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Abstract
This study investigates the role of deep learning models, particularly MobileNet-v2, in
Parkinson’s Disease (PD) detection through handwriting spiral analysis. Handwriting
difficulties often signal early signs of PD, necessitating early detection tools due to
potential impacts on patients’ work capacities. The study utilizes a three-fold approach,
including data augmentation, algorithm development for simulated PD image datasets,
and the creation of a hybrid dataset. MobileNet-v2 is trained on these datasets, revealing
a higher generalization or prediction accuracy of 84% with hybrid datasets. Future
research will explore the impact of high variability synthetic datasets on prediction
accuracies and investigate the MobileNet-v2 architecture’s memory footprint for timely
inferences with low latency.

Keywords: Handwriting analysis, Archimedean Spiral, Parkinson’s Disease, MobileNet-
v2, Hybrid datasets.

1. Introduction
Parkinson’s Disease (PD) is a neurodegenerative disorder that gradually deteriorates
over time, primarily affecting individuals aged 55 and above. It is characterized by vari-
ous motor and non-motor symptoms used for diagnosis and various clinical markers. PD
affects over one million individuals in the U.S., a number projected to reach 1.2 million
by 2030, impacting more than 10 million globally, with about 60,000 new diagnoses an-
nually in the United States alone [1]. PD, characterized by neurodegenerative changes
affecting limb behaviour and, in severe cases, cognitive functions, typically affects the
elderly and arises from the death of dopaminergic neurons in the brain’s substantia nigra
[5]. Handwriting difficulties often signal early signs of PD, affecting millions worldwide.
Recent studies have investigated handwriting changes given its widespread nature [9,
36, 39, 5]. While clinical diagnosis traditionally relies on symptom examination and his-
tory, the evolving healthcare landscape necessitates early detection tools, especially as
initial signs may appear before retirement, impacting patients’ work capacities. Various
studies have focused on PD diagnosis through handwriting spiral analysis, highlighting
the role of machine learning (ML) and deep learning (DL). ML demonstrates promise
in PD identification through such analyses, aiding in early detection, monitoring, and
improving patient outcomes [12, 20, 3]. Although not a PD diagnostic criterion, hand-
writing reflecting cognitive, visual, and motor abilities often prompt medical attention.
Studies explore ML’s application to diagnose PD severity, propose enhanced algorithms,
and leverage MRI scans and DL for accurate classification [10, 37, 7, 17]. Other ap-
proaches use ML to predict PD with non-motor symptoms, extract features from digital
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drawing tests, or apply convolutional neural networks (CNNs) for end-to-end processing
of handwriting images [36, 35, 11]. The Unified Parkinson’s Disease Rating Scale (UP-
DRS) and its Movement Disorder Society revision (MDS-UPDRS) serve as standards for
clinical PD assessments [13, 23]. However, clinical diagnosis accuracy varies, leading to
exploration of alternative methods such as computer-based handwriting analysis [9, 5,
38, 26, 10, 2, 16]. Handwriting alterations in PD, notably micrographia, show potential
as biomarkers [33, 6].

