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Abstract

In this paper, the tunnelling-induced deformation in anisotropic stiff soils is analysed using FE

modelling. The influence of material description is investigated rather than an advanced simu-

lation of the tunnelling method. A new hyperelastic-plastic model is proposed to describe the

anisotropic mechanical behaviour of stiff highly overconsolidated soil. This model can reproduce

the superposition of variable stress-induced anisotropy and constant inherent cross-anisotropy

of the small strain stiffness. Additionally, a Brick-type framework accounts for the strain

degradation of stiffness. Formulation of the novel model is presented. The tunnelling-induced

deformation is first investigated in plane strain conditions for a simple boundary value problem

of homogeneous ground. The influence of initial stress anisotropy and inherent cross-anisotropy

is inspected. Later, the results of 2D simulations are compared with the analogous results of

3D simulations considering different excavated length of the tunnel sections. The tunnelling

process is reproduced by introduction of a supported excavation and a lining contraction stage

in undrained conditions. Finally, the tunnelling case study at St James Park is back analysed

using the proposed material model in plane strain conditions. The obtained calculation results

are compared with the field measurements and discussed.
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List of symbols

c Effective cohesion

C, Cijkl Fourth-order elastic compliance tensor

diag(a1, ..., an) Diagonal matrix constructed from vector a

e, eij Deviatoric part of the strain tensor,

eij = εij − 1
3
εkk δij

E Young’s modulus

G Shear modulus

K Stress ratio,

K = σh/σv or K = σxx/σyy

m Order of stiffness dependency on stress (exponent in the power law)

M,Mij Microstructure tensor

p Mean effective stress,

p = −1
3
σkk

q Deviatoric stress,

q =
√

3
2
sijsij

s, sij Deviatoric part of the stress tensor,

sij = σij + p δij

ux, uy, uz Displacement components in x, y, z directions, respectively

v, vi Symmetry axis in a cross-anisotropic material (unit vector)

W Elastic potential

xi Geometrical axes (in 2D calculations x2 or y is vertical,

in 3D calculations x3 or z is vertical)

αG Small strain stiffness cross-anisotropy coefficient,

αG = G0hh/G0vh

β Parameter coupling the Poisson’s ratio and the order of stress dependency

of the elastic stiffness in Vermeer’s model

δ, δij Kronecker’s symbol

ε, εij Strain tensor, compression negative
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ϕ Effective friction angle

ν Poisson’s ratio

σ, σij Effective Cauchy stress tensor, compression negative

σ1, σ2, σ3 Major, intermediate and minor principal stress components, respectively

()0, ()
0 Initial or small strain values

()ref, ()
ref Reference values

()s, ()t Secant and tangent parameters or operators, respectively

()u Undrained parameter

()v, ()h Cross-anisotropic components along the symmetry axis and in the plane

of isotropy, respectively (here collinear with vertical and horizontal direction)

() Functions of both stress and jointed stress-microstructure invariants

· Single contraction, e.g.

a · b = aibi or A · b = Aijbj

⊗ Dyadic or outer product, e.g.

A = a⊗ b = aibj = Aij

∥ ∥ Euclidean norm, e.g.

∥x∥ =
√
xixi or ∥ε∥ =

√
εijεij

tr () Trace of a tensor, e.g.

trσ = σii

()n Power of a tensor, e.g.

σn =

n︷ ︸︸ ︷
σ · σ · . . . · σ or trσ2 = tr (σijσjk) = σijσij

1. Introduction

In geotechnics, tunnelling problems are usually related to the unloading and resulting strong

redistribution of stress within the subsoil. The principal stress directions undergo large ro-

tations and the ratios of principal stress components change significantly in the vicinity of

tunnel excavation. Soils with anisotropic microstructure show directional dependent material

properties and the stress redistribution occurs relatively to the material directions. This causes

significant changes of the stiffness during tunnelling, see Fig. 1. The numerical modelling of the
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initial state state after tunnelling

Figure 1: Changes of principal stress components σi and directions nσi due to tunnelling. A cross-anisotropic

soil is considered and the geometrical axes (x1, x2) are collinear with the material directions. They represent the

plane of symmetry (h) and the axis of symmetry (v, v), respectively. This standard configuration is prescribed

in the numerical analyses presented in the article.

geotechnical boundary value problems (BVP) involving unloading phases requires an appropri-

ate material description of the soil behaviour. It should allow an accurate simulation of the

mechanical characteristics in the range of small and intermediate strains. This is particularly

relevant in the stiff overconsolidated fine-grained soils. The most important are the pre-failure

stiffness nonlinearity related to the barotropy, the strain degradation of the current tangent

stiffness moduli and the stiffness anisotropy. In the numerical analyses of tunnelling-induced

deformation with the soil models based on the linear isotropic elasticity for the small strain

stiffness, the calculated displacements are shown to be too small when compared with the field

measurements, judging by e.g. the depth and steepness of the greenfield surface settlement

troughs [1]. The incorporation of the stiffness nonlinearity in the soil model is an important

improvement [16]. However, the stiffness anisotropy should be additionally taken into account

because it results in better accuracy of the estimated deformation [23, 1, 29, 12, 33, 3, 21].

Constitutive models implemented in the commercial codes for geotechnical simulations

rarely allow to simulate both the nonlinear and anisotropic pre-failure stiffness of soils. It

is usually related to a more complicated formulation and implementation than in the case

of isotropic models. The use of anisotropic models is also uncommon in practice due to the
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scarcity of additional parameters describing the anisotropy and the lack of standardisation in

determining them. However, the recent improvement of measurement tools in experimental soil

mechanics enables the design and execution of precise investigations of the stiffness anisotropy.

