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Abstract—The paper presents modeling and simulation of en-
ergy consumption of two types of parallel applications: geometric
Single Program Multiple Data (SPMD) and divide-and-conquer
(DAC). Simulation is performed in a new MERPSYS (Modeling
Efficiency, Reliability and Power consumption of multilevel par-
allel HPC SYStems using CPUs and GPUs) environment. Model
of an application uses the Java language with extensions repre-
senting message exchange between processes working in parallel.
Simulation is performed by running threads representing distinct
process codes of an application, with consideration of process
counts. Instead of running time consuming calculations, their
times are simulated using functions representing computational
time dependent on input data sizes. The simulator considers
performance and power consumption values for compute devices
stored in its database. We performed verification of running the
two applications on up to 512 and 1024 processes respectively
on a large cluster from Academic Computer Center in Gdansk
demonstrating a high degree of accuracy between simulated and
measured results.

I. INTRODUCTION

I
N TODAY’S High Performance Computing (HPC) land-

scape performance and power consumption are key factors,

both of which are of key concerns in design of future systems.

As of today, Tianhe-2 is the most powerful computing cluster

on the TOP500 list with performance of over 33 PFlop/s at

17.8 MWs of power consumption. Tianhe-2 uses the hybrid

architecture that couples multicore CPUs and accelerators

within a single node. Examples of accelerators used today are

GPUs or coprocessors such as Intel Xeon Phi. These are used

in the top high performance clusters listed on the TOP500 list.

The recently announced Tesla P100 offers 5.3 TFlop/s double-

precision performance with Thermal Design Power (TDP) 300

Watts1. Intel R© Xeon PhiTM Coprocessor 7120P offers 1.2

TFlop/s theoretical peak double-precision performance2 with

TDP 300 Watts3.

As computational power of HPC systems comes from

engaging more and more processing cores and consequently

increasing the sizes of compute devices and the number of

compute devices within a system, there is often a need for

1http://wccftech.com/nvidia-pascal-gpu-gtc-2016/
2http://www.intel.com/content/www/us/en/benchmarks/server/xeon-

phi/xeon-phi-theoretical-maximums.html
3http://ark.intel.com/products/75799/Intel-Xeon-Phi-Coprocessor-7120P-

16GB-1_238-GHz-61-core

assessment of not only performance but also power consump-

tion of such systems. A typical use case is when the user or

system owner already know several applications that are run in

their contexts or environments and need to assess performance

and power consumption of an HPC system after an upgrade

or after a new HPC system is to be purchased.

This paper focuses on a model and methodology for assess-

ment of power and energy consumption of parallel applications

adopted in the MERPSYS simulation environment4. This work

follows modeling execution time of parallel applications in

MERPSYS that is presented in [1].

II. RELATED WORK

In terms of applications, energy consumption and its re-

duction is very important. Proper techniques involving load

shifting and machine management may result in energy bill

savings [2]. Paper [3] analyzes optimization of energy con-

sumption for large virtualized service centers.

In work [4], authors present a workflow that allows predic-

tion of energy and power consumption of HPC applications

using available data for a given application regarding power

and energy consumption for specific values of nodes used.

Then, based on a predictor, that uses the available data and

proper interpolation, predicted values can be found. The paper

shows a high degree of accuracy of the predictor for Hydro

(computational fluid dynamics) and EPOCH (plasma physics

simulation) benchmarks executed on the SuperMUC (near

Munich, hence MUC) HPC platform.

In paper [5], experiments with Co-Design Molecular Dy-

namics (CoMD) and Livermore Unstructured Lagrangian Ex-

plicit Shock Hydrodynamics (LULESH) codes were per-

formed on a system with host Xeon E5 CPUs and Xeon Phi

5110P coprocessors with measurements of energy and power

for the whole system, CPUs and Xeon Phis. Results were used

to obtain parameters of theoretical model coefficients with high

confidence (R2 coefficient). Results were presented for host

frequency scaling as well as problem size scaling.

In paper [6] authors used neural networks to train models

that predicted power and energy consumption when running

high performance computing codes. It has been shown that

4http://merpsys.eti.pg.gda.pl/
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after training, using various versions of codes, it is possible

to predict power consumption and energy usage of CPUs and

DIMMs with less that 5.5% error for LU factorization, Jacobi

and matrix multiplication.