Recent research in PD diagnosis shows significant advancements in leveraging DL
and artificial intelligence (AI) techniques for improved accuracy. Studies such as [18]
demonstrate the effectiveness of DL and AI, especially in classifying datasets with high
accuracy. Unique perspectives, such as the kinematic and geometric features emphasized
by [25], contribute to disease detection methodologies. Additionally, novel techniques
like the multi-pooling approach proposed by [34] offer lightweight yet accurate classifi-
cation methods addressing gender and PD classification. Advancements in deep CNNs
have shown superior performance in PD detection, as evidenced by studies such as [24].
Modalities such as handwriting and hand-drawn images, highlighted by [8], play piv-
otal roles in leveraging computer vision and machine learning techniques for detection.
Furthermore, research exploring various modalities, such as EEG signals analyzed by
[22], contributes to advancing PD detection methodologies. Collectively, these studies
underscore diverse approaches and modalities that surpass previous benchmarks, high-
lighting the potential of innovative technologies in improving diagnostic accuracy [9, 4].
Recent strides emphasize the potential of ML and innovative technologies for diagno-
sis and severity assessment, as demonstrated by [37]. Additionally, research by [7] and
[17] introduce improved algorithms and classification models. In contrast, Gazda et al.
[10] present an ensemble of deep-learning architectures achieving remarkable accuracy
for spiral drawing tasks. Researchers have also explored neurocognitive features, as
demonstrated by the studies [31] and [35], revealing promising avenues for automated
neurodegenerative disease detection. Novel methods for early detection, such as the
end-to-end CNN approach proposed by [11] and the Continuous Convolution Network
(CC-Net) introduced by [21], further advance PD diagnostics. The aforementioned stud-
ies underscore the evolving landscape of PD detection, showcasing the effectiveness of
ML across various modalities. The proposed methods demonstrate potential improve-
ments in accuracy, accessibility, and early diagnosis, reflecting a promising direction
for future research in the field [38, 5]. As ML and DL algorithms continue to evolve,
they hold substantial promise in PD detection, offering precise disease identification and
opportunities for dynamic disease monitoring and treatment evaluation [12, 20, 3].

1.1. Research Motivation
ML and DL algorithms show promise in PD detection through handwriting analysis.
However, achieving high accuracy requires extensive datasets for training DL models,
posing a challenge for ML techniques. While ML methods accurately distinguish PD
patients from healthy individuals based on handwriting, their predictive capabilities are
limited by dataset size and complexity. In contrast, DL models excel at uncovering
intricate patterns but necessitate large datasets for optimal accuracy. Transitioning to
larger datasets for training the DL models is crucial for maximizing their potential in
PD diagnosis. These datasets enable deep learning algorithms to learn from a broader
range of data patterns, enhancing prediction accuracy. Combining the DL with extensive
datasets can enhance PD detection capabilities, potentially surpassing conventional ML
approaches. Therefore, investing in large-scale data collection efforts is essential to
advance PD diagnosis research.
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1.2. Study outline
This study explored training the MobileNet-v2 model on small datasets of hand-drawn
and synthetically generated spiral pattern images, revealing challenges in achieving high
performance. Data augmentation expanded the Parkinson’s dataset and trained the
MobileNet-v2 model [28], offering insights across three datasets. An algorithm simulated
hand-drawn spiral patterns to generate larger datasets, reducing errors and improving
accuracies. A hybrid dataset, combining real Parkinson’s samples with simulated data,
enhanced model performance, demonstrating its adaptability.

1.3. Research contribution
The study uses synthesized Parkinson’s datasets to train the MobileNet-v2 model, show-
ing different accuracies on test datasets. It proposes an algorithm to simulate hand-
drawn spiral patterns, creating large training datasets. This approach achieves high
accuracies of 99.67% on simulated test datasets and 84.45% on hybrid datasets. By
training and evaluating with hybrid datasets, the study demonstrates improved predic-
tion performance of MobileNet-v2 models compared to previous methods, particularly
in handling variations across larger datasets.

1.4. Study organization
Section 2 outlines the research approach and data collection methods, while Section 2.4
discusses the rationale for selecting the MobileNet-v2 architecture. In Section 2.5, the
configuration and design of the MobileNet-v2 model are detailed, followed by an expla-
nation of data augmentation techniques in Section 2.1. Section 2.2 analyzes strategies
for distributing datasets, while Section 2.3 explains the generation of simulated data.
Model training procedures are outlined in Section 2.6, and results are presented in Sec-
tion 3. Section 4 interprets the findings, and Section 5 summarizes key insights and
future directions.

2. Method
The study employs a three-fold approach to evaluate the DL model performance based
on the Parkinson’s Image data set (PID) [40], hereafter referred to as PID, as the input
to the model. The PID consists of 72 training and 30 testing image samples of spiral
and wave curves. This study only employs an image set consisting of spiral curves and
leaves out a wave data set for future works.