Usually the cross-anisotropic shear moduli are measured in the triaxial apparatus equipped

with seismic bender elements oriented both vertically and horizontally. Performance of the

anisotropic models is typically validated in element tests. However, the most challenging is the

final application of the developed model in the real BVPs where the complexity is not only re-

lated to the material description but also to the modelling of drainage conditions, groundwater

flow, consolidation and heterogeneous geological structure. The robustness and simplicity of

an anisotropic constitutive model are highly desired.

The description of anisotropy in the proposed model is included entirely in the hypere-

lastic small strain kernel. The hyperelastic stress-strain relation is derived from the stress

and microstructure-based potential function and it allows to model both the stress-induced

anisotropy, related to the actual stress obliquity, and constant inherent cross-anisotropy de-

fined by material directions. The crucial cross-anisotropic parameter is the coefficient αG being

the ratio of the shear modulus in the plane of symmetry G0hh to the shear modulus in the plane

passing through the axis of symmetry G0vh. The remaining elements of the proposed model

are isotropic. These elements are the stiffness degradation procedure based on the Brick-type

model [36] and the shear strength criterion by Matsuoka-Nakai [25]. However, the anisotropic

stiffness from the small strain hyperelastic kernel is spread to the intermediate and large strains

and influences the deformation and the stress paths in undrained conditions [39, 46, 30]. A

simplicity of the model is due to the lack of closed conventional yield surfaces in the stress space

and the assumption that the inherent cross-anisotropy is constant in stiff soils. This does not

allow simulation of the evolution of anisotropy for large strains, e.g. during the initial geological

history of the deposit [27, 2]. Hence, the initial K0 stress ratio needs to be specified before the

simulations.

In the first part of the FE simulations presented in the article, a parametric study of the

influence of the initial K0 stress conditions and the coefficient of inherent cross-anisotropy αG

on the induced deformation is performed in a simple tunnelling BVP. Next, the model efficiency

is examined in the back analysis of the well-known case study of the twin-tunnel construction

beneath St James’s Park in London [32].
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2. Hyperelastic-plastic material model

The preliminary version of the used constitutive description was formulated in [7]. Verification

of the model in some exemplary boundary value problems (BVP) of tunnelling and excavation is

given in [8]. The model is based on the anisotropic hyperelastic kernel. The reference tangent

shear modulus is subjected to the strain degradation. The stress states are limited by the

isotropic shear strength criterion proposed by Matsuoka and Nakai [25].

2.1. Small strain anisotropic hyperelastic kernel

The novel hyperelastic model has been thoroughly described in [9]. It is a modification of

the Vermeer’s hyperelastic model [43] with incorporation of the inherent cross-anisotropy. In

the original hyperelastic formulation, the elastic potential is a function of the following stress

invariant:

Q(σ) =
1

2
trσ2 =

1

2
σijσij, (1)

which provides the stress-induced anisotropy of the resulting hyperelastic stiffness. In the

modified model, the inherent anisotropy is additionally taken into account using the joint

stress–microstructure invariant QM defined as:

QM(σ,M) =
1

2
tr (σ2 ·M) =

1

2
Mijσjkσki, (2)

where M is the second-order microstructure tensor [4]. In the case of cross-anisotropy, M is

calculated as the following dyadic product:

M = v⊗ v or Mij = vivj, (3)

where the unit vector v defines the symmetry axis normal to the plane of isotropy. Here, the

horizontal plane of isotropy with the vertical symmetry axis is assumed, i.e. v = [0, 1, 0]T and

M = diag(0, 1, 0), see Fig. 1. The invariants Q and QM are grouped to obtain the following

mixed invariant:

Q(σ,M) = c1Q(σ) + c2QM(σ,M) =
1

2

mij︷ ︸︸ ︷
(c1δij + c2Mij)σjkσki =

1

2
mijσjkσki, (4)
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where c1 and c2 are the material constants. They account for the stress-induced and inherent

cross-anisotropy. The stress-induced anisotropy may vary with stress, but the inherent cross-

anisotropy is constant in the model.

The anisotropic elastic potential in the modified formulation is defined as:

W (σ,M) =
3p1−βref

2Gref
0 (1 + β)

[
2

3
Q(σ,M)

](1+β)/2
, (5)

where Gref
0 is the reference shear modulus. It is measured at the isotropic stress p = pref. The

potential represents the negative Gibbs free energy which is a function of stress of order 1 + β.

In Eq. 5, β is a material parameter that controls the order of stiffness stress dependency,

m = 1 − β, and the cross-anisotropic Poisson’s ratios [9]. The second stress derivative of

W (σ,M) returns the tangent compliance Ct(σ,M) of the anisotropic hyperelastic material:

Ct
ijkl =

∂2W (σ,M)

∂σij∂σkl
=

p1−βref

4Gref
0

[
2

3
Q(σ,M)

](β−1)/2

Aijkl, (6)

where

Aijkl = (δjlmik + δilmjk)
symm − (1− β)

(σalmak + σbkmbl) (σajmai + σbimbj)

4Q(σ,M)
, (7)

and

(δjlmik + δilmjk)
symm =

1

2
(δjlmik + δjkmil + δilmjk + δikmjl). (8)

In the implementation, the fourth-order compliance tensor is transformed into the Voigt

matrix notation and inverted either analytically or numerically (in a general 3D case with an

arbitrary orientation of the plane of isotropy) to obtain the tangent stiffness matrix.

