# Metoda określania stopnia zapowietrzenia cieczy w pompie wyporowej o zmiennej wydajności

Zygmunt Paszota

#### 1. Wprowadzenie

W pracach [1–4] autor dokonał oceny wpływu ściśliwości cieczy roboczej na obraz strat objętościowych i mechanicznych w wysokociśnieniowej pompie wyporowej o zmiennej wydajności. W rozważaniach oparł się na założeniach przyjętych w opracowanych przez siebie modelach teoretycznych i matematycznych momentu strat mechanicznych w pompie stosowanej w napędzie hydrostatycznym [5–7]. W modelach tych założono, że przyrost  $\Delta M_{Pm|\Delta p_{Pi}|=q_{Pgy}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy jest proporcjonalny do momentu  $M_{Pi}$  indykowanego w komorach roboczych pompy:

$$\Delta M_{Pm|\Delta p_{Pi}} \sim M_{Pi}$$

W pracach [1–4] autor wprowadził także pojęcie współczynnika  $k_{lc|p_n}$  ściśliwości cieczy roboczej, który określa stopień zmniejszenia, przy przyroście  $\Delta p_{P_i} = p_n$  ciśnienia w komorach roboczych równym ciśnieniu nominalnemu  $p_n$  pracy pompy, jako efekt ściśliwości cieczy, aktywnej objętości cieczy roboczej wypieranej przez pompę w trakcie jednego obrotu wału w porównaniu z aktywną objętością równą teoretycznej objętości roboczej  $q_{P_t}$  lub geometrycznej objętości roboczej  $q_{Pgv}$ w trakcie jednego obrotu wału, określonymi przy przyroście  $\Delta p_{P_i}$  ciśnienia w komorach roboczych równym zero –  $\Delta p_{P_i} = 0$ :

$$\begin{split} k_{lc|p_{n}} &= \frac{q_{Pt} - q_{Pt|\Delta p_{Pi} = p_{n}}}{q_{Pt}} \\ i \\ k_{lc|p_{n}} &= \frac{q_{Pgv} - q_{Pgv|\Delta p_{Pi} = p_{n}}}{q_{Pgv}} = \frac{b_{P} q_{Pt} - b_{P} q_{Pt|\Delta p_{Pi} = p_{n}}}{b_{P} q_{Pt}} \end{split}$$

Autor stwierdził także, że jest możliwa ocena wpływu współczynnika  $k_{lc|p_n}$ ściśliwości cieczy na ocenę wielkości przyrostu  $\Delta M_{p_m|\Delta p_{pl}=p_n, q_{Pgv}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy i określenie wpływu współczynnika  $k_{lc|p_n}$  na ocenę wartości współczynnika strat objętościowych w komorach roboczych pompy, będących rezultatem przecieków cieczy w komorach.

Poszukując wartości współczynnika  $k_{lc|p_n}$ ściśliwości cieczy, która, przy przyroście  $\Delta p_{P_i}$  ciśnienia w komorach roboczych równym ciśnieniu nominalnemu  $p_n$  pracy pompy, da przyrost  $\Delta M_{Pm|\Delta p_{P_i}=p_n, q_{Pgv}}$  momentu strat mechanicznych proporcjonalny do  $q_{Pgv}$ , czyli do momentu indykowanego  $M_{P_i|\Delta p_{P_i}=p_n, q_{Pgv}}$ , autor określił, w badanej przez Jana Koralewskiego w ramach pracy doktorskiej [8] pompie HYDROMATIK A7V.58.1.R.P.F.00,

**Streszczenie:** Autor stwierdza, że istnieje możliwość określania konkretnej wartości współczynnika  $\varepsilon$  zapowietrzenia cieczy roboczej w trakcie pracy pompy poprzez znalezienie takiej wartości  $\varepsilon$ , przy której przyrost  $\Delta M_{Pm|\Delta p_{p|}=\rho_{n}, q_{pgv}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy jest proporcjonalny do momentu  $M_{Pi|\Delta p_{p|}=\rho_{n}, q_{pgv}}$  indykowanego w komorach roboczych pompy, określonego przy ustalonej wielkości  $\Delta p_{p_{i}} = cte$  przyrostu ciśnienia w komorach. Ustalona wielkość  $\Delta p_{p_{i}}$ indykowanego przyrostu ciśnienia, przyjęta w trakcie poszukiwania współczynnika  $\varepsilon$  zapowietrzenia cieczy, jest równa nominalnemu ciśnieniu pracy pompy ( $\Delta p_{p_{i}} = cte = p_{p}$ ).

Przyrost  $\Delta M_{Pm|\Delta p_{Pi}=p_n, q_{Pgv}}$  momentu strat mechanicznych, przy stałej wielkości  $\Delta p_{Pi}$  ( $\Delta p_{Pi} = cte$ ) jest proporcjonalny do geometrycznej objętości roboczej  $q_{Pgv}$  pompy, w związku z tym: tylko przy uwzględnieniu współczynnika  $\varepsilon$  zapowietrzenia cieczy przetłaczanej przez pompę uzyskuje się w wyniku badań zależność  $\Delta M_{Pm|\Delta p_{Pi}=p_n, q_{Pgv}} \sim q_{Pgv}$ .

Zaproponowana przez autora metoda określenia współczynnika ɛ zapowietrzenia cieczy roboczej w pompie jest przedstawiona w niniejszym artykule (oraz w artykule [11]), a po raz pierwszy praktycznie zastosowana w ramach prowadzonych przez Jana Koralewskiego badań wpływu lepkości i ściśliwości zapowietrzonego oleju hydraulicznego na wyznaczane straty objętościowe i mechaniczne pompy HYDROMATIK A7V.58.1.R.P.F.00 [8, 9].

Słowa kluczowe: napęd hydrostatyczny, pompa wyporowa o zmiennej wydajności, zapowietrzenie oleju, metoda określania stopnia zapowietrzenia cieczy.

orientacyjną wartość współczynnika ściśliwości oleju występującej w trakcie badań równą  $k_{lc|32 Mpa} = 0,030$ .

Biorąc pod uwagę ściśliwość cieczy roboczej ocenioną współczynnikiem  $k_{lc|32 Mpa} = 0,030$ , autor określił orientacyjne wartości nowych współczynników strat objętościowych i strat mechanicznych w badanej pompie.

Autor stwierdza, że istnieje możliwość określenia konkretnej wartości współczynnika ε zapowietrzenia cieczy występującego w trakcie pracy pompy poprzez znalezienie takiej wartości ε, przy założeniu której przyrost  $\Delta M_{Pm|\Delta p_{Pi}=p_n, q_{Pgv}}$  momentu strat mechanicznych jest proporcjonalny do momentu indykowanego  $M_{P_i|\Delta p_{Pi}=p_n, q_{Pgv}}$  określonego przy ustalonej wielkości  $\Delta p_{Pi} = cte$  przyrostu ciśnienia w komorach roboczych pompy. Ustalona wielkość  $\Delta p_{Pi}$  przyjęta w poszukiwaniu wartości ε współczynnika zapowietrzenia cieczy jest równa ciśnieniu nominalnemu  $p_n$  pracy pompy ( $\Delta p_{Pi} = cte = p_n$ ). Przyrost  $\Delta M_{Pm|\Delta p_{Pi}=p_n, q_{Pgv}}$  momentu strat mechanicznych, przy ustalonej wartości  $\Delta p_{Pi}$  ( $\Delta p_{Pi} = cte$ ) jest proporcjonalny do geometrycznej objętości roboczej  $q_{Pgv}$  pompy, a więc:

tylko przy uwzględnieniu współczynnika  $\varepsilon$  zapowietrzenia cieczy przetłaczanej przez pompę uzyskuje się w wyniku badań zależność  $\Delta M_{Pm|\Delta p_{pi}=P_{a}, q_{Pgv}} \sim q_{Pgv}$ .

badań zależność  $\Delta M_{p_m|\Delta p_{p_i}=p_n, q_{p_{gv}}} \sim q_{p_{gv}}$ . Zaproponowana przez autora metoda określania współczynnika  $\varepsilon$  zapowietrzenia cieczy roboczej w pompie jest przedstawiona w niniejszym artykule oraz w artykule [11], a po raz pierwszy praktycznie zastosowana w ramach prowadzonych przez Jana Koralewskiego badań wpływu lepkości i ściśliwości zapowietrzonego oleju hydraulicznego na wyznaczane straty objętościowe i mechaniczne pompy HYDROMATIK A7V.58.1.R.P.F.00 [8, 9].