In work [7] authors have presented a detailed energy usage

model for parallel master-slave applications, including model-

ing energy consumption of communication operations, based

on execution times. Furthermore, the model was verified in a

real environment with a master and 4 or 6 slaves for single or

dual core configurations with error rate lower than 4% across

the tested configurations.

In paper [8] authors investigated execution times and en-

ergy used when running MPI-only and hybrid MPI with

OpenMP codes such as Parallel Multiblock Lattice Boltzmann

or Gyrokinetic Toroidal Code. In particular, on the largest

configurations tested with 8 nodes and a total of 32 cores,

hybrid versions showed better execution times and energy

consumption than MPI-only codes. Energy used was broken

into CPU, memory, disk and motherboard energy.

In paper [9] authors, following analysis performed for

Amdahl’s law, present a general energy speed-up model in

a parallel environment, for multicore systems. Furthermore,

authors present specific results for three various power con-

sumption models for a multicore CPU, based on the number

of cores used: in the first one all cores are always on, the

second with consideration of active cores only and the third

with base power, active and idle core power values.

Modeling power consumption of cluster nodes depending

on the number of threads active with verification against real

measurements were presented in [10]. This showed an idle

system power consumption and a non-linear increase until a

saturation point. Such a model has been incorporated into the

MERPSYS simulator. In work [1], modeling and verification

of performance of parallel applications in MERPSYS was

presented for computation of vector similarities along with

verification in a real parallel environment.

For some types of applications, such as embarrassingly

parallel ones, volunteer computing may be an alternative to

clusters. Clusters and volunteer systems are different in terms

of locality (centralized vs distributed), payer of infrastructure

and electrical bill cost, involvement (or lack thereof) of society,

security. Comparison of performance and power consumption

as well as computational efficiency of cluster based systems

and volunteer based systems which use distributed volunteers’

computers is presented in [11]. For the latter, sets of volunteer

hardware configurations were taken from BOINC projects and

http://cpubenchmark.net/ benchmarks for relevant

CPUs and TDPs were used. On average performance/power

consumption ratio for modern CPU based clusters turned out

to be 2-3 times better than for machines in volunteer based

systems.

In [12] authors statistically analyze average CPU utilization

and draw a conclusion that in the typical operating region of

between 10 and 50% of utilization, energy efficiency is low

and aim at designing energy proportional machines that would

consume energy proportional to the executed work.

Modelling energy consumption of distributed systems can

be useful for exploring the time-energy trade-off, defined in

[13]. The authors consider the relationships between execution

time, energy consumption and power draw for a set of chosen

applications, both on shared memory devices such as Intel

Xeon Phi coprocessor and Intel Xeon processor, as well as

the Vesta IBM Blue Gene/Q cluster. Formal formulation of

the multi-objective code optimization problem is presented, as

well as evidence that the energy-performance trade-offs exist

in practice.

Paper [14] analyzes energy and makespan trade-offs as

a Pareto front in heterogeneous computing systems. Pareto

fronts for the multi-objective optimization problem can be

determined using mathematical modeling and linear program-

ming [15]. However, such model has to closely match the

characteristics of the real executions, which can significantly

vary depending on the application model (i.e. synchronization

scheme, communication overlapping). Additionally, the model

may require defining the execution times of each type of

task on each type of hardware beforehand. Thus, for more

accurate modeling of various application executions on various

hardware, it is important to develop a more flexible method

which can give an approximate result with a possibility to

quickly modify the application and hardware models.

Paper [16] considers tuning of application execution by

proper tiling in the code (cache usage) and CPU frequency. It

considers impact on the execution time and energy usage using

an example of Poisson’s equation with stencil computations.

In work [17] a methodology and experiments were presented

for a distributed KernelHive [18] system that is aimed at

parallelization of computations in a heterogeneous environ-

ment that consists of potentially several clusters each with

multicore CPUs and accelerators such as GPUs. Based on

an imposed power consumption limit, an optimizer is able to

select compute devices such that the total power consumption

does not exceed the threshold and execution time is minimized

taking into consideration application configuration (includ-

ing OpenCL’s kernel NDRange configurations for GPUs and

CPUs), network parameters etc. Dependence of execution

times against power consumption limits were shown for a real

environment.