The parameters proposed in the original formulation are: Gref
0 , c1, c2, β, pref. However, it

is convenient to use the cross-anisotropic small strain stiffness parameters measured in the

laboratory or reported in the literature, e.g.: E0v, E0h - Young’s moduli in the vertical and

horizontal direction, respectively; G0vh, G0hh - Shear moduli in the vertical plane and in the

plane of isotropy, respectively; ν0vh - Poisson’s ratio for horizontal strain due to vertical strain;

ν0hh - Poisson’s ratio for horizontal strain due to complementary horizontal strain. Typical

values of these parameters for fine-grained soils, obtained within a specific range of stress, are
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isotropic elastic model

hyperelastic model

hyperelastic model

(a) (b)

Figure 2: Response envelopes of the initial hyperelastic stiffness plotted for different values of the axisymmetric

stress ratio (K = 0.5, 1.0, 2.0) and the inherent cross-anisotropy coefficient (αG = 0.7, 1.0, 2.0). Combinations

of these conditions are applied in the exemplary FE tunnelling simulations presented in Sect. 3.

reported in [26, 7]. It is shown in [9] that by fixing c1 = 1.0, the constant c2 is directly related

to the inherent cross-anisotropy coefficient αG:

c2 = 2(αG − 1), with αG =
G0hh

G0vh

, (9)

The simplified parameter set is: Gref
0vh, αG, β, pref. Therefore, the isotropic reference shear

modulus Gref
0 in Eq. 5 or Eq. 6 should be calculated from:

Gref
0 (Gref

0vh, αG, β) = Gref
0vh αG

(√
1 + 2αG

3

)β−1

. (10)

Remaining relations between cross-anisotropic Young’s moduli, Poisson’s ratios and the

parameters of the simplified set are given in [9].

The directional distribution of the stiffness in the presented hyperelastic model may be

illustrated using response envelopes [17]. A response envelope is a polar diagram of the tangent

stiffness or compliance tensor. Response envelopes for tangent stiffness are usually shown in

the axisymmetric stress plane (
√
2σh− σv) as a closed curve representing the stiffness response

to a circular strain probe. This is shown in Fig. 2 for Gref
0vh = const, β = 0.5 and different values

of the inherent cross-anisotropy coefficient αG and the axisymmetric stress ratio K. Solely the
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person bricks slack string taut string

(a) (b) (c) (d)

Figure 3: Strain degradation of stiffness in the Brick-type model presented for an exemplary monotonic strain

path (a-c) followed by sharp unloading (d). A person is pulling Nb = 3 bricks which when moved give stepwise

drops of the reference tangent shear modulus Gref
t from Gref

0 down to Gref
tmin. Proportions of the stiffness drops

can be defined for each brick separately.

value of Gref
0vh scales the size of response envelopes, and it is selected for the optimum visual

effect. The influence of pure inherent cross-anisotropy on the directional distribution of stiffness

is shown for the isotropic stress ratio K = 1.0 and αG = 0.7, 2.0. In Fig. 2b, the influence of

pure stress-induced anisotropy is presented for K = 0.5, 2.0 and αG = 1.0. Response envelopes

for the isotropic elastic model (E0 = 2G0vh(1 + ν0), ν0 = 0.2) serve as comparison. The mixed

stress-induced and inherent anisotropy for K ̸= 1.0 and αG ̸= 1.0 are illustrated in Fig. 2a.

2.2. Strain degradation of stiffness

The pre-failure behaviour concerning the gradual strain degradation of the stiffness is simulated

with the Brick-type model based on the original formulation by Simpson [37]. The Brick

model may be classified as an example of the concept of nested yield surfaces defined in the

strain space [28, 34]. It allows to simulate the stiffness degradation during monotonic loading

and the recovery of high initial stiffness after sharp strain path reversals. Different versions of

the Brick-type model are reported in the literature giving satisfactory results in various FE

computations, e.g. [38, 22, 24, 6, 11, 45, 21]. The Brick algorithm used in the calculations
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presented in this paper is described in detail in [10].

The idea of the model is presented schematically in Fig. 3. It uses the analogy of a man

pulling the finite number of bricks on strings. Initially, strings of different lengths sj are slack

(Fig. 3a) and the current tangent reference shear modulus Gref
t is equal to the initial value

Gref
0 obtained from Eq. 10. When the man moves, the strings become taut one by one, pulling

the next brick. The man’s movement represents strain and the strings lengths are radii of the

nested circular yield surfaces in the strain space. Each time the next brick starts being pulled

by the man, the tangent modulus Gref
t is degraded in steps (Fig. 3b). When all bricks are

pulled (Fig. 3c), the reference shear modulus achieves the constant minimum value Gref
tmin. It

should be noted that Gref
tmin is the internal isotropic stiffness constant and for αG ̸= 1.0 its value,

similarly like Gref
0 , should be calculated from Eq. 10 using Gref

vhmin. In the analogous Brick

formulation presented in [10] the minimum value of the reference shear modulus is denoted as

Gref
ur and it describes the unloading-reloading stiffness. When the loading direction in the strain

space changes, the strings are loosen and the high initial modulus Gref
0 is recovered (Fig. 3d).

In [10], coordinates of the man and bricks are defined in the general 6-dimensional strain

space; however, the relative strain distances between the man and bricks are measured by the

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.000001 0.00001 0.0001 0.001 0.01 0.1

continuous

stepwise model

for

Figure 4: The stepwise representation of the S-shaped curve to model strain degradation of the reference

tangent shear modulus Gref
t in the Brick-type model. The Euclidian norm of strain ∥ε∥ is used as a measure

of the distance between the man and bricks. Nb = 10 bricks are employed with equal stiffness proportions

(∆ωj
G = ∆ωG = const).
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shear strain invariant γ =
√

3/2 ∥e∥. Here, a modified solution is employed, and the relative

strain distance is measured by the Euclidian norm of strain ∥ε∥. Parameters of the used Brick

model describe the stepwise representation of the S-shaped curve shown in Fig. 4. The S-shape

curve presents the degradation of the stiffness ratio Gref
t /G

ref
0 with increasing strain measured

as ∥ε∥. The stepwise S-shaped curve approximates the following continuous model:

Gref
t

Gref
0

=

(
∥ε∥sh

∥ε∥sh + 3
7
∥ε∥

)2

, (11)

where ∥ε∥sh is the shape parameter controlling the steepness of the S-shaped curve. Equation

11 is a modified version of the proposal for degradation of Gref
t with shear strain by Santos and

Correia [35]. The elements of the stepwise S-shaped curve model, including the step height

△ωjG, the string length sj for every j-th brick, the number of bricks/steps Nb and the range of

stiffness degradation Gref
0 − Gref

tmin, may also be chosen in other ways, e.g. based on the direct

results of laboratory tests or by using a different continuous model. The stepwise model used

here involves Nb = 10 bricks to trace the strain history with equal step heights called the

stiffness proportions:

∆ωG =
Gref

0 −Gref
tmin

NbGref
0

. (12)

The string length sj for every j-th brick (j = 1..Nb) is calculated from:

sj =
7

3
∥ε∥sh

(√
1

1.0− j∆ωG + 0.5∆ωG
− 1

)
. (13)

In the numerical simulations, the initial locations of all bricks εbj and the man ε are usually

chosen at the origin of strain space and εbj = ε = 0. All presented simulations are performed

with a displacement-based FE program [5]. Hence, in the stress integration procedure, the

strain increment ∆ε is known. First, the following condition is checked for every j-th brick:

dj = ∥ε+∆ε− εbj∥ > sj. (14)

When the distance dj exceeds the string length sj, the j-th brick is assumed active and its

location should be updated by the following strain increment:

∆εbj = (ε+∆ε− εbj)
dj − sj

dj
. (15)
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Once the number of the active bricks nab is counted, the current tangent reference modulus

can be determined:

Gref
t = Gref

0 (1− nab∆ωG). (16)

It is used to calculate the components of the hyperelastic stiffness matrix and, consequently,

the stress increment ∆σ. In the implementation algorithm of the models for small and in-

termediate strains, it is important to introduce a substepping scheme since, generally, large

strain increments can be delivered from the main program. Small increments of the loading

are needed to avoid the overshooting of the nonlinear stiffness changes. In the calculations

presented in this article, the substepping is used for the strain increments of Euclidean norm

(∥∆ε∥ =
√

∆εij∆εij) that are larger than 10−5.

2.3. Shear strength criterion

In the original Brick model by Simpson [36, 11], the shear strength is reproduced correctly,

i.e. the mobilised friction angle cannot exceed the prescribed maximum friction angle. In the

proposed formulation, the shear strength is controlled by the conventional stress-based isotropic

Matsuoka-Nakai criterion [25]:

FMN(σ) = I1I2 −
9− sin2 ϕ

−1 + sin2 ϕ
I3 ≤ 0, (17)

where ϕ is the effective maximum friction angle and I1, I2, I3 are the stress invariants defined

as:

I1 = σkk, I2 =
1

2

[
σijσij − (I1)

2
]
, I3 = det(σ). (18)

To introduce the effective cohesion parameter c, one should calculate the stress invariants

in Eq. 18 for the stress state σ − pcδ with pc = c cotϕ. Additionally, the admissible stress

states are limited by the Rankine tension cut-off criterion p ≥ pte.

The flow rule is obtained from the Drucker-Prager plastic potential:

GDP(σ) = q − 6 sinψ

3− sinψ
p, (19)

where ψ is the dilatancy angle.
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C
ID

 te
st

s

CIU tests

CIU testsCID tests

CID tests

1 2

43

Figure 5: Simulation of triaxial CID and CIU element tests. 1,2: compression curves εv − q for different

values of αG and drainage conditions. Undrained compression is strain-controlled, so the activation of bricks is

independent of αG and the single εv − nab curve is plotted together with εv − q curves. 3: drained compression

is stress-controlled and the activation of bricks is shown in a separate graph. 4: stress paths in p− q plane for

all performed element tests.

When the stress state calculated in the Brick part of the model (Sect. 2.2) does not obey

the shear strength criterion from Eq. 17, it is returned to the yield surface FMN = 0. To this

end, the implicit return mapping algorithm is applied as described in [20]. The use of the shear

strength criterion in the stress space together with the strain-based stiffness degradation model

may result in a non-smooth arrival at the deviatoric stress limit. This issue may be minimised

by a careful estimation of ∥ε∥sh.

2.4. Exemplary element tests

The proposed constitutive model was verified in [7, 9] with selected laboratory test results from

the literature for various strain thresholds. In this section, the response of the model at the
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initial isotropic pressure p0 = pref = 100 kPa in triaxial drained (CID) and undrained (CIU)

compression is shown. The following values of the material parameters are used:

• Small strain stiffness: Gref
0vh = 50000 kPa, β = 0.5, αG = 0.7, 1.0, 2.0, pref = 100 kPa;

• Stiffness degradation: Nb = 10, Gref
vhtmin = 0.1 ·Gref

0vh = 5000 kPa, ∥ε∥sh = 0.0007;

• Shear strength criterion: ϕ = 27◦, c = 10 kPa, ψ = 5◦, pte = 0 kPa.

The same values are used in the numerical simulations in Sect. 3. The main objective

of the element tests is to show the influence of the inherent cross-anisotropy on the triaxial

compression. Hence, all material parameters are fixed, except for the coefficient αG. The

results are presented in Fig. 5. In the drained compression, the axial stiffness is inversely

proportional to αG (note that comparison is shown for fixed Gref
0vh and not the Young’s modulus

E0v). In the undrained compression, the shear strength is inversely proportional to αG as it

influences the effective stress paths.