The first fold employs the PID data set referred to as Pd_aug_ds or Dau con-
taining training and test images. Due to the low sample count, the data set remains
inadequate for training the MobileNet-v2 model. As such, we employ data augmenta-
tion to increase the dataset size; the datasets are balanced regarding training and testing
samples. The second fold includes developing an algorithm for generating a simulated
PD image dataset, hereafter referred to as sim_aug_ds or Dsm. The third fold includes
generating a mixed or hybrid dataset hereafter referred to as Dau+sm comprising images
from Dau and Dsm. Next to creating the three datasets, we split them into training,
validation, and testing datasets for evaluating MobileNet-v2 model’s performance. We
train the MobileNet-v2 model using the three different data sets Dau, Dsm and Dau+sm,
and report the model training validation and test accuracies.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Bhat and Szczuko MobileNet-v2 Enhanced Parkinson’s Disease Prediction. . .

(a) Healthy (b) Parkinson’s
Fig. 1. Samples of real spiral images from augmented dataset (Dau) representing hand-

drawn spirals of healthy and Parkinson’s classes.

(a) Healthy (b) Parkinson’s
Fig. 2. Samples of spiral images from synthetically generated dataset (Dsm) representing

hand-drawn spirals of healthy and Parkinson’s classes.

2.1. Data Augmentation
During model training, the TensorFlow Keras ImageDataGenerator augmented image
data, enhancing dataset diversity and size. Various transformations like rotation, shift-
ing, flipping, and resizing improved model robustness and generalization, especially
with limited labelled data. Figures 1 and 2 depict real Parkinson’s dataset and syn-
thetically created spiral images, respectively. Parameters were adjusted for effective
augmentation: 360-degree rotation (rotationrange = 360), horizontal and vertical flip-
ping (horizontal_flip = True, vertical_flip = True), and 0.1 horizontal and vertical
shifts (width_shift_range = 0.1, height_shift_range = 0.1). Although not used,
brightness_range could adjust brightness. Varying intensity, rather than constant
grayscale, enabled the model to recognize patterns. These settings boosted dataset
augmentation, improving model adaptability and generalization.

2.2. Data Distribution
The data distribution process partitioned datasets into training, validation, and test
sets. For the augmented Parkinson’s dataset, both training and test sets were balanced,
with 2556 samples per class in training and 465 in the test set. Similarly, the simulated
dataset had 7100 samples per class in training and 620 in the test set. The hybrid
dataset combined samples from both datasets, resulting in a balanced training set with
4686 samples and a test set with 775 samples per class. This approach ensured that the
model was trained on diverse and representative data. The training data was split into
training and validation using a 90:10 ratio. Table 1 displays the data split.

Table 1. Data distribution into training, validation, and testing datasets.
Dataset Training set Testing set Split (Training : Validation)

Dau 5112 930 4600 : 512
Dsm 14200 1240 12780 : 1420

Dau+sm 9372 1550 8435 : 937

2.3. Synthetic data generation
Algorithm 1 generates spiral images, with its functionality contingent on the tuning of
various parameters, thereby influencing the characteristics of the synthesized dataset.
Adjusting parameters like size, num_points, and coefficients a, b, and k, enabled con-
trol over the size, complexity, and shape of the generated spirals. Moreover, alter-
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Algorithm 1 Generate Spiral Images
Require: size, num_points, a, b, k, noise_level, irregularity_level, padding,

dynamic_variation, min_dynamic_var, max_dynamic_var
Ensure: img
1: Initialize img as a matrix of size size × size with all elements set to 255 (white background)
2: Compute the center of the image as center = size//2
3: Generate an array of equally spaced values for t from 0 to 10π with num_points points
4: Compute the radius variation as a random value between −0.1 and 0.1
5: Compute the x and y coordinates of the Archimedes spiral using the formula:
6: x = a + b · tk + (radius_variation) · sin(t)
7: y = a + b · tk + (radius_variation) · cos(t)
8: if dynamic_variation is True and the spiral is for Parkinson’s disease then
9: Generate a random value for dynamic_var between min_dynamic_var and max_dynamic_var