As demonstrated in paper [4], a model for prediction of

power and energy usage in an HPC system can potentially

be very desirable e.g. for budget estimation and prediction of

peak requirements in terms of power consumption.

In work [19] authors presented Energy Efficient Task

Duplication Schedule (EETDS) algorithm with a grouping

and energy efficient group allocation schedule phases of a

DAGs (Directed Acyclic Graphs) onto a parallel environment.

The algorithm was compared, in terms of energy consump-

tion, to Task Duplication Scheduling algorithm (TDS), Non-

Duplication Scheduling algorithm (NDS) and Energy-Efficient

Non-Duplication Scheduling (EENDS) strategies for Gaussian

Elimination and FFT for various values of communication to

computation ratio (CCR) demonstrating benefits of EETDS for

larger CCR values.
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In paper [20] optimization of hybrid MPI/OpenMP parallel

application execution is considered in terms of execution

efficiency. Algorithms used consider Dynamic Concurrency

Throttling (DCT) and Dynamic Voltage Frequency Scaling

(DVFS), also in a combined setting. It is demonstrated that

the proposed approach results in savings in energy usage with

little loss in performance or even gains.

III. MOTIVATIONS AND PROBLEM STATEMENT

Motivations for simulation of execution of parallel applica-

tions on large systems stated for the MERPSYS environment,

involving execution time and energy consumption, include:

1) Finding good configurations for running parallel appli-

cations i.e. specific compute devices in the available

environment, numbers of nodes as well as application

parameters such as data packet sizes etc.

2) Testing various potential (e.g. from a database of avail-

able components) hardware configurations for running

a set of applications. MERPSYS allows instant substi-

tution of one component by another e.g. exchanging

a CPU or a GPU for another CPU or GPU model,

similarly for interconnects.

3) Simulations of a set of applications in a distributed

multi-level system composed of clusters and volunteer

based systems in order to find approximately optimal

hardware allocation, task mapping and scheduling.

In view of the aforementioned works and challenges, the

goal of this paper is to define and verify a model of energy

consumption of a parallel application run on a parallel

system that would return acceptably accurate results from fast

running simulations of parallel runs. Specifically, this requires

finding the following function

energy consumption(parallel application,

parallel system, input data)

It should be noted that there are two possible ways of

how energy consumption is calculated. In one, within the

makespan of the application only energy used for duration

of computations on particular nodes, only when these are

used by the application, is accounted for. In the latter, energy

of all nodes is integrated over the makespan irrespective of

how many application processes/threads run there, considering

idle energy consumption if none processes/threads are active.

MERPSYS adopted the second method.

In essence, the function mentioned above can be expressed

in terms hardware count, thread count, time of effective

application execution (stress time) and time of ineffective

processor work (idle time) as follows:

energy consumption(parallel application, parallel system,

input data) =
Hardwarecount∑

i=1

(tapplicationPW [i]idle+

∑

k

texec[i, k](PW [i]stress(threadcount[i, k])−

PW [i]idle))

which considers hardware used and power consumption in idle

state multiplied by execution time as well as additional power

consumption under stress when running a given number of

threads on particular hardware multiplied by activity period.

IV. MODELING ENERGY CONSUMPTION

We modeled energy consumption in a supercomputer Galera

Plus located in Academic Computer Centre in Gdansk (CI

TASK). This supercomputer consists of 192 computational

nodes each containing two Intel Xeon Six-core processors. We

used two models of parallel applications: a Single-Program-

Multiple-Data application model and a Divide-And-Conquer

application model.

Before energy modeling, we modeled the time of a applica-

tion execution dependency on the number of processors used

for calculation. We proved that our timing model is valid

using MERPSYS simulation environment (described in the

next section). In our simulation, we assumed usage of 1, 8, 27,

64, 125 ... 512 processes for the SPMD application and 1, 2,

4, 8, ... 1024 processes for the DAC application. We achieved

results of modeling in a high accordance to the real execution

times (see Figure 1) [21].