3. Simple example of a tunnelling problem

A simple BVP is analysed. A homogeneous soil around the tunnel is assumed in order to focus

on the influence of the coefficient of inherent cross-anisotropy αG and the initial K0 stress state

on the deformation induced during the tunnel construction in undrained conditions. Assuming

the same geometrical and material properties, both the plane strain (2D, 15-node triangle

elements) and three-dimensional (3D, 10-node tetrahedral elements) FE models are prepared

for numerical analyses. There is no regularisation procedure accessible in the used FE code

[5]. To minimise the mesh dependency, first, a possibly fine regular mesh was applied in the

whole analysed domain. Then, the mesh of domains far from the tunnel was coarsened until

the results started to change substantially.

3.1. 2D model

In the 2D model presented in Fig. 6, a 5.0-m-diameter tunnel with a 0.2-m-thick concrete

liner is situated at two different depths: with 16.0m (deep tunnel) and 9.0m (shallow tunnel)

soil overburden. Symmetry of the problem is taken into account and only the half of the

tunnel structure is considered. The dimensions of the model boundary are 50.0 x 31.0m. The
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Figure 6: Geometry and FE mesh of the analysed tunnel problem in plane strain conditions (deep tunnel: 1213

15-node triangular elements, 9992 nodes, shallow tunnel: 1162 15-node triangular elements, 9578 nodes).

behaviour of a 30.0m thick stiff clay layer is described by the proposed anisotropic model

with γsat = 20.0 kN/m3 assuming undrained conditions. The upper granular fill layer of 1.0m

thickness is described by the standard Mohr-Coulomb material to avoid the low level stress

dependency of stiffness. Drained conditions are assumed and the parameter values are: ϕ = 30◦,

c = 3.0 kPa, ψ = 0.0◦, E = 70000 kPa, ν = 0.2, γ = 18.0 kN/m3. The groundwater table is

located 1.0m under the ground surface and the soil below is presumed fully saturated. Closed

groundwater flow conditions are applied at the bottom and sides of the analysed area. The

TBM tunnelling is simulated using the lining contraction method, which is the standard tool

for such purposes in the employed FE code [5]. In the first calculation phase, the tunnel lining

is introduced by the activation of plate elements (concrete, thickness 0.2m, EA = 6 ·106 kN/m,

EI = 20 · 103 kPa/m) with the surrounding interface elements. Simultaneously, soil elements

and water pressure are deactivated inside the tunnel perimeter. In the next calculation phase,

the contraction of 1.0% is applied to the tunnel lining.

The influence of pure initial inherent cross-anisotropy is investigated in the tunnelling sim-

ulations with the initial isotropic stress condtition K0 = 1.0. Different values of the cross-

anisotropy coefficient αG = 0.7, 1.0, 2.0, 3.0 are examined. The obtained deformation in the

case of deep tunnel is illustrated in Fig. 7 by settlement troughs and horizontal displacement

component profiles in the selected horizontal and vertical cross-sections, respectively. The influ-

ence of αG is evident. In the case of surface settlement profile (along y = −1.5m), the steepness

and depth of the trough are proportional to the value of αG. This dependence is similar along
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Figure 7: Deep tunnel, settlement uy and horizontal displacement component ux profiles along the selected

horizontal and vertical cross-sections, respectively. The initial isotropic stress state K0 = 1.0 and different

values of the inherent cross-anisotropy coefficient αG.

the horizontal cross-section y = −7.5m; however, it inverses in the deeper cross-sections di-

rectly above (y = −16.0m) and below (y = −21.0m) the tunnel lining. Furthermore, the deep

settlement troughs are not smooth for high values of αG in the vicinity of the tunnel. Regard-

ing horizontal displacement profiles, the intensity of horizontal deformation is compatible with

settlement, i.e. in the tunnel vicinity (x = 3.0m) larger αG induces larger lateral deflection.

This relationship becomes inverse in the vertical cross-section located 5.0m from the tunnel

lining (along x = 7.5m).

The initial inherent cross-anisotropy influences also the maps of stiffness degradation. It is

illustrated in Fig. 8 by filled contour plots of the active bricks number nab obtained forK0 = 1.0

and three values of αG = 0.7, 1.0, 2.0. In the case of higher horizontal stiffness (αG = 2.0), some

zones of localised unloading (nab = 0) are visible in the close neighbourhood of the tunnel.

The hyperelastic kernel reproduces the pure stress-induced anisotropy of the stiffness for

αG = 1.0 and anisotropic stress states. In order to inspect the influence of pure stress-induced
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0 1 2 3 4 5 6 7 8 9 10

number of active bricks (      )

isotropic hypoelastic kernel

Figure 8: Deep tunnel, maps of stiffness degradation obtained for K0 = 1.0 and different values of αG. The

response of the model with purely isotropic hypoelastic kernel is shown for comparison. The intensity of stiffness

degradation is indicated by the number of active bricks nab computed after the undrained tunnel contraction

phase. In the subfigure for αG = 2.0, the red plastic points that indicate stress states reaching the shear strength

criterion are shown additionally. This allows to see the connection with the dark regions where unloading of all

bricks occurs close to the intensive shear zones.

anisotropy in the analysed tunnelling BVP, a reference isotropic stiffness needs to be introduced

as the small strain kernel. Moreover, such isotropic stiffness should be barotropic, i.e. depen-

dent on the mean stress level (not stress obliquity). This may be accomplished by using the

hypoelastic formulation based on the Hooke’s linear elastic stiffness with the constant Poisson’s

ratio ν0 and the stress-dependent small strain Young’s modulus:

E0(σ) = Eref
0

(
p

pref

)m
, (20)

where Eref
0 is the reference Young’s modulus at the reference mean stress p = pref and m is the

exponent in the above power law. Choosing the parameter values: Eref
0 = 120000 kPa, ν0 = 0.2,

m = 0.5, pref = 100 kPa and mean stress level p0, the initial hypoelastic stiffness is the same
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isotropic
hypoelastic kernel

Figure 9: Deep tunnel, comparison of the surface settlement uy profiles for different values of the initial stress

ratio K0 and the inherent cross-anisotropy coefficient αG.

as in the case of hyperelastic model for the isotropic stress σ0 = p0 diag(1, 1, 1), αG = 1.0 and

remaining parameter values fixed in the numerical simulations (Sect. 2.4).