## 2. Ściśliwość cieczy w pompie

Ściśliwość cieczy w określonej temperaturze jest oceniana zmianą jej masy właściwej (gęstości)  $\rho$  jako funkcji ciśnienia *p*. Aby uprościć obliczenia, wykres zmiany  $\rho = f(p)$  jest przedstawiony za pomocą przybliżonej zależności algebraicznej. Najczęściej stosowana jest aproksymacja liniowa:

$$\frac{\Delta \rho}{\rho} = \frac{\Delta p}{B} \tag{1}$$

Można powiedzieć, że zależność (1) definiuje moduł *B* sprężystości objętościowej cieczy w określonej temperaturze i przy określonym ciśnieniu.

Wartości liczbowe modułu *B* stosowanych olejów hydraulicznych są następujące [10]:

- w temperaturze normalnej (20°C), są bliskie B = 1500 MPa;
- B rośnie ze wzrostem ciśnienia (o około 1% przy 2 MPa wzrostu ciśnienia w zakresie do 20 MPa (a<sub>n</sub> = 0,005/1 MPa));
- B maleje ze wzrostem temperatury (o około 1% przy 2°C. wzrostu temperatury w zakresie do 100°C (a<sub>ν</sub> = -0,005/1°C)).

W komorach roboczych badanej pompy tłokowej [8, 9], w okresie ich połączenia z kanałem dopływowym, panowało nieznaczne nadciśnienie  $p_{Pli} \approx 0.05$  MPa (czyli ciśnienie absolutne  $p_{Plia} \approx 0.15$  MPa). Przyjmijmy, że wartość modułu sprężystości objętościowej oleju w komorach, przy temperaturze oleju  $v = 20^{\circ}$ C, jest równa:

$$B_{|p_{P1ia} \approx 0,15MPa; \vartheta = 20^{\circ}C} = 1500MPa$$
(2)

Zależność modułu *B* od przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach roboczych oraz od przyrostu  $\Delta v$  temperatury oleju można więc opisać wyrażeniem:

$$\mathbf{B} = \mathbf{B}_{|\mathbf{p}_{Plia} \approx 0,15 \text{MPa}; \vartheta = 20^{\circ} \text{C}} (1 + a_p \,\Delta \mathbf{p}_{Pi} + a_{\vartheta} \,\Delta \vartheta) \tag{3}$$

Moduł sprężystości objętościowej maleje bardzo szybko, gdy olej jest zapowietrzony, to znaczy, gdy współczynnik  $\varepsilon$  zapowietrzenia oleju jest większy od zera ( $\varepsilon > 0$ ).

Współczynnik  $\varepsilon$  zapowietrzenia oleju jest stosunkiem objętości  $V_a$  powietrza do objętości  $V_0 = V_o + V_a$  mieszaniny oleju o objętości  $V_o$  i powietrza o objętości  $V_a$  ( $\varepsilon = V_a/V_0 = V_a/(V_o + V_a)$ ). Współczynnik  $\varepsilon$  zapowietrzenia oleju jest określony przy ciśnieniu absolutnym  $p_{P_{1ia}}$  w komorach roboczych pompy w okresie ich połączenia z jej kanałem dopływowym.

Przyjmijmy więc, że objętość  $V_0$  zapowietrzonego oleju, przy początkowym ciśnieniu absolutnym  $p_{Plia}$  panującym w komorach roboczych pompy (rys. 6), zawiera objętość powietrza równą  $V_a = \varepsilon V_0$  i objętość oleju równą  $V_o = (1 - \varepsilon)V_0$ .

Przyrost  $\Delta p_{Pi}$  ciśnienia w komorach roboczych pompy powoduje zmniejszenie objętości mieszaniny oleju i powietrza o wielkość  $\Delta V$  równą (przy założeniu hipotezy ściskania powietrza  $pV_a = cte$ ):

$$\Delta V = \Delta V_{o} + \Delta V_{a} = \frac{V_{o}}{B} \Delta p_{Pi} + \frac{V_{a}}{p_{Plia} + \Delta p_{Pi}} \Delta p_{Pi} \qquad (4)$$

Jeśli współczynnik  $\varepsilon$  zapowietrzenia jest mały, co jest najczęstszym przypadkiem,  $V_o$  jest bliskie  $V_0$ . Wówczas można napisać:

$$\Delta \mathbf{V} = \mathbf{V}_0 \left( \frac{1}{\mathbf{B}} + \frac{\epsilon}{\mathbf{p}_{\text{Plia}} + \Delta \mathbf{p}_{\text{Pl}}} \right) \Delta \mathbf{p}_{\text{Pl}}$$
(5)

Tak więc, przy współczynniku ε zapowietrzenia oleju większym od zera (ε > 0), moduł *B* sprężystości objętościowej oleju musi być zastąpiony modułem *B*' zdefiniowanym zależnością:

$$\frac{1}{B} = \frac{1}{B} + \frac{\varepsilon}{p_{\text{Plia}} + \Delta p_{\text{Pl}}}$$
(6)

lub, w warunkach zmiany ciśnienia i temperatury zapowietrzonego oleju, zależnością:

$$\frac{1}{B'} = \frac{1}{B_{|p_{Plia}\approx 0,15MPa, \vartheta=20^{\circ}C} \left(1 + a_{p}\Delta p_{Pi} + a_{\vartheta}\Delta \vartheta\right)} + \frac{\varepsilon}{p_{Plia} + \Delta p_{Pi}}$$
(7)

Na rys. 1 przedstawiono moduł *B* sprężystości objętościowej niezapowietrzonego oleju ( $\varepsilon = 0$ ) oraz moduł *B*' zapowietrzonego oleju ( $\varepsilon > 0$ ) jako zależności od indykowanego przyrostu  $\Delta p_{P_i}$  ciśnienia w komorach roboczych pompy, przy granicznych wartościach  $\upsilon = 20^{\circ}$ C i  $\upsilon = 68^{\circ}$ C zakresu temperatury oleju hydraulicznego przyjętych w trakcie badań [8, 9].

## Pompa wyporowa o zmiennej geometrycznej objętości roboczej $q_{Pgv}$ na obrót wału badana jest przy różnych ustalonych wielkościach $q_{Pgv}$ .

