolution of chromatographic peaks and pure mass spectra. With the comprehensive two-729 

dimensional gas chromatography (GCxGC) instrumentation becoming more available, new procedures 730 

for the determination of O-VOCs making use of this technique are likely to appear. Orthogonality of the 731 

stationary phases used in the two dimensions should allow a simplification of sample preparation steps. 732 

In addition, the VUV detector has found increased use owing to the possibility of both qualitative and 733 

quantitative analysis. It is thus anticipated that this detector will also be utilized in the determination of 734 

O-VOCs in wastewater samples.  735 

The kind of stationary phase plays a major role primarily in the analyses of carboxylic acids whose GC 736 

peaks tend to exhibit tailing; therefore, for this group of analytes it is recommended to a polar stationary 737 

phase: PEG modified with 2-nitro-terephthalic acid, which eliminates this problem. The remaining groups 738 

of O-VOC analytes can be separated on commercial GC columns with stationary phases of low and 739 

medium polarity. Research is continuing on the application of new materials as stationary phases that 740 

would provide high resolution of selected groups of chemical compounds [170]. 741 
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Tables 1163 

 1164 
Table1 Compilation of conditions for DHS extraction. 1165 

Analytes Purge 

time 

[min] 

Gas flow 

rate 

[ml/min] 

Purge 

temperature 

[°c] 

Desorption 

time 

[min] 

Desorption 

temperature 

[°c] 

Sorbent LOD  RSD [%] R [%] Ref. 

Alcohols, phenols, 

ketones, aldehydes, 

esters, ethers (36 O-

VOCs) 

5 20 (H2) 20 4 250 Tenax TA 0.005 – 20 

mg/L 

< 5.0 -  [12] 

MTBE 10  - 40 10 220 Tenax TA 2.9 ng/L - 99.1  [44] 

Alcohols, phenols, 

ketones, aldehydes 

(28 O-VOCs) 

10 100 (N2) - 10 220 Tenax TA - - - [45] 

Acetone 12 - 60 4 260 Carbopack B / 

Carbosieve III 

0.32 - 2.39 

µg/L 

< 13.4 -  [43] 

 1166 

  1167 
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Table 2 Compilation of parameters of liquid-liquid extraction. 1168 

Extraction 

technique 

Analytes Extractant Derivatization Sample 

volume / 

extractant 

volume 

Extraction 

time 

Detector LOD 

 

RSD [%] R [%] Ref. 

LLE Carboxylic 

acids 

Diethyl 

ether 

- 1 mL  / 1 mL 30 s FID - < 2.7 - [48] 

Carboxylic 

acids 

MTBE / 

DCM 

- 10 mL  / 10 

mL 

10 min MS - - - [49] 

Carboxylic 

acids 

MTBE - 4 mL  / 2 mL - MS 0.1 – 0.5 

mg/L 

< 1.3 - [50] 

Carboxylic 

acids 

MTBE BSTFA,  TMCS 4 mL  / 2 mL 2 min MS 0.03 – 

0.2 µg/L 

< 2.1 92 - 106 [51] 

Carboxylic 

acids 

MTBE BSTFA,  TMCS 4 mL  / 4 mL 2 min MS 0.8 – 4.2 

µg/L 

< 9 61 - 79 [52] 

BPA, BPF CHCl3 TMSA 500 mL / 5 

mL 

1 min MS 0.006 – 

0.02 µg/L 

< 5.6 - [53] 

HF-LPME Carboxylic 

acids 

1-Octanol TBA-HSO4 3 mL / 4µL 10 min MS 0.0093 – 

0.015 

µg/L 

< 11.5 - [56] 

DI-SDME Phenols Chloroform TBA-Br 5 mL / 3 µL 20 min MS - < 7.5 96 - 121 [59] 

Phenols Chloroform 

: 1-octanol 

(1:1) 

TBA-Br 3 mL / 3 µL 12 min FID, MS 0.2 -0.7 

µg/L 

(MS); 12 

– 17.3 

µg/L 

(FID) 

< 5.4 

(GC-MS), 

< 7.1 

(GC-FID) 

 

- [61] 

HS-SDME Phenols [C8MIM][PF

6]  
 

- 10 mL / 1 µL 25 min FID 0.1-0.4 

µg/L 

< 9.5 81 - 111 [60] 

HS-K-HFME Diethyl 

ether, ethyl 

acetate 

1-Octanol - 4 mL / 25 µL 20 min MS 10 µg/L < 11.6 96 - 104 

[62] 