The Brick stiffness degradation procedure in the reference isotropic model controls the

current value of the tangent Young’s modulus Eref
t . Its minimum value is selected likewise in

the anisotropic model, i.e. Eref
0min = 0.1 · Eref

0 = 12000 kPa.

The results of numerical simulations with the isotropic hypoelastic kernel are compared with

those obtained using the anisotropic hyperelastic kernel (without incorporation of the inherent

cross-anisotropy, αG = 1.0). This is shown for the maps of stiffness degradation and K0 = 1.0

in Fig. 8 and for the surface settlement troughs and three values of K0 = 0.5, 1.0, 2.0 in Fig.

9. The influence of pure stress-induced anisotropy of stiffness in the analysed tunnelling BVP

occurs to be of a minor importance. The differences in the stiffness degradation maps and

settlement troughs for the isotropic hypoelastic and the anisotropic hyperelastic (αG = 1.0)

small strain kernels are insignificant from the practical point of view.

The comparison of surface settlement troughs in Fig. 9 is presented to show the influence

of initial K0 stress state on the tunnelling-induced deformation. This is performed for three

values of the inherent cross-anisotropy coefficient, αG = 0.7, 1.0, 2.0. The depth and steepness

of the obtained surface settlement troughs are inversely proportional to the K0 value, and

the largest settlement is obtained for K0 = 0.5 for all examined αG coefficients. The largest

absolute settlement is obtained for K0 = 0.5 and αG = 2.0. In the case of K0 = 2.0, the shape

of settlement troughs becomes convex upwards above the tunnel, and for αG = 0.7 even uplift

over the initial ground level is obtained.
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Figure 10: Deep tunnel lining, comparison of total displacement ∥u∥ (left-hand side of each graph) and bending

moments M (right-hand side of each graph) polar diagrams for different values of the initial stress ratio K0 and

the inherent cross-anisotropy coefficient αG.

The deformation and bending of the deep tunnel lining are presented in Fig. 10 for all

analysed 2D cases. Under initial isotropic stress condition (K0 = 1.0), the ovalisation of

the tunnel lining is vertical for αG > 1.0 and horizontal for αG < 1.0. For αG = 1.0, the

deformed shape of the tunnel lining remains almost circular after the contraction and the

bending moments are negligible when compared with simulation results for assumed inherent

cross-anisotropy (αG ̸= 1.0). In the case of higher initial vertical stress component (K0 = 0.5),

the tunnel ovalisation is vertical regardless of the examined αG values. For the higher initial

horizontal stress component (K0 = 2.0) and αG = 0.7, 1.0, the ovalisation is horizontal. In the

simulation with K0 = 2.0 and αG = 2.0 the tunnel contracts almost isotropically with small

bending moments.

The same plan of FE numerical simulations is performed for the shallow tunnel geometry.

The influence of the pure initial inherent anisotropy on profiles of the vertical and horizontal

displacement components in the selected cross-sections is presented in Fig. 11. The general

mode of deformation and its dependency on αG are similar to those observed for the deep tunnel.

The main differences concern the smoothness of the displacement profiles. It is particularly

evident for the surface settlement troughs and can be explained by the small distance between

the tunnel and the ground level where localised shear zones occur. The influence of K0 on

the surface settlement troughs is presented in Fig. 12. The intensity of deformation is larger

as compared with the analogous results of deep tunnel simulations in Fig. 9. In the case of

K0 = 2.0, a much more pronounced heave is observed in the horizontal section above the tunnel.
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Figure 11: Shallow tunnel, settlement uy and horizontal displacement component ux profiles along the selected

cross-sections. Initial isotropic stress state K0 = 1.0 and different values of the inherent cross-anisotropy

coefficient αG.

isotropic
hypoelastic kernel

Figure 12: Shallow tunnel, comparison of surface settlement uy profiles for different values of the initial stress

ratio K0 and the inherent cross-anisotropy coefficient αG.
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Figure 13: Shallow tunnel lining, comparison of total displacement ∥u∥ (left-hand side of each graph) and

bending moments M (right-hand side of each graph) polar diagrams for different values of the initial stress ratio

K0 and the inherent cross-anisotropy coefficient αG.
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Figure 14: Geometry and FE mesh of the exemplary single tunnel problem in 3D conditions. Only the deep

tunnel case is analysed which is analogous to the model in plane strain conditions (42538 10-node tetrahedral

elements, 67659 nodes).

The deformation and bending of the shallow tunnel lining are presented in Fig. 13 for all

analysed 2D cases. Qualitatively, there are just minor variations from the comparable results

for the deep tunnel shown in Fig. 10, whereas quantitatively the largest differences between

the deep and shallow tunnels are observed for the initial stress states K0 = 0.5 and K0 = 1.0.