Zmienna (nastawiana w trakcie badań) geometryczna objętość robocza  $q_{Pgv}$  komór roboczych, uzyskiwana w trakcie jednego obrotu wału, wynika z różnicy objętości maksymalnej komór (do której powiększana jest objętość komór w okresie ich połączenia z kanałem dopływowym pompy) i objętości minimalnej komór (do której zmniejszana jest objętość komór w okresie ich połączenia z kanałem odpływowym (tłocznym) pompy). Początkowa objętość  $V_0$  oleju (rys. 6), która ulega ściskaniu w wyniku przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach pompy, odpowiadająca

# napędy i sterowanie



nastawie  $q_{Pgv}$  zmiennej geometrycznej objętości roboczej, jest w pompie o zmiennej wydajności równa:

$$V_0 = 0.5 q_{\rm Pt} + 0.5 q_{\rm Pgv} \tag{8}$$

Gdy zmienna (nastawiana) geometryczna objętość robocza  $q_{Pgv}$  osiąga wielkość maksymalną równą teoretycznej objętości roboczej  $q_{Pt}$  pompy ( $q_{Pgv} = q_{Pt}$ ), objętość  $V_0$  oleju ulegająca ściskaniu osiąga wartość:

$$V_0 = 0.5 q_{Pt} + 0.5 q_{Pt} = q_{Pt}$$
(9)

Zmiana  $\Delta V$  objętości cieczy, wynikająca ze ściśliwości cieczy na skutek przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach pompy (przedstawiona na rys. 6 uproszczonej pompy wyporowej), jest w rzeczywistej pompie równa stratom  $q_{Pvc}$  wydajności pompy w trakcie jednego obrotu jej wału:

$$\Delta V = q_{Pvc} \tag{10}$$

Straty  $q_{Pvc}$  wydajności pompy w trakcie jednego obrotu jej wału (rys. 2), wynikające ze ściśliwości niezapowietrzonego (lub zapowietrzonego) oleju, występujące przy nastawie  $q_{Pgv}$ jej geometrycznej zmiennej objętości roboczej, określone są (w nawiązaniu do (5) i (6)) wzorem:

$$q_{Pvc} = \frac{(0.5q_{Pt} + 0.5q_{Pt})\Delta p_{Pi}}{B'}$$
(11)

zaś przy  $q_{Pgv} = q_{Pt}$  wzorem:

$$q_{Pvc} = \frac{q_{Pt} \Delta p_{Pi}}{B'}$$
(12)

a po zastąpieniu  $\frac{1}{B'}$  wyrażeniem (7), wzorem:

$$q_{Pvc} = (0,5q_{Pt} + 0,5q_{Pgv})$$

$$\frac{1}{B_{|p_{Plia} \approx 0,15MPa, \theta = 20^{\circ}C} (l + a_{p}\Delta p_{Pi} + a_{\theta}\Delta \theta)} + (13)$$

$$+ \frac{\varepsilon}{p_{Plia} + \Delta p_{Pi}} \Delta p_{Pi}$$

zaś przy  $q_{Pgv} = q_{Pt}$  wzorem:



szające objętość czynną cieczy wypieraną przez pompę w porównaniu z teoretyczną objętością roboczą  $q_{Pt}$  ( $b_P = 1$ ) lub geometryczną objętością roboczą  $q_{Pyv}$  ( $0 \le b_P \le 1$ ) (pompa typu HYDROMATIK A7V.DR.1.R.P.F.00) [8, 9]

$$q_{Pvc} = q_{Pt} \left[ \frac{1}{B_{|p_{Plia}\approx 0,15MPa, \vartheta = 20^{\circ}C} \left( 1 + a_{p}\Delta p_{Pi} + a_{\vartheta}\Delta \vartheta \right)} + \frac{\varepsilon}{p_{Plia} + \Delta p_{Pi}} \right] \Delta p_{Pi}$$
(14)

Na rysunku 2 przedstawiono przykładowo (przy założonym współczynniku  $\varepsilon = 0,0135$  zapowietrzenia oleju) wyniki obliczeń strat  $q_{Pvc} = f(\Delta p_{Pi})$  wydajności badanej pompy w trakcie jednego obrotu wału z uwzględnieniem wzoru (13) dla przypadków nastawy  $q_{Pgv}$  geometrycznej zmiennej objętości roboczej oraz z uwzględnieniem wzoru (14) dla przypadku maksymalnej nastawy  $q_{Pgv} = q_{Pt}$ , czyli przypadku teoretycznej objętości roboczej pompy.

Zmiana  $q_{Pvc}$  jako zależność od indykowanego przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach roboczych, przedstawiona na rysunku 2, uwzględnia więc wpływ zmieniających się objętości  $V_0$  (rys. 6) cieczy w komorach roboczych podlegających ściskaniu, będą-cych rezultatem zasady pracy pompy wyporowej o zmiennej wydajności  $q_{Pgv}$  (o zmiennym współczynniku  $b_p$ ) na obrót wału.

Straty  $q_{Pvc}$  wydajności pompy w trakcie jednego obrotu wału, wynikające ze ściśliwości cieczy, zmniejszają objętość czynną

cieczy wypieraną przez pompę w porównaniu z teoretyczną objętością roboczą  $q_{Pt}$  lub geometryczną zmienną objętością roboczą  $q_{Pgv}$  (określonymi przy  $\Delta p_{Pi} = 0$ ). Fakt ten należy uwzględnić zarówno przy ocenie natężenia  $q_{Pv} = Q_{Pv}/n_P$  strat objętościowych w komorach roboczych, jak i przy ocenie przyrostu  $\Delta M_{Pm|\Delta p_{Pi}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał", strat wynikających z przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach roboczych pompy przy określonych wielkościach geometrycznej objętości roboczej  $q_{Pgv}$  komór.

W rozważaniach wprowadzono pojęcie teoretycznej czynnej objętości roboczej i pojęcie geometrycznej czynnej objętości roboczej jako objętości, którymi dysponuje pompa w komorach roboczych przy przyroście  $\Delta p_{Pi}$  ciśnienia w komorach równym ciśnieniu nominalnemu  $p_n$  pracy układu, w którym pompa pracuje. Czynne objętości robocze  $q_{Pt|\Delta p_{Pi}=p_n}$  i  $q_{Pgv|\Delta p_{Pi}=p_n}$  można określić z równań:

$$q_{Pt|\Delta p_{Pi}=p_n} = q_{Pt} - q_{Pvc|\Delta p_{Pi}=p_n}$$
(15)

$$q_{Pgv|\Delta p_{pi}=p_n} = q_{Pgv} - q_{Pvc|\Delta p_{pi}=p_n}$$
(16)

Wprowadzono także pojęcie współczynnika  $k_{lc|p_n}$ ściśliwości cieczy roboczej w pompie.

Współczynnik  $k_{lc|p_n}$  ściśliwości cieczy roboczej w pompie określa stopień zmniejszenia, jako efektu ściśliwości cieczy (bez uwzględnienia wpływu przecieków wynikających z nieszczelności komór) i zasady pracy pompy, objętości czynnej cieczy wypieranej przez pompę w trakcie jednego obrotu wału, przy przyroście  $\Delta p_{Pi}$  ciśnienia w komorach roboczych pompy równym ciśnieniu nominalnemu  $p_n$  pracy układu, w którym pompa pracuje, w porównaniu z objętością wypieraną przez pompę przy  $\Delta p_{Pi} = 0$ . Współczynnik  $k_{lc|p_n}$  jest zdefiniowany wzorami:

$$k_{lc|p_{n}} = \frac{q_{Pt} - q_{Pt|\Delta p_{Pi} = p_{n}}}{q_{Pt}} = \frac{q_{Pvc|\Delta p_{Pi} = p_{n}}}{q_{Pt}}$$
(17)

$$\mathbf{k}_{\mathrm{lc}|\mathbf{p}_{\mathrm{n}}} = \frac{\mathbf{q}_{\mathrm{Pgv}} - \mathbf{q}_{\mathrm{Pgv}|\Delta \mathbf{p}_{\mathrm{p}_{\mathrm{i}}} = \mathbf{p}_{\mathrm{n}}}}{\mathbf{q}_{\mathrm{Pgv}}} = \frac{\mathbf{q}_{\mathrm{Pvc}|\Delta \mathbf{p}_{\mathrm{p}_{\mathrm{i}}} = \mathbf{p}_{\mathrm{n}}}}{\mathbf{q}_{\mathrm{Pgv}}} \tag{18}$$

Znajomość współczynnika  $k_{lc|p_n}$ ściśliwości cieczy w pompie umożliwia liczbową ocenę podziału strat objętościowych w pompie na straty wynikające z przecieków cieczy w komorach roboczych i na straty wynikające ze ściśliwości cieczy.