10: Add dynamic_var to the noise_level
11: Add Gaussian noise to the y coordinates with mean 0 and standard deviation noise_level
12: end if
13: Add Gaussian noise to the x and y coordinates with mean 0 and standard deviation irregularity_level
14: Map the coordinates to the image space with padding:
15: x_img = round(x × (size/(4 + padding)) + center)
16: y_img = round(y × (size/(4 + padding)) + center)
17: for i from 0 to length(x_img) − 1 do
18: if 0 ≤ x_img[i] < size and 0 ≤ y_img[i] < size then
19: Draw a line from (x_img[i], y_img[i]) to (x_img[i + 1], y_img[i + 1]) in black color
20: end if
21: end for
22: return The generated image img

ing noise_level and irregularity_level introduced variability and imperfections akin to
real-world data, enhancing the dataset’s robustness. The padding parameter allows for
adjustments to the spatial arrangement of the spiral within the image frame.

2.4. Model Selection
Convolutional Neural Networks have garnered significant attention in image processing
for their economic potential and high accuracy rates. Several popular CNN architectures,
such as AlexNet [19], InceptionV3 [30], VGG16 [29], ResNet [15], and MobileNet-v2 [27],
dominate the field of image processing and classification. While convolution operations
play a crucial role in computer vision tasks, the large and deep structures of networks
like AlexNet, VGG16, InceptionV3, and ResNet often lead to increased processing time
and costs. However, MobileNet-v2 stands out due to its inverted residual structure and
linear bottleneck design, which reduce convolution calculations and make it memory-
efficient; as such, we adopt the MobileNet-v2 for our PD detection problem and test
it on the three different datasets Dau, Dsm and Dau+sm. The model accuracy can be
computed by the following expression: Model accuracy = T P +T N

T P +T N+F P +F N ; where TP,
TN, FP, and FN denote the number of true positives, true negatives, false positives, and
false negatives, respectively.

2.5. MobileNet-v2–Network Architecture
The MobileNet-v2 [28, 27] architecture represents a significant advancement in efficient
CNNs, tailored explicitly for deployment on resource-constrained devices such as mo-
bile phones and embedded systems. MobileNet-v2 employs a novel inverted residual
structure at its core, which deviates from the traditional residual models seen in deeper
networks like ResNet. Inverted residual blocks consist of thin bottleneck layers at the
input and output ends, contrary to the expanded representations typically found in
conventional residual architectures. This design choice helps reduce the computational
burden while preserving the representational power of the network. The MobileNet-v2
model, outlined by [14], adopts an inverted residual structure featuring thin bottleneck
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Fig. 3. Architecture of MobileNet-v2 [14]. In the figure, R6 denotes the ReLU6 activation
function, B denotes batch Normalization, and S denotes Softmax activation function.
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Fig. 4. Structure of bottleneck layer. The legends DConv, PConv, inc, and t denote
depthwise convolution, pointwise convolution, input channel, and expansion factor re-
spectively [14].

layers at both input and output stages, deviating from traditional residual models. The
model employs lightweight depthwise convolutions within these inverted residual blocks
to filter features in intermediate expansion layers, capturing spatial dependencies within
channels while minimizing parameters and computational complexity. This design choice
optimizes model efficiency without sacrificing performance, supported by Figures 3 and
4. Non-linearities are strategically removed from narrow layers to preserve representa-
tional power, enhancing computational efficiency. MobileNet-v2 thus strikes a notable
balance between efficiency and performance, making it suitable for resource-constrained
applications in diverse real-world scenarios.
2.6. Model Training, Validation and Testing
The model training, validation and testing were conducted using Google Colab’s TPU-
4 with a 2GB RAM configuration. Model testing was specifically carried out with
checkpoints during the training and validation process. The loaded checkpoints were
tested for high validation accuracies to generate model predictions on datasets (unknown
or not used during the training and validation process) reserved for testing only.
3. Results
The study reports the model training and validation results based on the three learning
rates used for training the MobileNet-v2 DNN model. The model was evaluated using
the cross-entry loss [32] as a performance metric. The CSV file recorded observations
enabled by the models trained for 50 Epochs. The models were tuned by varying the
learning rates to 0.01, 0.001, and 0.0001, chosen to compare model performance. Fig-
ure 5 depicts the results of training and validation losses incurred by the MobileNet-v2
model trained on datasets Dau, Dsm, and Dau+sm. The training and validation loss
curves show that the model trained on the hybrid dataset exhibited reduced training
losses, indicating lower generalization error estimation. Tuning the model for prediction
accuracy within the range of 90% to 100% led to overfitting issues in non-hybrid datasets
while achieving a validation accuracy of 0.998 using the hybrid dataset improved gener-
alization to unseen data. Consequently, the model’s prediction accuracy on the testing
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Fig. 5. Training and validation losses for datasets – Dau, Dsm, and Dau+sm. The acronyms
ds_0, ds_1 and ds_2 in images correspond to the datasets Dau, Dsm, and Dau+sm