In the first application, all used computational nodes are

almost equally loaded during the whole time of application

execution. So energy consumption should be a simple multi-

plication of execution time and the power used by computa-

tional nodes involved in calculations. However in our testbed

environment only 32 nodes were assigned to experiments.

We assumed in our model that when the modeled number of

processes was smaller than 32, each process runs on a separate

node, and only a part of computational nodes are used. If the

modeled number of processes is equal or greater than 32, the

processes are distributed among all the available computational

nodes, and all the computational nodes are used. So energy

consumption in the SPMD application can be expressed as a

sum of energy consumed by active nodes (Ean) and inactive

nodes (Ein):

E = Ean + Ein

where the energy consumed by active and inactive node are

evaluated as:

Ean = Nan · Pan · texec

Ein = Nin · Pin · texec
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(a)

(b)

Fig. 1. Execution time modeling of (a) SPMD application and (b) DAC
application

The number of active nodes (Nan) and the number of inactive

nodes (Nin) are simply:

Nan = min(Nproc, Ntotal)

Nin = Ntotal −Nan

where:

Nproc is the number of processes in application,

Ntotal is the total number of computational nodes (here 32),

Pan is modeled power usage at one active node,

Pin is modeled power usage at inactive node.

We measured that power usage at Intel Xeon processors in

inactive node (Pin) equals approximately 50% of maximum

power usage (Pmax) which is consumed when all the cores

are active [10]. We simplified the function of power usage

due to number of active cores as a linear broken function (see

Figure 2).

The model of energy consumption in the DAC application

is much more complex. Computational nodes are unevenly

loaded in consecutive steps of application. At the beginning all

Fig. 2. Power usage on a single node depending on processes count

Fig. 3. Model of cores activity in DAC application consecutive steps

needed cores are active. In following steps every second core

goes to an idle state (see Figure 3). Thus energy consumption

must be evaluated in each step separately. It means that not

only the number of active/inactive cores (and active/inactive

nodes), but also the time of execution in each application step

must be evaluated.

In the DAC application active and inactive energy is ex-

pressed by the following formulas:

Ean =
∑

k=1..N

Ean(k)

Ein =
∑

k=1..N

Ein(k)

Ean(k) = Nan(k) · Pan(k) · t(k)

Ein(k) = Nin(k) · Pin(k) · t(k)

where:

N is the number of steps in the application process,

k is the index of step,

t(k) is time of execution of the kth step,

858 PROCEEDINGS OF THE FEDCSIS. GDAŃSK, 2016
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Fig. 4. Sample model of supercomputer architecture in MERPSYS

Pan(k)is power used on an active node in the kth step,

Pin(k)is power used on an inactive node in the kth step,

Nan(k)is number of active nodes in the kth step,

Nin(k)is number of inactive nodes in the kth step,

Ean(k)is energy used on all active nodes in the kth step,

Ein(k)is energy used on all inactive nodes in the kth step,

We are aware that the above model, where the total energy

used for computations depends on the number of computa-

tional nodes and their usage, ignores the energy used by the

whole infrastructure (e.g. cooling system), but this payload

was beyond our research at this time.

V. SIMULATION ENVIRONMENT

We modeled time of execution and energy consumption

in the MERPSYS simulation environment. MERPSYS en-

ables modeling of a calculation environment (by drawing an

architecture model diagram) and simulation of application

execution in this environment (by writing an application model

as a simulation program).

The architecture model is a graph diagram in which nodes

model key architecture components, and edges model connec-

tions between components. As we modeled the Galera Plus su-

percomputer with homogeneous nodes our diagram consisted

of two nodes: one single node modeling all computational

components (all processors) and the second node modeling

the internal Infiniband network connecting the computational

components (see Figure 4). Next we specified component

instances count (i.e. the number of computational nodes in

the modeled supercomputer). Afterwards MERPSYS looked

up to its component database and assigned timing parameters

to components.

The application modeling program is written in the Java

language, with the use of a special simulator interface,

accessible by the sim object. We can see a sample fragment

of simulation program in Figure 5. The simulation program

is not the application itself. To create the simulation

program we had to translate the application written in C

Fig. 5. Sample fragment of simulation program in MERPSYS

programming language to the simulation Java language.

