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The aim of the paper is theoretical analysis of acoustic waves propagation in medium 
which are not homogeneous. The paper presents mathematical model and some results of 
numerical investigations. The mathematical model was built on the basis of the KZK 
equation. To solve the problem numerically the finite-difference method was applied.  The on-
axis pressure and power spectrum density were analysed both in homogeneous and non-
homogeneous medium. 

 
 

INTRODUCTION 

Knowledge of transmission properties of different kinds of medium like sandy sediment 
or bubbly liquid in case of high amplitude acoustic waves is very important in practice. Figure 
1 presents the sketch of the problem studied in this paper. We assume that a circular source of 
two-frequency acoustics waves with a radius equal a is placed in plane y0z. Waves are 
propagated in x direction. The layer of liquid with different as water nonlinear properties is 
located between x=xP and x=xK. The receiver is placed at distances x=Xmax from the source. 
The pressure changes and power spectrum density on the beam axis were studied. 
Calculations were done for different values of physical parameters of the liquid in the layer.  
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Fig.1. Sketch of the problem



1. MATHEMATICAL AND NUMERICAL MODEL 

The problem of waves propagation can be modelled using the KZK equation: 
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where c0 and ρ0 denote speed of sound and medium density in the equilibrium, b denotes 
dissipation coefficient of the medium, ε is nonlinear coefficient, variable 0/ cxt −=τ . 

Assuming axial symmetry of the problem the Laplace operator is given by 
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where 22 zyr += . This equation describes the acoustic pressure changes p’=p’(x,r,τ) along 
the sound beam.  

Assuming that the source generates two harmonic waves, the boundary conditions can 
be written in the following form: 
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where p0i and ii fπω 2= , i=1,2 denote amplitudes and angular frequencies of primary waves 
respectively. 

Additionally we assume that function p’ is a periodic function of the time coordinate 
and 
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       We are seeking the solution of the problem (1), (2) inside of the cylinder with radius Rmax, 
at distances from the source to Xmax, i.e. in the space { }],0[],,0[:),( maxmax RrXxrxD ∈∈=  
for the fixed time interval (Fig.2). Because of diffraction this radius must be suitably great 
taking examined distances from the source into consideration.  
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Fig.2. Geometry of the problem 
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To solve the problem numerically dimensionless variables are introduced 
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Then the equation (1) can be rewritten as 
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abM = . The boundary condition (2) has now following form: 
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where Pi are amplitudes of the normalized primary waves and τωθ iil = (i=1,2).  

The finite-difference method is used to solve the problem (3), (4) numerically. As a 
result of computer calculations we obtain the pressure values inside the predetermined area 
and at fixed time interval.  
 

2. RESULTS OF NUMERICAL INVESTIGATIONS 

Numerical calculations were carried out assuming that circular source generates 
harmonic waves with frequencies equal f1=30 kHz, f2=35 kHz and identical amplitudes 
p0i=5kPa. Figure 3 presents the generated signal.  

 

 
 

Fig.3. Pressure as a function of time 
 

The aim of the theoretical investigations was analysis of pressure changes in the non-
linear medium. In a first step of these investigations we have analysed the influence of 
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varying acoustic parameters in water on the resulting acoustic field. Figure 4 shows on-axis 
pressure amplitudes of different frequency waves as a function of distance from the source. 
Left figure presents pressure amplitude of f1 (solid line) and f2 (dashed line) frequency wave. 
The pressure amplitudes of their second harmonic waves and sum frequency wave (dotted 
line) are shown in right figure respectively. Calculations  were  done  for  c0=1450 m/s, 
ρ0=1000 kg/m3, ε=3.5 and b=0.004 what is equivalent with values of parameters N=7.8·10-4 
and M=2.8·10-7. It corresponds to waves propagation in water. The power spectrum density on 
the beam axis at distance x=0.3 m and x=1 m for this example is shown in Fig. 5. 
 
 

 
Fig.4. On-axis pressure amplitude of the different frequency waves as a function of a distance from the 

source 
 
 

x=0.3 m x=1 m 

 
Fig.5. Power spectrum density on the beam axis for different distances from the source 
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Figure 6 presents the comparison of the pressure amplitudes at f1 and 2f1 obtained for 
different values of parameter M (p’f,M  denotes pressure amplitude of f frequency wave obtained for 
parameter M ).  
 

a) b) 

 
Fig.6. Comparison of on-axis pressure amplitudes of f1 and 2f1 frequency wave calculated for different 

values of parameter M: a) |p’f1,M-p’f1,0| (---); |p’f1,10M-p’f1,0| ( - - -); |p’f1,100M-p’f1,0| (…),  
b) |p’2f1,M-p’f1,0| (---); |p’2f1,10M-p’2f1,0| ( - - -); |p’2f1,100M-p’2f1,0| (…) 

 
Theoretical analysis of the problem of waves propagation in medium which is not 

homogeneous is much more difficult. In the next step of theoretical investigation we studied 
that problem. Now we assume that layer of liquid with physical parameters different as water 
is located at distances from xP=0.3 m to xK=0.4 m.   

 

 
 

Fig.7. Pressure amplitude of 2f1 frequency wave as a function of distance from the source  
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Figure 7 presents on-axis pressure amplitudes of 2f1 frequency wave obtained for 
different values of parameter NL. Solid line presents result obtained for NL=7.8·10-4, dashed 
line shows similar results obtained for NL=0.011 and dotted one was obtained for NL=0.022 
(ML=M).  

On-axis pressure amplitude of 2f1, 2f2 and sum frequency waves as a function of 
distance from the source presents Fig. 8 (NL=0.022). Power spectrum density calculated at 
distance x=1 m for this example is shown in next figure. On-axis pressure at distance x=0.3 m 
and x=1 m shows Fig 10.  

 

 
 

Fig.8. On-axis pressure amplitude of different frequency waves as a function of distance from the 
source 

 

 
 

Fig.9. Power spectrum density on the beam axis at distance x=1 m  
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x=0.3 m x=1 m 

 
Fig.10. On-axis pressure as a function of time at different distances from the source 

 
Last step of theoretical investigation was connected with influence of layer thickness L 

on the pressure distribution. Example of theoretical investigations is shown in Fig. 11. This 
figure presents power spectrum density obtained at distance x=1 m. Solid lines present the 
results obtained for f1 and 2f1 frequency wave respectively. Results obtained for f2 and 2f2 
frequency waves show dashed lines. Dotted line illustrates the power spectrum density 
obtained for sum frequency wave.  

 

 
 

Fig.11. Power spectrum density at distance x=1 m for different layer thickness 
 

3. CONCLUSIONS 

The paper presented the results of theoretical investigation of nonlinear wave 
propagation in non-homogeneous medium. Mathematical model was built on the basis on the 
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KZK equation which allows including nonlinearity, dissipation of medium and sound beam 
diffraction. However presented in this paper mathematical model do not cover all physical 
properties. For example it does not include dispersion.  

Correct choice of numerical parameters is very important for the output of numerical 
calculations [1-2]. It influences accuracy and correctness of results. But it is also important to 
remember that correct choice of values of physical parameters is also very important during 
numerical calculations. It is worth to say that if values of physical parameters are well known 
for propagation in water (for example [3]) than another situation is for example in bubble 
layer. It is possible to find information about speed in pure liquid but there are no sufficient 
data on values of nonlinear and in particular dissipation coefficient depending on bubbles size 
distribution and their concentration. 
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