respectively. Symbol lr in the legends represent the learning rate for the MobileNet-v2
model.

Table 2. Results of MobileNet-v2 models trained on Dau, Dsm, and Dau+sm.
Input dataset Hyper Parameter Training accuracy Test accuracy on trained models
Augmented learning-rate training validation Model-Dau Model-Dsm Model-Dau+sm

Parkinsons
(Dau)

0.01 99.89 99.80 74.51 0.50 0.50
0.001 100.00 99.80 72.58 0.50 75.14

0.0001 97.60 71.29 59.46 0.50 63.87

Simulated
(Dsm)

0.01 99.89 99.86 53.87 99.35 97.82
0.001 99.99 100.00 50.32 100.00 99.67

0.0001 99.98 99.64 54.43 99.83 82.17

Hybrid
(Dau+sm)

0.01 72.73 70.22 68.32 69.80 68.64
0.001 99.77 99.67 63.48 70.00 84.45

0.0001 99.34 82.17 57.48 69.67 71.93

set reached approximately 83% to 84%, striking a balance between model complexity
and generalization. Figure 6 shows the confusion matrix plots that visualize the training
and validation accuracies and test prediction coded on purple and green colour inten-
sities, respectively. Although the training and the validation accuracy appear to be
almost the same for the model trained on the three datasets, the testing accuracies vary
considerably with the three datasets as input to the trained model. Table 2 shows the
prediction results observed on all the three datasets used for training, validation, and
testing the MobileNet-v2 network model.

4. Discussion
The MobileNet-v2 architecture exhibited varying behaviours while training on the three
datasets. As visualized in the confusion matrix plots, when trained on each dataset, the
model architecture showcased different prediction behaviours, except during the train-
ing and validation process, wherein the model achieved the best prediction accuracies.
Trained models to be applicable in real-world contexts require models to generate highly
accurate predictions when testing them against unknown samples. We observed signif-
icant differences in the generated inference when testing our model on test datasets of
unknown samples. The MobileNet-v2 DNN architecture demonstrated a considerable
performance improvement when tested on the simulated (Dsm)and the Hybrid dataset
(Dau+sm). In contrast, lower accuracy was observed in the case of the augmented Parkin-
son’s dataset (Dau). Since the simulated dataset included a large dataset consisting of
spiral image curve traces with a regular increasing radius of the spiral pattern compared
to the irregular patterns inherent to the actual Dau dataset, the model showed nearly
100% prediction accuracy during training, validation, and testing. Moreover, we com-
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Fig. 6. MobileNet-v2 network model evaluation results on the training datasets, and the
testing datasets. H and P denote the healthy and Parkinson’s class, respectively. LR
represents the learning rate.

pare our study with the work by Wang et al. [38], reporting model accuracy of 89.3% on
the custom-developed spiral dataset. Although the reported accuracy is higher than the
accuracy of our model, the CNN model used has been tested on 10% of unknown sam-
ples, implying that the CNN model has been tested for a low sample size. In contrast,
we reserve and test the MobileNet-v2 model on 15% of unknown samples to highlight
the robustness and generalization offered by our dataset and the model used. Besides
the low sample size, PD prediction accuracy reported in several studies is typically high,
reaching above 98% to 99%. Our findings reveal that even after increasing the dataset
size, the predictions generated by the model on the hybrid dataset are low compared to
predictions generated using only the simulated dataset. Authors in [10] also report that
the high accuracy reported in several studies could be a false claim. As such, this study
emphasizes reporting the prediction results based on the hybrid datasets.