However, the simulation program is much simpler than the

corresponding application program. All computational

routines are modeled as sim.Computation method

invocations. Interprocess communication is modeled as

sim.p2pCommunicationSend/sim.p2pCommunicationReceive

or one2oneCommunicationSend/one2oneCommunicationReceive

invocations. All the researcher has to do is to determine the

data count and the computational routines complexity.

VI. EXPERIMENTS AND RESULTS

As we have mentioned above we modeled and simulated

time of execution and energy consumption of two parallel

applications (SPMD and DAC) in the Galera Plus supercom-

puter. The applications were written in C using MPI library.

We compared the results of simulation with real application

execution measured in this supercomputer.

A. Testbed Environment

The testbed consists of a number of identical computation

nodes provided by the Academic Computer Center in Gdansk

University of Technology in Poland. Each node is based on

two Intel(R) Xeon(TM) CPU 2.27GHz processors (EM64T)

with 6 physical processing cores with HyperThreading, 12MB

cache, running Linux kernel version 2.6.32. Each node has 16

Gigabytes of RAM and they are composed in the cluster archi-

tecture, with fast (QDR, 40Gbps) Infiniband interconnection.

The power meters of the cluster are served by the specialized,

autonomous management subsystems: HP Integrated Lights-

Out 3 (iLO 3)5.

B. Testbed Applications

The first of the tested application is a geometric SPMD

application. This kind of application can be used to solve

such problems as weather prediction, heat distribution or other

physical phenomena. The evaluated 3D geometric space is

divided to many cuboidal regions, each region is evaluated

by a separate node. The evaluation process is repeated in

many iterations, between each iteration the calculation nodes

interchanged data corresponding to regions borders. Data is

5http://h20565.www2.hpe.com/hpsc/doc/public/display?docId=emr_na-
c02714903&lang=en-us&cc=us
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Fig. 6. The schematic inter-process data exchange in the SPMD application

interchanged in 4 steps for each dimension. Considering X

dimension in the first step even nodes send data to their right

neigbours, next odd nodes send data to their right neighbours,

next odd nodes send data to their left neighbours, and at

last event neighbours send data to their left neighbours (see

Figure 6 for illustration).

Sample fragments of the SPMD application are shown

below. In the beginning some common data variables are

defined following by four auxiliary routines (getdata, setdata,

compute_cell, and cell_to_rank). The main simulation logic is

iterated in four nested for instructions. The most external loop

iterates for an arbitrary number of steps, the internal loops

iterate in the three dimensions of the geometric space. After

a process has computed an associated cuboidal region in the

three dimensions, the process sends data to its neighbors using

the scheme shown in Figure 6.

d o u b l e ∗ d a t a ;

i n t X, Y, Z ;

i n t procx , procy , p r o c z ;

i n t p r o c c o u n t ;

. . .

/ / s i n g l e d a t a c e l l g e t method

d o u b l e g e t d a t a ( i n t x , i n t y , i n t z )

{

r e t u r n d a t a [ . . . ] ;

}

/ / s i n g l e d a t a c e l l s e t method

vo id s e t d a t a ( i n t x , i n t y , i n t z , d o u b l e v a l )

{

d a t a [ . . . ] = v a l ;

}

d o u b l e c o m p u t e _ c e l l ( i n t x , i n t y , i n t z )

{

/ / computes t h e v a l u e o f t h e c e l l

}

i n t c e l l _ t o _ r a n k ( i n t x , i n t y , i n t z )

{

/ / r e t u r n s t h e r an k of a p r o c e s s

/ / t h a t owns c e l l ( x , y , z )

}

main ( i n t a rgc , c h a r ∗∗ a rg v )

{

. . .

/ / t h e main s i m u l a t i o n lo op

f o r ( t =0 ; t < s t e p s ; t ++)

{

f o r ( i =myminx ; i <=mymaxx ; i ++)

f o r ( j =myminy ; j <=mymaxy ; j ++)

f o r ( k=myminz ; k<=mymaxz ; k ++)

{

s e t d a t a ( i , j , k ,

c o m p u t e _ c e l l ( i , j , k ) ) ;

}

/ / exchange d a t a i n X d i r e c t i o n

i f ( myblockx%2)

{ / / r e c e i v e from l e f t

MPI_Recv ( . . . , YZ_wall ,

c e l l _ t o _ r a n k ( myminx−1,myminy , myminz ) ,

. . . ) ;

}

e l s e

{

/ / send t o r i g h t

i f ( myblockx+1< procx )

MPI_Send ( . . . , YZ_wall ,

c e l l _ t o _ r a n k ( mymaxx+1 , myminy , myminz ) ,

. . . ) ;

}

. . .