W pompie o zmiennej wydajności na obrót wału, pracującej przy nastawie  $q_{Pgv}$  geometrycznej zmiennej objętości roboczej (określonej przy  $\Delta p_{Pi} = 0$ ), współczynnik  $k_{lc|p_n}$  opisuje (w nawiązaniu do (13) i (18)) wzór:

$$k_{1c|p_{n}} = \frac{q_{Pvc|\Delta p_{Pi} = p_{n}}}{q_{Pgv}} = \frac{0.5q_{Pt} + 0.5q_{Pgv}}{q_{Pgv}}$$
(19)
$$\left[\frac{1}{B_{|p_{Plin} \approx 0.15MPa, \theta = 20^{\circ}C} \left(l + a_{p}p_{n} + a_{\theta}\Delta\theta\right)} + \frac{\varepsilon}{p_{Plia} + p_{n}}\right]p_{n}$$

zaś przy  $q_{Pgv} = q_{Pt}$  (w nawiązaniu do (14) i (17)) wzór:

$$k_{1c|p_{n}} = \frac{q_{Pvc|\Delta p_{p_{i}} = p_{n}}}{q_{Pt}} =$$

$$(20)$$

$$\frac{1}{p_{Pt}} + \frac{\varepsilon}{p_{Pt}} =$$

$$= \left\lfloor \frac{1}{B_{|p_{Plia} \approx 0,15MPa, \vartheta = 20^{\circ}C} \left(1 + a_{p}p_{n} + a_{\vartheta} \Delta \vartheta\right)} + \frac{\varepsilon}{p_{Plia} + p_{n}} \right\rfloor p_{n}$$

A więc w pompie wyporowej pracującej przy teoretycznej objętości roboczej  $q_{Pt}$  na obrót wału współczynnik  $k_{lc|p_n}$ ściśliwości cieczy roboczej w pompie (wzór (20)) wynika z modułu *B* sprężystości objętościowej oleju, ze współczynnika ε zapowietrzenia oleju, a także z temperatury  $\vartheta$  cieczy (z przyrostu  $\Delta \vartheta$  w stosunku do temperatury odniesienia  $\vartheta = 20^{\circ}$ C) oraz z ciśnienia absolutnego  $p_{Plia}$  w komorach roboczych w okresie ich połączenia z kanałem dopływowym i z ciśnienia nominalnego  $p_n$  pracy układu, w którym pompa pracuje.

W tej samej pompie wyporowej, pracującej przy geometrycznej zmiennej objętości roboczej  $q_{Pgy}$  na obrót wału, wartość współczynnika  $k_{lc|p_n}$ ściśliwości cieczy roboczej w pompie (wzór (19)) rośnie w porównaniu z wartością  $k_{lc|p_n}$  w okresie pracy pompy przy teoretycznej objętości roboczej  $q_{Pt}$ . Jest to rezultatem wzrostu stosunku początkowej objętości cieczy ( $V_0$ na rys. 6), która ulega ściskaniu, czyli objętości ( $0,5q_{Pt} + 0,5q_{Pgv}$ ) (wzór (8)), do nastawianej objętości roboczej  $q_{Pgv}$ . Zmniejszenie nastawy  $q_{Pgv}$  powoduje więc w pompie wyporowej o zmiennej wydajności wzrost współczynnika  $k_{lc|p_n}$  (wzór (19)).

# 3. Znaczenie dokładności oceny $q_{Pt}$ i $q_{Pgv}$ dla dokładności oceny natężenia strat objętościowych i momentu strat mechanicznych w pompie

Istotne, szczególnie w ocenie charakterystyk pracy pompy wyporowej o zmiennej wydajności na obrót wału, jest dokładne określenie teoretycznej objętości roboczej  $q_{Pt}$  oraz geometrycznych objętości roboczych  $q_{Pgv}$  pompy. Objętości geometryczne  $q_{Pgv}$  zmieniają się w przedziale  $0 \le q_{Pgv} \le q_{Pt}$ , a odpowiadające im współczynniki  $b_p = q_{Pgv}/q_{Pt}$  zmiany wydajności pompy zmieniają się w przedziale  $0 \le b_p \le 1$ . Dokładna ocena wartości współczynnika  $b_p = q_{Pgv}/q_{Pt}$  zależy więc od dokładności oceny  $q_{Pgv}$  i  $q_{Pt}$ .

Teoretyczna objętość robocza  $q_{Pt}$  i geometryczne objętości robocze  $q_{Pgv}$  pompy są oceniane przy indykowanym przyroście  $\Delta p_{Pi}$  ciśnienia w komorach roboczych równym zeru ( $\Delta p_{Pi} = 0$ ); ich wielkości są określane drogą aproksymacji, w punkcie  $\Delta p_{Pi} = 0$ , linii  $q_P = Q_P/n_P = f(\Delta p_Pi)$  opisującej, przy ustalonej nastawie pompy (ale nieznanej dokładnie wartości współczynnika  $b_P$ ), objętość  $q_P$  wypieraną w trakcie jednego obrotu wału jako zależność od wielkości  $\Delta p_{Pi}$ . Linia  $q_P = f(\Delta p_Pi)$  wyznaczona jest punktami pomiarowymi uzyskanymi w trakcie badań.

Rys. 3 przedstawia przykład zależności  $q_P = f(\Delta p_{P_i})$  wydajności  $q_P$  na obrót wału badanej pompy osiowej tłokowej od indykowanego przyrostu  $\Delta p_{P_i}$  ciśnienia w komorach roboczych, przy współczynniku  $b_P = 1$  zmiany wydajności pompy na obrót wału. Jest to więc przykład poszukiwania teoretycznej objętości roboczej  $q_{P_i}$  na obrót wału pompy oraz oceny podziału natężenia  $q_{P_v}$  strat objętościowych na obrót wału na straty objętościowe  $q_{Pvl}$  wynikające z przecieków oleju w komorach roboczych i straty objętościowe  $q_{Pvvc}$  wynikające ze ściśliwości niezapowietrzonego (lub zapowietrzonego) oleju.

Określone za pomocą wzoru (13) straty  $q_{Pvc} = f(\Delta p_{Pi})$  w trakcie jednego obrotu wału, wynikające ze ściśliwości cieczy, występujące przy nastawie  $q_{Pgv}$  zmiennej geometrycznej objętości roboczej pompy (lub wg wzoru (14) przy nastawie  $q_{Pt}$ teoretycznej objętości roboczej pompy) dodawane są do wydajności  $q_P = f(\Delta p_{Pi})$  na obrót wału określonej linią przebiegającą przez punkty pomiarowe wynikające z badań. W wyniku dodania  $q_{Pvc} = f(\Delta p_{Pi})$  do  $q_P = f(\Delta p_{Pi})$  otrzymujemy przebieg  $q_P$  bez ściśliwości  $= f(\Delta p_{Pi})$  wydajności pompy jako różnicę między  $q_{Pgv}$  (bądź  $q_{Pi}$ ) a stratami objętościowymi  $q_{Pvl}$  wynikającymi z przecieków oleju (niezależnymi od ściśliwości cieczy):

$$(q_{P bez \, \acute{s}ci\acute{s}liwo\acute{s}ci} = q_{Pvc} + q_{P}) = f(\Delta p_{Pi}) \tag{21}$$

$$(q_{P bez \text{ ściśliwości}} = q_{Pgv} (bądź q_{Pt}) - q_{Pvl}) = f(\Delta p_{Pi})$$
(22)

Aproksymacja linii  $q_{P \text{ bez ściśliwości}} = f(\Delta p_{P_i}) \text{ przy } \Delta p_{P_i} = 0 \text{ umoż-liwia określenie wielkości } q_{P_{gy}} (\text{lub } q_{P_i}):$ 



HYDROMATIK A7V.DR.1.R.P.F.00) [8, 9]

$$q_{P bez \text{ scisliwości}|\Delta p_{Pi}=0} = q_{Pgv} (lub q_{Pt})$$
(23)