DLLME Phenols, 

aldehydes, 

ketones, 

alcohols, 

esters, 

ethers 

DCM,  

(ACN- 

disperser) 

- 10 mL / 0.5 

mL 

60 s MS 0.07 – 

0.82 

mg/L 

< 5 71 - 119 [11] 

Phenols DCM, (IPA 

–disperser) 

- 5 mL / 0.2 mL - FID 0.32 -

0.34 µg/L 

< 3.2 85 - 96 [66] 

Phenols CTC / 

chlorobenz

en 2:1 v/v 

(ACN - 

disperser) 

- 5 mL / 15 µL 2 min MS - < 9.1 68 - 104 [67] 

Acrylates Chlorobenz

en (AcCN- 

disperser) 

- 5 mL/ 20 µL 5 min FID 0.071 – 

0.13 µg/L 

< 9.1 81 – 109 [68] 

Carboxylic 

acids 

Chloroform 

(IPA- 

disperser) 

TBA-HSO4 9 mL / 300 µL 60 s MS 6.9-1120 

µg/L 

< 6.4 69 - 126 [64] 

Carboxylic 

acids 

ChCl:4MPh 

(1:2 molar 

ChCl:4MPh (1:2 

molar ratio) 

9 mL / 500 µL 10 min MS 1.7–8.3 

µg/L 

< 6.7 82 - 106 [65] 
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ratio) 

(MeOH- 

disperser) 

1169 
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Table 3 Compilation of various types of solid-phase extraction procedures in the determination of O-VOCs in wastewater 1170 
samples.  1171 

Extraction 

technique 

Analytes Sorbent Derivatizati

on 

Extraction 

temp. / time 

Thermal 

desorption 

temperature 

/ time 

Elution 

eluent / time 

Detector LOD RSD 

[%] 

R [%] Ref. 

SPE phenols C18 MTBSTFA RT - MeOH (5 mL), 

hexane:ACN 

(50:50, 

v/v) (3.5 mL) 

/ - 

MS 0.6 – 

3.16 µg/L 

- 93 [77-

78] 

phenols C18 BSTFA / 

pyridine 

RT / 80 min - DCM (4 mL), 

hexane (2 

mL) 

MS 0.03 - 

0.41 µg/L 

< 13.9 > 60 [79] 

phenols DVB/N-VP AAA RT / over 2 h - ACN (3 mL) 

and DCM (2 

mL) 

MS/MS 0.03 – 

2.5 µg/L 

< 30 60 -135 [82] 

phenols C18 - 

DVB/N-VP 

BSTFA/ 

TMCS 

RT - DCM MS 3.64 – 

97.64 

ng/L 

< 13.6 - [83] 

esters, 

carboxylic 

acids, 

phenols 

DSC-18 HMDS/ TFA RT - Hexane 

(5mL), ethyl 

acetate (5 

mL), MeOH 

14mL) 

MS 0.92 – 

600 ng/L 

< 10 94 [84] 

carboxylic 

acids 

EVB-

DVB/C18 

BSTFA 

/TMCS 

RT - MeOH (200 

µL) 

MS 0.6 – 15 

ng/L 

< 4.6 93 - 

101 

[85] 

MSPE phenols Fe3O4@C

@PANI 

microspher

es 

BSTFA/ 

TMCS 

RT / 20 min - Ethyl acetate 

/ 5min 

MS 0.89 – 

7.58 µg/L 

< 13.1 85 - 

111 

[86] 

SBSE Phenols 

and 

carboxylic 

acids 

PDMS MTBSTFA RT / 240 min - Ethyl acetate 

(0.2 mL) /30 

min 

MS 1 – 800 

ng/L 

< 20 70 - 

130 

[87] 

SPME formaldehy

de 

PDMS-DVB PFBHA 50 °C / 40 

min 

250°C / 7 min - MS 10 mg/L < 23 - [96] 

carboxylic 

acids 

CAR-DVB - 25°C / 20 min 250°C / 3 min - MS 11.5 

mM/L 

< 16.7 77 - 

114 

[99] 

carboxylic 

acids 

Ionic liquid: 

Poly 

(1-Vinyl-3-

Hexylimida

zolium) 

Chloride 

- 35°C / 10 min 170°C / 4 min - MS - 

 

 

 

- - [103

] 

phenols MWCNTs - 70°C / 50 min 280°C / 5 min - FID 5 – 50 

µg/L 

< 6.5 88 - 

112 

[100

,102

] 

phenols Polyamide - 30°C / 60 min 280°C / 3 min - MS 0.04 – 1 

µg/L 

< 10 - [95] 