/ / do t h e same f o r Y d i r e c t i o n

/ / and Z d i r e c t i o n

} / / end o f t h e i t e r a t i o n loo p

M P I _ F i n a l i z e ( ) ;

e x i t ( 0 ) ;

}

The second test application is a Divide-and-Conquer merge-

sort algorithm implementation. The first node, which gets the

large data set, divides the data into two parts and sends one part

to its free neighbor node. This process is repeated in parallel

until the size of each partition reaches its limit. Then each

node sorts its part of data and "odd" nodes return the sorted

fragments to their "parent" nodes. The "parent" nodes merge

two sorted data fragments and the process repeats until all data

flow to the first node when they are merged to one sorted set

(see Figure 7).

The DAC application code is shown below. For simplicity

it is assumed that the size of the vector to be sorted is a power

of 2. The same applies to the number of processes.

. . .

i n t ∗ m e r g e l o c a l ( . . . )

{

/ / a f u n c t i o n f o r l o c a l merging

/ / ( i . e . one p r o c e s s , one t h r e a d )
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Fig. 7. The schematic algorithm of the SPMD application

}

i n t ∗mergeseq ( i n t ∗ a r r a y i n , l on g l e n g t h )

{

/ / t h e main f u n c t i o n f o r a s e q u e n t i a l

/ / merge ( i t e r a t i v e )

f o r ( ; c u r r e n t l e n g t h ∗2<= l e n g t h ;

c u r r e n t l e n g t h ∗=2)

{

f o r ( i =0 ; i < l e n g t h ;

i +=2∗ c u r r e n t l e n g t h )

m e r g e l o c a l ( . . . ) ;

. . .

}

}

i n t main ( i n t a rgc , c h a r ∗∗ a rg v )

{

. . .

/ / i n t h e f i r s t s t e p each p r o c e s s needs

/ / t o s o r t i t s p a r t o f t h e a r r a y

a r r a y o u t =mergeseq ( a r r a y i n , . . . ) ;

/ / now send t h e d a t a t o an upper p r o c e s s

i f ( myrank%2)

{ / / t h e n send t h e d a t a

/ / t o p r o c e s s wi th r an k myrank−1

MPI_Send ( . . . ) ;

}

/ / now each p r o c e s s needs t o check i t s

/ / r o l e i n t h e d i v i d e−and−conque r t r e e

/ / whe the r i t s h o u l d q u i t o r r e c e i v e d a t a

/ / from a n o t h e r p r o c e s s , merge and send

/ / t o a n o t h e r p r o c e s s

i n t c u r r e n t s k i p =2;

/ / t h e c u r r e n t s k i p between p r o c e s s

/ / r a n k s as i n t h e above scheme

f o r ( ; c u r r e n t s k i p <= p r o c c o u n t ;

c u r r e n t s k i p ∗=2)

{

i f ( ! ( myrank%c u r r e n t s k i p ) )

{

/ / t h e n I am i n v o l v e d i n t h e g i v e n s t e p

/ / t h i s means t h a t I need

/ / t o r e c e i v e t h e d a t a

MPI_Recv ( . . . ) ;

/ / now merge d a t a

m e r g e l o c a l ( . . . ) ;

. . .

/ / and send t o an upper p r o c e s s

/ / i f i t i s n o t t h e l a s t i t e r a t i o n

i f ( c u r r e n t s k i p ∗2<= p r o c c o u n t )

{ / / i f n o t t h e l a s t i t e r a t i o n

/ / now check i f I s h o u l d

/ / send t h e d a t a o r n o t

i f ( myrank%( c u r r e n t s k i p ∗2 ) )

{ / / t h e n I s h o u l d send t h e d a t a

/ / t o p r o c e s s wi th r an k

/ / myrank−c u r r e n t s k i p

MPI_Send ( . . . ) ;

. . .

b r e a k ;

}

}

}

}

M P I _ F i n a l i z e ( ) ;

}

C. Simulation Programs

Real calculations are not performed in the simulation pro-

gram. Instead we invoke sim.computation method passing a

string that descibes computational complexity. This string is

composed in the simulation program as a JavaScript function

that returns the number of operations. However we had to

calibrate the result to the real application execution time

measured in the testbed environment. It is represented by

the last factor (60.94) in the computationComplexity function

expression.