Jak pokazuje rysunek 3, teoretyczne objętości robocze  $q_{Pt}$  badanej pompy, określone drogą aproksymacji, w punkcie  $\Delta p_{Pi} = 0$ , linii  $q_P = f(\Delta p_{Pi})$  wynikającej z badań i będącej rezultatem również ściśliwości cieczy, jak i linii  $(q_P \text{ bez ściśliwości} = q_{Pvc} + q_P) =$  $= f(\Delta p_{Pi})$  uwzględniającej ściśliwość niezapowietrzonego (przy  $\varepsilon = 0$ ) oleju, uzyskują praktycznie tę samą wielkość  $q_{Pt} = 58,9 \text{ cm}^3/\text{obr.}$  Aproksymacja linii  $(q_P \text{ bez ściśliwości} = q_{Pvc} + q_P) =$  $= f(\Delta p_{Pi})$  w punkcie  $\Delta p_{Pi} = 0$ , dokonana z uwzględnieniem ściśliwości zapowietrzonego oleju, pokazuje przyrost wielkości  $q_{Pt}$ praktycznie proporcjonalny do współczynnika  $\varepsilon$  zapowietrzenia oleju. Przedstawiono to wyraźniej na rysunku 4. Przykładowo, teoretyczna objętość robocza, przy założeniu współczynnika  $\varepsilon = 0,0135$ , uzyskuje wielkość  $q_{Pt} = 59,57 \text{ cm}^3/\text{obr.}$ 

Na rysunku 5 przedstawiono podział strat objętościowych  $q_{Pv} = f(\Delta p_{Pi})$  na straty  $q_{Pvc} = f(\Delta p_{Pi})$  wynikające ze ściśliwości cieczy oraz straty  $q_{Pvl} = f(\Delta p_{Pi})$  wynikające z przecieków oleju przy różnych wartościach  $\varepsilon$  współczynnika zapowietrzenia cieczy w badanej pompie, przy teoretycznej objętości roboczej  $q_{Pt}$  na obrót wału. Widzimy niezmienione, przy różnych wartościach współczynnika  $\varepsilon$  zapowietrzenia, przebiegi zależności strat  $q_{Pvl} = f(\Delta p_{Pi})$  wynikających z przecieków oleju oraz zmie-

niające się przebiegi  $q_{Pvc} = f(\Delta p_{Pi})$  strat wynikających ze ściśliwości cieczy, a także przebiegi  $(q_{Pv} = q_{Pvl} + q_{Pvc}) = f(\Delta p_{Pi})$  strat objętościowych  $q_{Pv} = f(\Delta p_{Pi})$  w pompie jako sumy  $q_{Pvl} = f(\Delta p_{Pi})$ strat wynikających z przecieków i  $q_{Pvc} = f(\Delta p_{Pi})$  strat wynikających ze ściśliwości cieczy.

Przy starannym badaniu pompy tłoczącej ciecz roboczą niezapowietrzoną dokładność określenia teoretycznej objętości roboczej  $q_{Pt}$  i geometrycznej objętości roboczej  $q_{Pgv}$  jest rzędu jednej tysięcznej wielkości  $q_{Pt}$ . Wysoka jest wówczas również dokładność oceny wartości współczynnika  $b_P = q_{Pgv}/q_{Pt}$  zmiany wydajności pompy.

Dokładność oceny  $q_{P_l}$  i  $q_{Pgv}$  znacznie się pogarsza, gdy ciecz robocza jest zapowietrzona. Wynika to z faktu, że ciecz zapowietrzona znajdująca się w komorach roboczych, napełnianych w trakcie ich połączenia z niskociśnieniowym kanałem dopływowym, z racji dużej ściśliwości nierozpuszczonego w cieczy powietrza, zmniejsza swoją objętość po połączeniu komór roboczych z kanałem tłocznym, w którym może panować ciśnienie nawet niewiele większe od ciśnienia panującego w kanale dopływowym pompy.

Bez znajomości współczynnika  $\varepsilon$  zapowietrzenia oleju dopływającego do komory roboczej pompy nie jest więc możliwe dokładne określenie wielkości  $q_{Pt}$  i  $q_{Pev}$ .

# napędy i sterowanie



wału pompy wynikający z założenia współczynnika  $\varepsilon$  zapowietrzenia oleju przetłaczanego przez pompę; ocena  $q_{Pl}$  (rys. 3) wynika z aproksymacji, przy  $\Delta p_{Pl} = 0$ , zależności wydajności  $q_P$  pompy na obrót wału od indykowanego przyrostu  $\Delta p_{Pl}$  ciśnienia w komorach roboczych, z uwzględnieniem ściśliwości zapowietrzonego oleju (przy określonym współczynniku  $\varepsilon$  zapowietrzenia oleju) (pompa typu HYDROMATIK A7V.DR.1.R.P.F.00) [8, 9].



Rys. 5. Podział strat objętościowych  $q_{Pv} = f(\Delta p_{Pi})$  w pompie na straty  $q_{Pvc} = f(\Delta p_{Pi})$  wynikające ze ściśliwości oleju oraz straty  $q_{Pvl} = f(\Delta p_{Pi})$  wynikające z przecieków oleju przy różnych wartościach  $\varepsilon$  zapowietrzenia oleju i wartości v/v<sub>n</sub> = 1 współczynnika lepkości oleju w badanej pompie, przy teoretycznej objętości roboczej  $q_{Pl}$  pompy ( $b_P = 1$ ) (pompa typu HYDROMATIK A7V. DR.1.R.P.F.00) [8, 9]

Jednocześnie dokładna znajomość wielkości  $q_{Pt}$  i  $q_{Pgv}$  jest ważna w ocenie strat objętościowych i strat mechanicznych występujących w pompie.

Natężenie  $q_{Pv} = Q_{Pv}/n_P$  strat objętościowych  $Q_{Pv}$  w komorach roboczych pompy przeliczonych na jeden obrót jej wału oceniane jest jako różnica między wielkością  $q_{Pt}$  (lub  $q_{Pgv}$ ) a wielkością  $q_P$  określaną w trakcie badań przy zmieniających się wielkościach indykowanego przyrostu  $\Delta p_{Pt}$  ciśnienia w komorach.

Przyrost  $\Delta M_{Pm|\Delta p_{P_i}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy, w porównaniu z momentem  $M_{Pm|\Delta p_{P_i}=0}$  strat mechanicznych występujących w zespole, gdy pompa jest nieobciążona, jest skutkiem wzrostu sił tarcia w zespole konstrukcyjnym, będącego rezultatem oddziaływania na zespół momentu  $M_{P_i}$  indykowanego w komorach roboczych pompy i jest proporcjonalny do  $M_{P_i}$ .

Przyrost  $\Delta M_{Pm|\Delta p_{Pi}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" określany jest w trakcie badań jako różnica  $\Delta M_{Pm|\Delta p_{Pi}} = M_{Pm} - M_{Pm|\Delta p_{Pi}} = 0$  między momentem  $M_{Pm}$  strat w zespole a momentem  $M_{Pm|\Delta p_{Pi}} = 0$  strat w zespole pompy nieobciążonej.

Moment  $M_{Pm}$  strat określany jest z kolei jako różnica  $M_{Pm} = M_P - M_{Pi}$  między momentem  $M_P$  mierzonym bezpośrednio na wale a momentem  $M_{Pi}$  indykowanym w komorach ro-

boczych. Niezwykle ważna jest więc, dla określenia momentu  $M_{Pm}$  strat mechanicznych i przyrostu  $\Delta M_{Pm|\Delta p_{Pi}|}$ momentu strat mechanicznych, dokładność określenia momentu  $M_{Pi}$  indykowanego w komorach roboczych (opisanego wzorami (35) i (36)).

# 4. Praca tłoczenia przez pompę, w trakcie jednego obrotu wału, ściśliwej cieczy roboczej i moment indykowany w komorach roboczych

W celu przetłoczenia przez pompę, w trakcie jednego obrotu jej wału, ściśliwej cieczy roboczej, wymagana jest praca E, która jest sumą:

- pracy samego ściskania  $E_1$ ;
- pracy przetłoczenia przy stałym ciśnieniu E<sub>2</sub>.