HS-SPME 

 

phenols MWCNTs - 50°C / 40 min 250°C / 3 min - FID 1.89 – 

65.9 ng/L 

<12.4 88 - 

112 

[101

] 

phenols PDMS–CAR AAA 100°C / 30 270°C / - - MS 0.001 – < 16.2 - [94] 
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min 0.04 µg/L 

phenols Amide 

bridged-

C[4]/OH-

TSO 

- 50°C / 15 min 260°C / 3 min - FID 0.47 – 

9.01 µg/L 

< 9.1 90 - 

103 

[104

] 

phenols, 

aldehydes 

PDMS-CAR-

DVB 

- 70°C / 30 min 250°C/1 min - MS 0.003 – 

0.6 µg/L 

< 16 > 70 [97] 

carboxylic 

acids 

CAR-DVB - 25°C / 20 min 250°C / 3 min - FID 3 – 467 

µg/L 

< 10 85 -117 [88] 

carboxylic 

acids 

PEG - 25°C / 40 min 230°C / 3 min - MS 0.017 – 

0.064 

mg/L 

- - [98] 

carboxylic 

acids 

PDMS-CAR - 25°C / 20 min 300°C / 5 min - FID 6 – 675 

µg/L 

< 13.3 - [90] 

carboxylic 

acids 

PDMS-CAR - 25°C / - 300°C / 5 min - FID,  

NCI-MS 

(NH3), 

 PCI-MS 

(CH4)  

6 – 675 

µg/L 

(FID), 2 – 

6 µg/L 

(NCI-MS), 

10 - 115 

µg/L 

(PCI- MS) 

< 16 - [93] 

a) Solvent used for elution of fraction of interest,  1172 

 1173 

 1174 

 1175 

 1176 

 1177 

 1178 

 1179 

 1180 
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Table 4 A list of the most popular commercially available stationary phases for the separation of selected groups of O-VOCs. 1188 

Polarity  Stationary phase Analytes 

Non-polar Dimethylpolysiloxane phenols, aldehydes, ketones, 
alcohols, esters, ethers  

Intermediate polarity 5% Phenyl 95% dimethylpolysiloxane phenols, aldehydes, ketones, alcohols   

5% Phenyl 95% dimethyl arylene siloxane phenols, aldehydes 

6% Cyanopropyl-phenyl, 94% dimethyl polysiloxane phenols, aldehydes, ketones, 
alcohols, esters, ethers  

Polar Polyethylene glycol carboxylic acids 

Polyethylene glycol modified with  
2-nitroterephthalic acid 

carboxylic acids, phenols  
 

Highly polar (1,5-di(2,3-dimethylimidazolium)pentane bis(tri 
fluoromethylsulfonyl)imide)  

phenols, aldehydes, ketones, 
alcohols, esters, ethers  

  1189 
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Table5List of internal standards used in quantitative analysis of O-VOCs. 1190 

Analytes Internal standards 

Alcohols  4-chloro-2-butanol [11],4-chlorophenol [11],1,1,3,3-tetramethoxypropane [29], N,N-diisopropylformamide 
[29] 

Aldehydes  4-chloro-2-butanol [11], 3-chloro-2-butanone [11], 4-chlorophenol [11],acetone-d6 [96] 

Ketones 3-chloro-2-butanone [11], 4-chlorophenol [11],1,1,3,3-tetramethoxypropane [29], N,N-
diisopropylformamide [29] 

Esters 4-chloro-2-butanol [11] 

Ethers 4-chloro-2-butanol [11], 1,1,3,3-tetramethoxypropane [29], N,N-diisopropylformamide [29], MTBE-d16 [44] 

Phenols 4-chlorophenol [11], n-pentadecane [59,61], 1,1,3,3-tetramethoxypropane [29], N,N-diisopropylformamide 
[29], bisphenol-d16 [79], [

13
C6]-pentachlorophenol [82], phenol-d5 [87], 2-chlorophenol-d4 [87], 2,4-

dimethylphenol-d3 [87], 4-chloro-3-methylphenol-d2 [87], 2,4-dichlorophenol-d3 [87], 2-nitrophenol-d4[87], 
2,4,6-trichlorophenol-d2 [87], 4-nitrophenol-d4 [87], 2,4-dinitrophenol-d3 [87], pentachlorophenol-

13
C6 [87], 

2-methyl-4,6-dinitrophenol-d2[87] 

Carboxylic acids 2-ethylbutyric acid [37,90,93], margaric acid [51], heneicosanoic acid [52], anthracene-d10 [53], 2-
chlorobenzoic acid [64-65], triphenylphosphate [85] 

 1191 

  1192 
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Table6Compilation of O-VOCs occurring in various types of wastewater. 1193 

Matrix Analytes Method of 
determination  

Concentration 
range 

Compounds occurring at highest 
concentration  

Ref. 