S t r i n g c o m p u t a t i o n a l C o m p l e x i t y =" f u n c t i o n "

+ ConstVar . complex i tyFunc t ionName + " ( "

+ ConstVar . p a r a m e t e r s + " ) { "

+ " r e t u r n " + ConstVar . g e t D a t a S i z e

+ "∗6 0 . 9 4 ; "

+ " } " ;

f o r ( t =0 ; t < s t e p s ; t ++)
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{

sim . c o m p u t a t i o n ( compDataSize ,

Computa t ionType . CPU,

S o f t w a r e S t a c k . Undef ined ,

1 ,

c o m p u t a t i o n a l C o m p l e x i t y ,

O pe ra t i o nT y p e . C a l c u l a t i o n s ,

O p t i m i z a t i o n T y p e . None ) ;

. . .

In the real MPI application each process is identified by a

"rank" integer number. In the MERPSYS simulator we can

not identify a single process. Instead we can identify a "role"

of a process (with a "tag" string). So we mapped application

process algorithm based on individual process number to

simulation program algorithm based on process group role.

We defined 7 roles for the SPMD application using relative

processes position: "Center", "Left", "Right", "Top", "Bottom",

"Front", and "Back". We replaced the four-step inter-process

data exchange with send-receive simulation to the neighbor

processes groups (see below):

/ / f i r s t send d a t a t o a l l n e i g h b o r s

ne ighbo rT ag = " c e n t e r " ;

i f ( ! t a g . e q u a l s ( ne ig hbo rT ag )

&& c e n t e r C o u n t >0)

sim . p2pCommunicat ionSend ( w a l l S i z e ,

ne ighbo rT ag ) ;

. . .

/ / t h e n r e c e i v e d a t a from a l l n e i g h b o r s

ne ighbo rT ag = " c e n t e r " ;

i f ( ! t a g . e q u a l s ( ne ig hbo rT ag )

&& c e n t e r C o u n t >0)

sim . p2pCommunica t ionReceive

( ne igh bo rTag ) ;

For the second application, we defined program roles as

"levels" (from L0 to L10). We also had to define three

computational complexity functions: InitComplexity, Merge-

SeqComplexity, and MergeLocalComplexity. Instead a peer-

to-peer communication send function we used one-to-one

communication send. In peer to peer communication, it is

assumed that all pairs of processes communicate. In the DAC

application one process sends data to one other process. At

the same time a half of all the processes in the lower level

send data to their corresponding processes in the upper level,

so the time of one pair communication must be multiplied by

sendersCount/2.

f o r ( l e v e l =0 ; l e v e l < l e v e l C o u n t ; l e v e l ++)

{

t h i s T a g = "L"+ I n t e g e r . t o S t r i n g ( l e v e l ) ;

i f ( t a g . e q u a l s ( t h i s T a g ) )

{

nex tTag = "L"

+ I n t e g e r . t o S t r i n g ( l e v e l + 1 ) ;

i f ( l e v e l ==0)

{

sim . c o m p u t a t i o n ( . . . ,

I n i t C o m p l e x i t y , . . . ) ;

sim . c o m p u t a t i o n ( . . . ,

MergeSeqComplexi ty , . . . ) ;

}

e l s e

{

p r i o r T a g ="L"

+ I n t e g e r . t o S t r i n g ( l e v e l −1);

sim . one2oneCommunica t ionRece ive (

p r i o r T a g ) ;

sim . c o m p u t a t i o n ( . . . ,

MergeLocalComplexi ty , . . . ) ;

}

i f ( l e v e l < l e v e l C o u n t −1)

{

i n t s e n d e r s C o u n t =

sim . ge tNumberOfProcessesForTag

( t h i s T a g ) ;

d a t a S i z e = d a t a C o u n t ∗4 ;

sim . one2oneCommunicat ionSend

( d a t a S i z e , nextTag , s e n d e r s C o u n t / 2 ) ;

}

}

}

D. Power Measurement

We measured power usage at a single node of a real

execution cluster. Power usage was measured in Watts every

10 seconds of the application execution. We repeated the

execution three times for each assumed processes count and

then we averaged the measured values. The results are shown

in Table I and Table II.