Obliczmy teoretyczne wielkości (przy sprawnościach równych 1) obu tych prac. W tym celu pompa tłocząca ściśliwą ciecz jest przedstawiona w uproszczeniu jako tłok o przekroju S poruszający się w cylindrze, który przez 2 zawory:  $R_1$  i  $R_2$  (działające jako rozdzielacz) może komunikować się odpowiednio z: • przestrzenią wypełnioną cieczą o stałym ciśnieniu absolut-

- $p_{Plia}$ ;
- objętością C<sub>2</sub> wypełnioną cieczą o stałym ciśnieniu absolutnym p<sub>P2ia</sub> (rys. 6).



Tłok na rys. 6 wykonuje skok od położenia  $x_o$  do dna cylindra, a więc do położenia 0.

Położenie początkowe: tłok w punkcie  $x_0$ . Objętość  $V_0$  cylindra otwarta dla cieczy o ciśnieniu  $p_{P1ia}$ ;  $R_1$  otwarty,  $R_2$  zamknięty.

Pierwsza faza:  $R_1$  jest zamknięty, tłok przesunięty z  $x_0$  do  $x_1$  (objętość  $V_1$ ). Jest to punkt, w którym ciecz zamknięta w cylindrze osiąga ciśnienie  $p_{P2ia}$ . Praca wykonana przez tłok jest pracą ściskania:

$$E_{1} = -\int_{x_{0}}^{x_{1}} \left( p - p_{P1ia} \right) Sdx = -\int_{V_{0}}^{V_{1}} \left( p - p_{P1ia} \right) dV \qquad (24)$$

Praca  $E_1$  jest przedstawiona przez pole ABFA.

Druga faza:  $R_2$  jest otwarty, a tłok przesunięty od  $x_1$  do 0 a więc do dna cylindra. Ciecz zostaje wyparta do  $C_2$ . Praca wykonana przez tłok jest pracą wyparcia:

$$E_{2} = -\int_{x_{1}}^{0} (p_{P2ia} - p_{P1ia}) Sdx = -\int_{V_{1}}^{0} (p_{P2ia} - p_{P1ia}) dV =$$

$$= (p_{P2ia} - p_{P1ia}) V_{1}$$
(25)

Praca  $E_2$  jest przedstawiona przez pole BCDFB.

Trzecia faza:  $R_2$  jest zamknięty,  $R_1$  otwarty i wracamy do położenia początkowego. Ta operacja jest wykonywana bez wykonania pracy przez pompę.

Całkowita praca  $E = E_1 + E_2$  jest przedstawiona na rys. 6 przez pola zakreskowane.

Jedna z definicji modułu *B* sprężystości objętościowej cieczy jest następująca:

$$\frac{\Delta V}{V} = -\frac{\Delta p}{B} \quad \text{bad} \acute{z} \quad dV = -\frac{V}{B} dp \tag{26}$$

Zatem pracę ściskania przedstawia następujące wyrażenie:

$$E_{1} = -\int_{V_{0}}^{V_{1}} (p - p_{Plia}) dV = \int_{p_{Plia}}^{p_{P2ia}} (p - p_{Plia}) \frac{V}{B} dp =$$

$$= \frac{V}{B} \frac{(p - p_{Plia})^{2}}{2} \left| \begin{array}{c} p_{P2ia} \\ p_{Plia} \end{array} \right|^{2}$$
(27)

Zmiana objętości V (rys. 6) podczas pracy ściskania w stosunku do  $V_0$  jest mała. Krzywą ściskania można zastąpić aproksymacją liniową, a wielkość V w równaniu (27) wartością średnią  $V_m = (V_0 + V_1)/2$ :

$$E_{1} = \frac{V_{m}}{B} \frac{(p_{P2ia} - p_{Plia})^{2}}{2}$$
(28)

i

Zatem:

$$E_2 = V_1 (p_{P2ia} - p_{P1ia})$$
 (wg (25))

i

$$E = E_{1} + E_{2} = \left[V_{1} + \frac{V_{m}(p_{P2ia} - p_{Plia})}{2B}\right](p_{P2ia} - p_{Plia}) = \left[V_{1} + \frac{\Delta V}{2}\right](p_{P2ia} - p_{Plia})$$

$$E = V_{m}(p_{P2ia} - p_{Plia})$$

$$E = V_{m}(p_{P2ia} - p_{Plia})$$
(29)

Wzór (29) opisujący pracę E można zastąpić wyrażeniem:

$$\mathbf{E} = \left[\mathbf{V}_{0} - \frac{\Delta \mathbf{V}}{2}\right] \left(\mathbf{p}_{P2ia} - \mathbf{p}_{P1ia}\right) = \left[\mathbf{V}_{0} - \frac{\Delta \mathbf{V}}{2}\right] \Delta \mathbf{p}_{Pi} \qquad (30)$$

W rzeczywistej pompie wyporowej o zmiennej wydajności na obrót wału, przy nastawie  $q_{Pgv}$  jej geometrycznej zmiennej objętości roboczej, pracę *E* wykonaną przez pompę w komorach roboczych w trakcie jednego obrotu wału (po zastąpieniu we wzorze (30) początkowej objętości  $V_0$  komory objętością  $q_{Pgv}$ , zmiany  $\Delta V$  objętości cieczy wynikającej ze ściśliwości cieczy stratami  $q_{Pvc}$  wydajności pompy w trakcie jednego obrotu wału (wzór (8)), zaś strat  $q_{Pvc}$  wzorem (11)), opisują wyrażenia:

$$E = \left(q_{Pgv} - \frac{q_{Pvc}}{2}\right) \Delta p_{Pi}$$
(31)

$$E = \left\{ 1 - \frac{1}{2} \left[ \frac{1}{B_{|p_{Plia} \approx 0,15MPa, \vartheta = 20^{\circ}C} (1 + a_{p}\Delta p_{Pi} + a_{\vartheta} \Delta \vartheta)} + \frac{\epsilon}{p_{Plia} + \Delta p_{Pi}} \right] \Delta p_{Pi} \right\} q_{Pgv} \Delta p_{Pi}$$
(32)

zaś przy  $q_{Pgv} = q_{Pt}$  (w nawiązaniu do (12)), wyrażenia:

$$\mathbf{E} = \left(\mathbf{q}_{\mathbf{P}_{\mathrm{Pt}}} - \frac{\mathbf{q}_{\mathrm{Pvc}}}{2}\right) \Delta \mathbf{p}_{\mathrm{Pi}} \tag{33}$$

$$E = \left\{ 1 - \frac{1}{2} \left[ \frac{1}{B_{|p_{p_{1ia}} \approx 0,15MPa, \vartheta = 20^{\circ}C} (1 + a_{p}\Delta p_{Pi} + a_{\vartheta} \Delta \vartheta)} + \frac{\epsilon}{p_{P1ia} + \Delta p_{Pi}} \right] \Delta p_{Pi} \right\} q_{Pt} \Delta p_{Pi}$$
(34)

Należy nadmienić, że we wzorze (32), opisującym pracę *E* wykonaną przez pompę o nastawie  $q_{Pgv}$  w trakcie jednego obrotu wału, umieszczona jest wielkość  $q_{Pgv}$  określona za pomocą aproksymacji linii  $(q_P + q_{Pvc}) = f(\Delta p_{Pi})$  w punkcie  $\Delta p_{Pi} = 0$ . We wzorze (32) umieszczona jest jednocześnie wielkość  $q_{Pvc} = f(\Delta p_{Pi})$ , opisująca stratę wydajności w trakcie jednego obrotu wału wynikającą ze ściśliwości cieczy, uwzględniająca zmianę  $\Delta V$  (rys. 6) objętości cieczy wynikającą z zasady pracy pompy o zmiennej wydajności, czyli ściskaną objętość  $V_0$  (rys. 6) równą  $V_0 = 0.5 q_{Pi} + 0.5 q_{Pgv}$ .