3.2. 3D model

The geometry of the 3D model, presented in Fig. 14, is obtained by 30m extrusion of the

2D model cross-section in the horizontal direction keeping the similar mesh density. In the
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Figure 15: Settlement uz and horizontal displacement component ux surface plots in the selected cross-sectional

planes obtained in 3D model. The initial isotropic stress stateK0 = 1.0 and different values of the inherent cross-

anisotropy coefficient αG are selected. In each graph, the deformations are shown after one-step introduction

of 2, 6, 10 and 14m long single tunnel sections followed by 1.0% contraction of the lining.
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3D version of the applied FE code [5], the vertical axis is v = [0, 0, 1]T , which leads to the

anisotropic microstructure tensor M = diag(0, 0, 1), according to Eq. 3. The main aim of

the 3D simulations is to analyse the influence of principal stress rotations occurring at the

front of the tunnel on the deformation under different degrees of the inherent cross-anisotropy.

Moreover, it was important to confront the 3D results with those obtained in the 2D model

using a similar method of tunnel contraction. Only FE simulations of the deep tunnel for

initial isotropic stress (K0 = 1.0) and three values of the inherent cross-anisotropy coefficient

αG = 0.7, 1.0, 2.0 are performed. The tunnel is introduced in the simulations as a single segment

of four different lengths (2, 6, 10 and 14m) indicated in Fig. 14. The tunnelling simulation

procedure, based on 1.0% contraction of the lining, is analogous to that applied in the 2D

model. The only exception is the application of the distributed horizontal loading in order

to support the front of the tunnel. From the top to the bottom of the tunnel’s front, a total

normal stress varying from 170 kPa up to 230 kPa is applied.

The obtained deformation is illustrated in Fig. 15 by settlement troughs and surface plots

of the horizontal displacement component in the selected two horizontal and one vertical cross-

sectional planes, respectively. The corresponding results of the 2D calculations are also shown

in Fig. 15 by the dashed settlement troughs placed in the front faces of the 3D graphs. As

expected, increasing the length of tunnelling segment results in deeper settlement troughs and

for the longest segment (14m) the results agree well with those obtained in the 2D simulations.

The deformation occurring in the vicinity of the tunnel lining after the contraction phase

in undrained conditions is illustrated by surface plots of ux in the vertical plane located at

x = 3.0m from the symmetry plane of the model. In the case of αG = 0.7 and the inherent

isotropy αG = 1.0, the magnitude of this deformation is almost equal regardless of the segment

length. The influence of the segment length on the ux surface plots is, however, evident for

αG = 2.0. The horizontal deformation obtained in the 2D calculations is reached for the longest

tunnel segment (14m).

4. St James’s tunnelling case study

The construction of twin tunnels of the Jubilee Line Extension project at St James’s Park in

London is back analysed with the proposed anisotropic hyperelastic-plastic constitutive model

used for London Clay. The results of field measurements at St James’s Park are often used for
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terrace gravel, kh = kv= 1.0 [m/day]

London Clay B2 unit, kh = 2kv= 0.038.10-3 [m/day]
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Figure 16: Geometry and FE mesh of the back analysed case study of twin tunnels in London Clay at St

James’s Park (5682 15-node triangular elements, 45985 nodes). The position of measuring instrumentation (rod

extensometers and electrolevel inclinometers in axes A-C and E-G) is shown.

the validation of soil models and tunnelling simulation methods [1, 12, 15, 47, 3, 42, 21]. This

is a very well-instrumented and documented case study. The field measurement results are

available in reports [32, 41] with extensive supporting data on the mechanical characteristics

of London Clay in, e.g. [13, 31, 14, 19].

4.1. FE model

The applied 2D model geometry and FE mesh, with the boundary dimensions of 182.0 x 52.5m,

is shown in Fig. 16. The model geometry is adopted from [1, 3]. Two tunnels, with the

diameter of 4.85m and 0.17m thick concrete lining, were constructed using an open-face shield

and excavated by mechanical backhoe in London Clay. The tunnel axes in the analysed cross-

section are at the depths of 30.5m and 20.0m below the ground surface in the case of westbound

(WB) and eastbound (EB) tunnels, respectively. The groundwater level is located 5.5m below

the ground surface. London Clay deposit is covered by 2.7m layer of the terrace gravel and
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5.5m layer of the made ground. Closed groundwater flow conditions are applied at the bottom

of the analysed rectangular area. The tunnelling simulation procedure, based on the contraction

of the lining in the undrained calculation phase, is analogous to that applied in Section 3. The

values of tunnel contraction applied in the simulations are equal to the measured volume loss

vL at the ground surface. It follows the assumption that the measured vL corresponds to the

deformation of soil around the tunnel that moves towards the tunnel boundary. Additionally,

after the construction of WB and EB tunnels the consolidation calculation phases are included

in the simulations according to the real time schedule on the site. During the consolidation

phases, seepage groundwater flow conditions are assumed around the tunnel [44].

(b)

(a)

model

London Clay B2

model

London Clay B2

model

London Clay A3

model

London Clay B2

Figure 17: Calibrations of the hyperelastic-plastic model stiffness and strength parameters for London Clay.

Element test results are compared to the undrained triaxial compression test results from [19]: (a) London Clay

B2 unit (B2c 11 m block sample), (b) London Clay A3 unit (38.71 m sample)
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Table 1: Parameters of London Clay B2 and A3 units

Parameter London Clay B2 London Clay A3

Small strain stiffness

Gref
0vh [kPa] 48080 70000

β [-] 0.5 0.5

αG [-] 2.0 2.0

pref [kPa] 100 100

Stiffness degradation
Gref

vhtmin [kPa] 2000 7000

||ε||sh [-] 0.0009 0.0004

Shear strength criterion

ϕ [◦] 30 28

c [kPa] 15 55

ψ [◦] 5 5

pte [kPa] 0 0

Unit weight and initial stress
γ [kN/m3] 20.0 20.0

K0 [-] 1.0 1.0

4.2. Soil properties

Following the numerical analyses in [1, 3], the made ground is modelled as a linear elastic

material (E = 5000 kPa, ν = 0.3, γ = 18 kN/m3), terrace gravel is described by the Mohr-

Coulomb model (E = 35000 kPa, ν = 0.2, γ = 20 kN/m3, c = 1kPa, ϕ = 35◦, ψ = 17.5◦). The

initial stress ratio in these cover soil layers is K0 = 0.5.