Sanitary 
wastewater 

phenols SPME-GC-FID 1210 – 3480 
µg/mL 

o-ethylphenol (2750 µg/mL), 2,3-
dimethylphenol (3480 µg/mL) 

[88] 

phenols SPME-GC-FID 1240 – 22900 
µg/mL 

o-ethylphenol (1240 µg/mL), p-ethylphenol 
(22900 µg/mL) 

[90] 

Municipal, animal 
farm and landfill 
wastewater 

carboxylic acids LLE-GC-MS 0.18 – 726 
µg/mL 

acetic acid (726 µg/mL), propionic acid 
(58.2 µg/mL) 

[50] 

Municipal 
wastewater 
 

MTBE DHS-GC-MS 3 – 25 µg/mL methyl tert-butyl ether (3 – 25 µg/mL) [44] 

acetone DHS-GC-FID 0.25 – 0.62 
µg/mL 

acetone (0.25 – 0.62 µg/mL) [43] 

phenols SDE-GCxGC-
ToF-MS 

820-12950 
µg/mL 

4-tert-octylphenol (10780 µg/mL), 4-tert-
nonylphenol (12950 µg/mL) 

[129] 

phenols SPE-GC-MS 37.6-555 µg/mL nonylphenol (555 µg/mL), octylphenol (182 
µg/mL), bisphenol A (38.8 µg/mL) 

[80] 

phenols SPE-GC-MS 43 – 433 µg/L phenol (433 µg/L), 2,4-dimethylphenol 
(240 µg/L) 

[77] 

phenols SPE-GC-MS 115 -235 µg/L phenol (235 µg/L) [76] 

phenols SPE-GC-MS 0.1 – 348 µg/L 2-sec-butylphenol (348 µg/L), phenol (34.6 
µg/L), m-cresol (31.0 µg/L) 

[83] 

phenols MSPE-GC-MS 7.94 – 8.15  
µg/L 

phenol (8.15 µg/L), bisphenol A (7.94 µg/L) [86] 

phenols, 
aldehydes 

HS-SPME- GC-
MS 

0.5-151 µg/L phenol (39.3 µg/L), m-cresol (151 µg/L) [97] 

carboxylic acids HS-SPME-GC-
MS 

0.065-102 
µg/mL 

acetic acid (102 µg/mL), propionic acid 
(19.6 µg/mL) 
 

[98] 

carboxylic acids HS-SPME-GC-
NCI/MS (NH3) 

45-19611 µg/L acetic acid (19611 µg/L), propionic acid 
(7812 µg/L), butyric acid (1338 µg/L) 

[90] 

phenols HS-SPME-GC-
MS 

0.073-2.1 
ng/mL 

p-cresol (2.1 ng/mL), 3,4-dimethylphenol 
(2.1 ng/mL) 

[94] 

phenols DI-SDME-GC-MS - o-cresol, 2,3,5-trimethylphenol [59] 

phenols LLE-GC-MS 0.046-0.245 
µg/L 

bisphenol A (0.245 µg/L), bisphenol F 
(0.057 µg/L) 

[53] 

phenols SPE-GC-MS/MS 0.04 – 0.16 µg/L 4-tert-octylphenol (0.16 µg/L), 4-n-
nonylphenol (0.08 µg/L), 2,4-
dimethylphenol (0.06 µg/L) 

[82] 

MTBE SPE-GC-MS 25 -300 ng/L methyl tert-butyl ether (25 -300 ng/L) [158] 

Paper mill process 
water 

carboxylic acids LLE-GC-MS 49 – 275 µg/mL palmitic acid (49 – 275 µg/mL) [51] 

Paper-recycling 
process water 

carboxylic acids LLE-GC-MS 0.8 – 4.2 µg/mL palmitic acid (4.2 µg/mL), stearic acid (3.4 
µg/mL) 

[52] 

Wastewater from 
antibiotics 
manufacturing 
factory 

carboxylic acids LPME-GC-MS 35.2-95.8 
µg/mL 

palmitic acid (80 µg/mL), stearic acid (95.8 
µg/mL) 

[56] 

Effluent from 
textile industry 

phenols, 
benzoic acids, 
ketonesand 
esters 

HT-GC-MS 0.01 – 1.23 µg/L 2,6-di-tert-butyl-4- ethylphenol (1.23 µg/L) 
butyltetramethylphenol (0.34 µg/L) 