Moment  $M_{p_i}$  indykowany w komorach roboczych pompy, przy pracy E w komorach wykonanej w trakcie jednego obrotu wału, opisuje więc, przy nastawie  $q_{p_{ov}}$ , wzór:

$$M_{Pi} = \frac{E}{2\Pi} =$$

$$= \left\{ 1 - \frac{1}{2} \left[ \frac{1}{B_{|p_{P1ia} \approx 0,15MPa, \vartheta = 20^{\circ}C} (1 + a_{p}\Delta p_{Pi} + a_{\vartheta}\Delta \vartheta)} + (35) + \frac{\epsilon}{p_{P1ia} + \Delta p_{Pi}} \right] \Delta p_{Pi} \left\} \frac{q_{Pgv} \Delta p_{Pi}}{2\Pi} \right\}$$

zaś przy  $q_{Pgv} = q_{Pt}$ , wzór:

$$M_{Pi} = \frac{E}{2\Pi} = \begin{cases} 1 - \frac{1}{2} \left[ \frac{1}{B_{|p_{PIia} \approx 0,15MPa, \vartheta = 20^{\circ}C} (1 + a_{p}\Delta p_{Pi} + a_{\vartheta}\Delta \vartheta)} + (36) + \frac{\varepsilon}{p_{PIia} + \Delta p_{Pi}} \right] \Delta p_{Pi} \\ \end{bmatrix} \frac{q_{Pt}\Delta p_{Pi}}{2\Pi}$$

# 5. Metoda określenia współczynnika $\boldsymbol{\epsilon}$ zapowietrzenia cieczy roboczej

Przy dotychczasowym braku możliwości określenia współczynnika  $\varepsilon$  zapowietrzenia cieczy roboczej dopływającej do pompy i przy nieuwzględnianiu, w związku z tym, ściśliwości cieczy, zarówno przy niewielkim przyroście  $\Delta p_{Pi}$  ciśnienia w komorach roboczych pompy, jak i w pełnym zakresie przy-

i



Rys. 7. Obraz zależności przyrostu momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy (pompa typu HYDROMATIK A7V.DR.1.R.P.F.00) od geometrycznej objętości roboczej  $q_{Pgv}$  (od  $b_P$ ), przy założonych wartościach modułu *B* sprężystości oleju oraz współczynnika  $\varepsilon$  zapowietrzenia oleju; przebieg odpowiadający  $\varepsilon$  = 0,0135 wynika z prostoliniowej zależności przedstawionej na rysunku 8 [8, 9]

rostu  $\Delta p_{Pi}$  – do poziomu ciśnienia nominalnego  $p_n$  pracy hydrostatycznego układu napędowego, obrazy strat objętościowych i strat mechanicznych w pompie, określone opisanymi wyżej metodami, są zdeformowane. Przykładowo, nie uwzględniając ściśliwości cieczy roboczej, cieczy w rzeczywistości zapowietrzonej, uzyskujemy obraz ujemnego przyrostu  $\Delta M_{Pm|\Delta p_{Pi}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy jako efektu wzrostu momentu  $M_{Pi}$  indykowanego w komorach roboczych w wyniku wzrostu wielkości  $q_{Pgy}$  (współczynnika  $b_p$ ) geometrycznej objętości roboczej, co jest rezultatem nielogicznym (rys. 7).

Metodą określenia współczynnika  $\varepsilon$  zapowietrzenia cieczy roboczej może być poszukiwanie wartości  $\varepsilon$ , przy uwzględnieniu której określono wielkości  $q_{Pgv}$  geometrycznych objętości roboczych powodujące przyrost  $\Delta M_{Pm|\Delta p_{Pi}}$  momentu strat mechanicznych w zespole "komory robocze – wał" pompy proporcjonalny do momentu  $M_{Pi}$  indykowanego w komorach roboczych (opisanego wzorem (37)), momentu  $M_{Pi}$  wynikającego z  $q_{Pgv}$  i z  $\varepsilon$ przy ustalonej wartości  $\Delta p_{Pi}$  indykowanego przyrostu ciśnienia w komorach. Przyjęto, że w trakcie poszukiwania  $q_{Pgv}$  i  $\varepsilon$ przy ustalonej wielkości indykowanego przyrostu  $\Delta p_{Pi}$  ciśnienia w komorach roboczych pompy równej ciśnieniu nominalnemu  $p_n$  pracy układu ( $\Delta p_{Pi} = p_n$ ).

Zakłada się więc, że przy ustalonej wielkości  $\Delta p_{Pi} = p_n$  indykowanego przyrostu ciśnienia w komorach roboczych pompy rosnącemu momentowi  $M_{Pi}$  indykowanemu w komorach (wzór (35)), opisanemu wówczas wzorem:

$$\mathbf{M}_{\mathbf{Pi}} = \left\{ 1 - \frac{1}{2} \left[ \frac{1}{\mathbf{B}_{|\mathbf{p}_{\mathbf{P1}ia} \approx 0, 15 \text{MPa}, \vartheta = 20^{\circ} \text{C}} \left(1 + \mathbf{a}_{\mathbf{p}} \mathbf{p}_{\mathbf{n}} + \mathbf{a}_{\vartheta} \Delta \vartheta\right)} + \frac{\varepsilon}{\mathbf{p}_{\mathbf{P1}ia} + \mathbf{p}_{\mathbf{n}}} \right] \mathbf{p}_{\mathbf{n}} \right\} \frac{\mathbf{q}_{\mathbf{Pgv}} \mathbf{p}_{\mathbf{n}}}{2 \Pi}$$

$$(37)$$

musi towarzyszyć, proporcjonalny do  $M_{Pi|\Delta p_{Pi} = p_n}$ , przyrost  $\Delta M_{Pm|\Delta p_{Pi} = p_n}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze – wał" pompy:

$$\Delta \mathbf{M}_{\mathbf{Pm}|\Delta \mathbf{P}_{\mathrm{Pi}}=\mathbf{P}_{\mathrm{n}};\mathbf{q}_{\mathrm{Pgv}}} \sim \mathbf{M}_{\mathrm{Pi}|\Delta \mathbf{P}_{\mathrm{Pi}}=\mathbf{P}_{\mathrm{n}};\mathbf{q}_{\mathrm{Pgv}}}$$
(38)

czyli

$$\Delta \mathbf{M}_{\mathbf{Pm}|\Delta\mathbf{p}_{\mathbf{Pi}}=\mathbf{p}_{\mathbf{p}};\mathbf{q}_{\mathbf{Pgv}}} \sim q_{\mathbf{Pgv}}(\mathbf{b}_{\mathbf{p}})$$
(39)

Przy ustalonych wartościach B,  $a_p$ ,  $a_\vartheta$ ,  $\vartheta$ ,  $p_{Plia}$  i  $p_n$ , zależności (38) i (39) są możliwe do uzyskania tylko przy jednej wartości  $\varepsilon$  współczynnika zapowietrzenia, przy założeniu której określone zostały wielkości  $q_{Pgv}$  i współczynniki  $b_p$  zmiany wydajności pompy.



Rysunek 7 przedstawia wyniki poszukiwania współczynnika ε zapowietrzenia oleju w trakcie badań pompy (pompa typu HYDROMATIK A7V.DR.1.R.P.F.00) [8, 9].

Przy założeniu cieczy nieściśliwej ( $B = \infty$ ) i niezapowietrzonej ( $\varepsilon = 0$ ), a więc przy założeniu współczynnika  $k_{lc|p_n} = 0$  ściśliwości cieczy, obraz zależności posiada postać prostej opadającej

od wartości  $\Delta M_{Pm} = 1,87$  Nm przy  $q_{Pgv} = 0$ 

do wartości  $\Delta M_{Pm} = 0,53$  Nm przy  $q_{Pgv} = q_{Pl}$ .