Key takeaways: Variability in image spiral image characteristics is crucial in the
DL model training, directly influencing their ability to generalize to unseen data. More
specifically, variations in image attributes such as colour (irregular grayscale patterns),
texture, lighting, and orientation contribute to the model’s capacity to learn robust
representations. When training the DL models, a diverse dataset with a wide range of
variations allows the model to learn invariant features that are essential for generaliza-
tion. In the context of MobileNet-v2 training, image characteristics variability affected
the model’s ability to extract meaningful features from the data. Images with consis-
tent attributes, such as uniform lighting and simplistic patterns, may lead to model
overfitting, where the model memorizes specific training examples without genuinely
understanding the underlying patterns. Conversely, introducing variabilities, such as
changes in lighting conditions, colour distributions, or geometric transformations, chal-
lenges the model to learn more abstract and invariant representations. This variability
enhances the model’s adaptability to real-world scenarios and improves its performance
on unseen data. To mitigate the observed potential overfitting to simulated data, de-
spite the application of data augmentation, we will further enhance our approach by
integrating regularization techniques such as L1 and L2 regularization. These methods
introduce penalty terms to the model’s loss function, discouraging it from excessively
fitting noise in the training data and promoting more generalized patterns. Addition-
ally, robust cross-validation methods will be employed, involving data partitioning into
multiple subsets for training and validation. By validating our model across diverse
real-world datasets, we aim to ensure its reliability and applicability in various practical
scenarios. These measures strengthen our efforts to combat overfitting and enhance the
model’s robust performance.
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5. Conclusion
The synthetic dataset generated played a crucial role in MobileNet-v2’s training, espe-
cially concerning the colour characteristics of the generated images. Initially, we trained
the model on synthetic images containing dark black-coloured spiral curves (data points
with constant lightning intensity), and the model exhibited low responsiveness. How-
ever, by introducing grayscale variations and manipulating lighting conditions of spiral
curves, significant impacts on the model’s training dynamics were observed. The study
only reports the results based on datasets with variability introduced in the images. This
adjustment allowed MobileNet-v2 to capture better features related to curve shapes and
patterns, ultimately leading to improved performance during training and inference.

This study reports the optimized model behaviours only and leaves out the discus-
sion on training the MobileNet-v2 model on datasets with a higher degree of simulated
variability for future research. Initially, we generated multiple synthetic datasets with
multi-level variability in terms of noise, radius, and irregularity in the simulated spiral
patterns; however, the model exhibited a high amount of training, validation and testing
losses (to be reported in future works). In future works, we aim to investigate the impact
of high variability synthetic datasets on the prediction accuracies. Moreover, leaving for
future works, investigating the impact of the memory footprint of the MobileNet-v2
architecture to generate timely inferences with low latency needs exploration. Since the
MobileNet-v2 network can help generate predictions enabling the detection of healthy
or Parkinson’s patients, how the model learns features by focusing on specific regions
of image patches exhibiting the level of variability learned by the model needs further
exploration considering the explainability demands in AI. In addition, future research
using MobileNet-v2 would be testing on open datasets such as PaHaW and DraWritPD
for performance evaluation and generalization.

Furthermore, variability in image characteristics helped prevent the model from
learning spurious correlations that may exist in the training data; however, do not
generalize to new instances. Exposing the model to a diverse range of image varia-
tions during training makes it more robust to noise and irrelevant features, resulting
in better performance on unseen data. For future investigations, exploring the impact
of dynamic variations, represented by dynamic_variation, could yield insights into the
sensitivity of diagnostic models to temporal fluctuations in handwriting patterns. Addi-
tionally, augmenting the algorithm to accommodate different spiral shapes or incorpo-
rating domain-specific knowledge could enhance its applicability across diverse datasets.
Lastly, evaluating the algorithm’s performance under varying parameter settings could
elucidate optimal configurations for specific diagnostic tasks, fostering advancements in
automated disease detection systems.
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