[156] 

Tannery effluent phenols, 
carboxylic acids 

SPE-GC-MS - p-cresol, 4-methylbenzoic acid  [157] 

phenols, HT-GC-MS 0.01 – 0.03 µg/L 2,6-di-tert-butyl-4- methoxymethylphenol [156] 
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carboxylic acids, 
alcohols, 
ketones 

(0.03 µg/L), tetra-ethoxynonylphenol (0.03 
µg/L) 

Coking plant 
wastewater 

phenols HS-SPME-GC-
FID 

4.4 – 131.8 
µg/mL 

phenol (131.8 µg/mL), p-cresol (51.2 
µg/mL) 

[104] 

phenols LPME-GC-FID 1.51-213.23 
mg/L 

phenol (213.23 mg/L), o-cresol (23.05 
mg/L), m-cresol (59.11 mg/L) 

[55] 

phenols DLLME-GC-MS 0.4 – 13.4 
µg/mL 

phenol (13.4 µg/mL), m-cresol (9.4 µg/mL)  [67] 

Petrochemical 
wastewater 

aldehydes, 
ketones, 
alcohols, 
phenols 

DHS-GC-MS 0.5 – 21.55 
µg/mL 

2-butenal (21.55 µg/mL), phenol (19.9 
µg/mL) 

[45] 

alcohols, 
ketones, 
phenols 

SPE-GC-MS - phenol, 2-ethylhexyl alcohol, 
acetophenone 

[78] 

alcohols, 
ketones, 
phenols, esters 

HT-GC-MS 0.01 – 0.05 
ng/mL 

trimethylbenzoic acid (0.05 µg/mL), 2,5-
dimethylbenzoic acid (0.03 µg/mL) 

[156] 

Effluents from 
production of 
petroleum 
bitumens 

phenols, 
ketones, 
alcohols, 
aldehydes, 
esters, ethers 

DHS-GC-MS 0.18 – 39.16 
µg/mL 

furfural (39.16 µg/mL), cyklohexanol (19.28 
µg/mL), 2-pentanone (18.7 µg/mL), 2-
butanol (14.75 µg/mL) 

[12] 

phenols, 
ketones, 
alcohols, 
aldehydes, 
esters, ethers 

DLLME-GC-MS 0.37 – 27.43 
µg/mL 

phenol (27.43 µg/mL), m-cresol (13.7 
µg/mL), 1-propanol (24.88 µg/mL) 

[11] 

carboxylic acids DLLME-GC-MS 0.13 – 15.06 
µg/mL 

heptanoic acid (15.06 µg/mL), benzoic acid 
(7.52 µg/mL) 

[64] 

carboxylic acids USA-DLLME-GC-
MS 

0.33 to 43.3 
µg/mL 

benzoic acid (43.3µg/mL), octanoic acid 
(30.1 µg/mL), nonanoic acid (21.9 µg/mL) 

[65] 

Effluents from 
crude oil refinery 

MTBE HS-SPME/GC-
MS 

34.3 -1877.5 
ng/mL 

methyl tert-butyl ether (34.3 – 1877.5 
µg/mL) 

[155] 

acrylates DLLME-GC-FID 54.08 -68.42 
µg/mL 

methyl acrylate (68.42 µg/mL), methyl 
methacrylate (64.72 µg/mL) 

[68] 
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Figures 1203 

 1204 

Figure 1 Number of papers published during 2004-2019 on the presence of oxygenated organic 1205 

compoundsin effluents - based on Scopus database(searched keywords: aldehydes, ketones, ethers, 1206 

esters, alcohols, phenols, carboxylic acids, wastewater or effluent;  accessed on 04.01.2019). 1207 

 1208 

 1209 
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 1211 

Figure 2 Number of papers published during 2004 – 2017 dealing with the presence of oxygenated 1212 
organic compounds in effluents - based on Scopus database (searched keywords: aldehydes, ketones, 1213 
ethers, esters, alcohols, phenols, carboxylic acids, wastewater or effluent;  accessed on 04.01.2019). 1214 
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 1215 

Figure 3 Schematic diagram of the  procedure for the determination of volatile oxygenated organic 1216 
compounds in wastewater samples using  gas chromatography (D – detectors used for the determination 1217 
of O-VOCs after derivatization). 1218 
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 1220 

Figure 4 The advantages and disadvantages of universal and selective detectors for the determination of 1221 

O-VOCs in wastewater samples. 1222 

 1223 
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