TABLE I
POWER USAGE ON A ONE NODE DURING SPMD APPLICATION EXECUTION

Processes
count

Measured
probes

Power usage
on one node

[W]

Standard
deviation

8 17 84 0.68

27 5 84 0.00

64 2 93 1.49

125 1 106 0.00

216 1 126 0.00

343 1 147 4.71

512 1 159 4.71

729 1 48 0.00

1000 2 99 43.14

E. Simulation Results and Comparison

Having accurate time simulaton results (see Figure 1),

we could base energy simulation on solid foundations. We

evaluated energy consumption in the MERPSYS simulator and

compared the results to the measured energy consumption.
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TABLE II
POWER USAGE ON ONE NODE DURING DAC APPLICATION EXECUTION

Processes
count

Measured
probes

Power usage
on one node

[W]

Standard
deviation

1 16 86.7 2.14

2 8 87.0 1.15

4 4 87.0 1.00

8 2 87.3 0.94

16 1 87.3 0.94

32 1 86.7 0.94

64 1 98.0 0.00

128 1 113 1.89

256 1 137 1.89

512 2 123 43.97

1024 4 134 41,20

TABLE III
REAL AND SIMULATED ENERGY CONSUMPTION IN SPMD APPLICATION

Proc.
count

Active
nodes
count

Inact.
nodes
count

Real
energy
cons.
[Wh]

Simul.
energy
cons.
[Wh]

8 8 24 151.20 152.1

27 27 5 45.67 46.6

64 32 0 22.71 22.7

125 32 0 15.13 15.0

216 32 0 13.46 13.2

343 32 0 13.86 14.2

512 32 0 18.97 19.0

However as we measured energy consumption at a one node

only, we had to recalculate the measured results according to

the model of application. In the SPMD applications, as all

nodes assigned to the application are active all the time, it

was easy to calculate the energy consumption in the whole

experimental environment. We show the compared results

in Table III. However in the DAC application nodes are

unevenly active. We applied the model of activity shown in

Figure 3 and recalculated active and inactive nodes real energy

consumption in all the applications steps separately, and next

summarized them. As the results depend not only on the really

TABLE IV
MODELED AND SIMULATED ENERGY USAGE IN DAC APPLICATION

(COMPARISON)

Proc.
count

Modeled
energy usage

at active
nodes

Modeled
energy usage

at inactive
nodes

Total
modeled

energy usage

Sim.
energy
usage

1 4.15 118.85 123.0 123.2

2 4.26 59.30 63.6 63.6

4 4.54 30.10 34.6 34.7

8 5.17 15.61 20.8 20.8

16 6.52 7.47 14.0 14.4

32 9.54 2.41 12.0 11.9

64 8.83 3.10 11.9 11.7

128 10.27 4.01 14.3 13.4

256 15.42 5.40 20.8 16.9

512 25.95 7.76 33.7 27.2

1024 47.11 12.83 59.9 55.9

measured energy consumption but on the model of activity as

well, we call the results the "modeled" energy. Comparison

between modeled energy consumption and simulated energy

consumption is shown in Table IV.

VII. CONCLUSIONS AND FUTURE WORK

In the paper we presented a way to model parallel SPMD

and divide-and-conquer applications within the MERPSYS en-

vironment including application and system models. Next, we

presented verification of results obtained from the fast MERP-

SYS simulator against energy consumption that stemmed

from consideration of power usage of real cluster nodes. We

performed tests and calculations for up 512 and 1024 processes

for SPMD and divide-and-conquer applications respectively

reaching a high degree of accuracy. This allows to obtain

results for these applications for other configurations such as

input data sizes with ease without the need for rerunning the

real application and much faster than the latter.

The future works should cover wider variety of the software

and hardware systems. Different vendors and configurations

should be tested as well as new simulated programs.
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