Przy założeniu cieczy ściśliwej i niezapowietrzonej ( $\varepsilon = 0$ ), obraz zależności  $\Delta M_{Pm|\Delta p_{Pl}=p_n; q_{Pgv}} = f(M_{Pl|\Delta p_{Pl}=p_n; q_{Pgv}})$  posiada postać prostej wznoszącej

od wartości  $\Delta M_{Pm} = 1,86$  Nm przy  $q_{Pgv} = 0$ 

do wartości  $\Delta M_{Pm} = 2,79$  Nm przy  $q_{Pgv} = q_{Pt}$ .

Przy założeniu cieczy ściśliwej i zapowietrzonej ( $\varepsilon = 0,008$ ), obraz zależności  $\Delta M_{Pm|\Delta p_{Pl}=p_n; q_{Pgv}} = f(M_{Pl|\Delta p_{Pl}=p_n; q_{Pgv}})$  jest prostą wznoszącą się

od wartości  $\Delta M_{Pm} = 0,76$  Nm przy  $q_{Pgv} = 0$ 

do wartości  $\Delta M_{Pm} = 1,77$  Nm przy  $q_{Pgv} = q_{Pl}$ .

Przy założeniu cieczy ściśliwej i zapowietrzonej ( $\varepsilon = 0,016$ ), obraz zależności  $\Delta M_{Pm|\Delta p_{Pl}=p_n; q_{Pgv}} = f(M_{Pl|\Delta p_{Pl}=p_n; q_{Pgv}})$  jest prostą wznoszącą się od wartości  $\Delta M_{Pm} = -0.35$  Nm przy  $q_{Pgv} = 0$ 

do wartości  $\Delta M_{Pm} = 0,74$  Nm przy  $q_{Pgv} = q_{Pt}$ .

Przy określonej wartości  $\varepsilon = 0,0135$  współczynnika zapowietrzenia oleju obraz zależności  $\Delta M_{Pm|\Delta p_{Pl}=p_n; q_{Pgv}} = f(M_{Pl|\Delta p_{Pl}=p_n; q_{Pgv}})$  jest prostą wznoszącą się

od wartości  $\Delta M_{Pm} = 0$  przy  $q_{Pgv} = 0$ 

do wartości  $\Delta M_{Pm} = 1,03$  Nm przy  $q_{Pgv} = q_{Pt}$ .

Rysunek 8 pokazuje, w oparciu o wyniki przedstawione na rysunku 7, prostoliniową zależność wielkości współczynnika ε zapowietrzenia oleju od założonego przyrostu  $\Delta M_{Pm|\Delta p_{Pl}=p_n, q_{Pgv}=0}$  momentu strat mechanicznych przy  $q_{Pgv} = 0$  ( $b_P = 0$ ). Zależność na rysunku 8 umożliwia znalezienie z dużą dokładnością wartości współczynnika ε zapowietrzenia oleju, przy założeniu której przyrost  $\Delta M_{Pm|\Delta p_{Pl}=p_n, q_{Pgv}=0}$  momentu strat mechanicznych, przy  $q_{Pgv} = 0$  ( $b_P = 0$ ), jest równy zeru:

$$\Delta \mathbf{M}_{\mathbf{Pm}|\Delta \mathbf{p}_{\mathbf{Pi}}=\mathbf{p}_{n}; \mathbf{q}_{\mathbf{Pev}}=\mathbf{0}; \varepsilon} = \mathbf{0} \text{ przy } \mathbf{q}_{\mathbf{Pgv}} = 0 \ (\mathbf{b}_{\mathbf{p}}=\mathbf{0})$$
(40)

Odpowiadający sytuacji opisanej wzorem (40) współczynnik  $\varepsilon$  zapowietrzenia oleju w trakcie badania pompy (pompa typu HYDROMATIK A7V.DR.1.R.P.F.00) posiadał wartość  $\varepsilon = 0,0135$ .

## Wnioski

- Autor zaproponował metodę określania współczynnika zapowietrzenia ε cieczy roboczej przetłaczanej przez pompę wyporową o zmiennej wydajności.
- Metoda otwiera możliwości oceny podziału strat objętościowych w komorach roboczych pompy na straty objętościowe wynikające ze ściśliwości cieczy zapowietrzonej (lub niezapowietrzonej) oraz na straty wynikające z przecieków w pompie.
- 3. Metoda umożliwia ocenę przyrostu  $\Delta M_{Pm|\Delta p_{Pi}, q_{Pgv}}$  momentu strat mechanicznych w zespole konstrukcyjnym "komory robocze wał" pompy, przyrostu będącego funkcją momentu  $M_{Pi|\Delta p_{Pi}=p_n; q_{Pgv}}$  indykowanego w komorach roboczych pompy (poprzez umożliwienie dokładnej oceny momentu indykowanego  $M_{Pi}$ ).
- 4. Zdaniem autora, możliwości przedstawione we wnioskach 1–3 dotychczas nie istniały. Możliwości powyższe mają znaczenie dla oceny strat objętościowych i mechanicznych w pompie, a więc dla oceny jakości rozwiązania konstrukcyjnego pompy wyporowej pracującej w warunkach wysokiego przyrostu  $\Delta p_{P_i}$  ciśnienia w komorach roboczych.
- Zaproponowana metoda została po raz pierwszy wykorzystana przez Jana Koralewskiego [8, 9] w badaniach pompy typu HYDROMATIK A7V.58.1.R.P.F.00.

## Literatura

- PASZOTA Z.: Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive. Part I. Energy losses in a drive system, volumetric losses in a pump. International Scientific-Technical Conference Hydraulics and Pneumatics, ODK SIMP, Wrocław 2012.
- [2] PASZOTA Z.: Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive. Part II. Mechanical losses in a pump. International Scientific-Technical Conference Hydraulics and Pneumatics, ODK SIMP, Wrocław 2012.
- [3] PASZOTA Z.: Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive. Part I.

*Energy losses in a drive system, volumetric losses in a pump.* "Polish Maritime Research" 2/2012, Vol. 19.

- [4] PASZOTA Z.: Effect of the working liquid compressibility on the picture of volumetric and mechanical losses in a high pressure displacement pump used in a hydrostatic drive. Part II. Mechanical losses in a pump. "Polish Maritime Research" 3/2012, Vol. 19.
- [5] PASZOTA Z.: Modele teoretyczne i matematyczne momentu strat mechanicznych w pompie stosowanej w napędzie hydrostatycznym. Rozdział w monografii pt.: Badanie, konstrukcja, wytwarzanie i eksploatacja układów hydraulicznych pod redakcją A. Klicha, E. Palczaka i A. Medera. Biblioteka "Cylinder". Centrum Mechanizacji Górnictwa "Komag", Gliwice 2011.
- [6] PASZOTA Z.: Modele teoretyczne i matematyczne momentu strat mechanicznych w pompie stosowanej w napędzie hydrostatycznym. "Napędy i Sterowanie" 10/2011.
- [7] PASZOTA Z.: Theoretical models of the torque of mechanical losses in the pump used in a hydrostatic drive. "Polish Maritime Research" 4/2011, Vol. 18.
- [8] KORALEWSKI J.: Wpływ lepkości cieczy na charakterystyki energetyczne pompy tłokowej osiowej o zmiennej wydajności. Praca doktorska w toku. Politechnika Gdańska, Wydział Oceanotechniki i Okrętownictwa.
- [9] KORALEWSKI J.: Wpływ lepkości i ściśliwości oleju na wyznaczanie strat objętościowych w pompie tłokowej o zmiennej wydajności. Referat zgłoszony na Konferencję "Cylinder" 2013. Centrum Mechanizacji Górnictwa "Komag", Gliwice 2013.
- [10] GUILLON M.: *Teoria i obliczanie układów hydraulicznych*. Wydawnictwa Naukowo-Techniczne, Warszawa 1967.
- [11] PASZOTA Z.: Method of determining the degree of liquid aeration in a variable capacity displacement pump. "Polish Maritime Research" 3/2013, Vol. 20.

prof. dr hab. inż. Zygmunt Paszota – Wydział Oceanotechniki i Okrętownictwa, Politechnika Gdańska e-mail: zpaszota@pg.gda.pl

artykuł recenzowany