The mechanical behaviour of London Clay B2 and A3 units is simulated with the proposed

anisotropic hyperelastic-plastic material model. A series of undrained triaxial compression

element tests were simulated to determine the stiffness and strength parameters for London

Clay. The numerical element test results were confronted in the calibration with the results of

high quality laboratory tests reported in [14, 19].

According to the findings presented in [19], the average value of the inherent cross-anisotropy

coefficient from laboratory tests , αG = 2.0, is chosen. The remaining stiffness parameters,

i.e.: Gref
0vh, β, pref, ||ε||sh, Gref

vhtmin, are determined by fitting the S-shaped curves of the secant

undrained Young’s modulus Es
uv that undergoes the degradation with the vertical strain εv.

The shear strength softening is not incorporated into the constitutive model and the applied

Matsuoka-Nakai [25] shear strength criterion simply represents the peak envelope. Hence,

unlike in the critical state models, the effective cohesion parameter is used here. The shear

strength parameters of London Clay units are obtained by fitting the strength envelope to the

undrained compression stress paths. The fitting of S-shaped curves and undrained stress paths

for laboratory tests on B2 and A3 London Clay units is presented in Fig. 17.
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Still the most difficult initial state parameter to be determined for the overconsolidated clay

deposits is the initial stress ratioK0. Its value is influenced by the geological history which is not

easy to describe and simulate accurately. On the other hand, the interpretation of K0 from in

situ measurements is difficult due to the evident stiffness anisotropy. In the numerical analyses

presented by Addenbrooke et al. [1], the constant initial stress ratio K0 = 1.5 is adopted in

London Clay from the upper-bound profile given by Hight and Higgins [18] for depths between

10 and 30m below the ground surface. Grammatikopoulou et al. [16] and Avgerinos et al.

[3] used kinematic hardening soil models to simulate the deposition and overloading/unloading

history. They obtained variable depth-K0 profiles. In both cases K0 is almost constant with the

average value close to 1.0 within the deeper part of A3 unit. The variability of K0 within the

B2 unit is larger and its value approaches 0.5 directly below the bottom of the terrace gravel.

The anisotropic model presented in the paper is designed for modelling stiff overconsolidated

soils, and it is not capable to simulate normally consolidated state properly. Therefore, the

initial stress state should be prescribed for the current geometry of geological layers. In the

presented numerical simulations of the St James’s case study, the initial stress ratio is K0 = 1.0

for the both London Clay units.

The values of all parameters of the anisotropic hyperelastic-plastic model for London Clay

units B2 and A3 are listed in Table 1. The permeability in London Clay is anisotropic and

decreases with depth. The values of permeability coefficients, adopted from [1] for the separated

London Clay layers and cover soils, are shown in Fig. 16.

4.3. Calculations and results

The following calculation phases were performed in the numerical analysis:

• Initiation of state variables, hydrostatic pore water pressure, and K0 stress conditions;

• WB tunnel construction, application of contraction in undrained conditions;

• Consolidation phase, ∆t = 256 days;

• EB tunnel construction, application of contraction in undrained conditions;

• Three consolidation phases, ∆t = 415, 3440, 1831 days.
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all soils undrained, contraction 3.3%

London Clay undrained, contraction 2.8%

London Clay undrained, contraction 3.3%
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London Clay undrained, contraction 2.9%

all soils undrained, contraction 2.9%

London Clay undrained, contraction 2.4%
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Figure 18: Surface settlement troughs after the construction of (a) WB tunnel and (b) EB tunnel. Comparison

of field measurements with calculation results from the three modelling variants regarding undrained behaviour

of cover soils and tunnel contraction values.

In the FE code used in the calculations [5], the undrained behaviour, i.e. preventing changes

of volumetric strain by high bulk modulus of pore water resulting in changes of excess pore

pressure, may be selected in the material properties to be active or not during the undrained

calculation phase. The values of volume loss prescribed to the tunnel contractions in undrained

calculation phases are reported in [32]. In the WB and EB tunnels at St James’s Park, the

volume losses are 3.3% and 2.9%, respectively. These values are remarkably high in comparison

with commonly estimated volume losses in similar tunnelling projects. This is discussed by

Standing and Burland [40] or more recently by Jovičić et al. [21].

The first investigated aspect of the performed analysis were the immediate settlement

troughs induced separately during the WB and EB tunnel constructions. Three different sets

of simulation conditions regarding the undrained behaviour of cover soils and the values of tun-

nel contraction were considered. The calculated settlement troughs for all modelling variants

compared with field measurements are shown in Fig. 18.

In the first variant, the undrained behaviour is selected only to the London Clay layers

and the cover soils are modelled as drained, the contraction values for the WB and EB tun-

nels are set to 3.3% and 2.9%, respectively, as recommended in [32]. The steepness of the

obtained settlement troughs are satisfactory; however, the calculated settlement is higher than
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the measured in the centrelines for both tunnels, i.e.: 15% and 21% for WB and EB tunnels,

respectively.

In the second variant of the simulation conditions, the undrained behaviour is chosen for

all soil layers while maintaining the recommended high tunnel contractions. In this case, the

calculated steepness and depth of the settlement troughs show good agreement with the field

measurement.

The cover soils are not fine-grained; hence, it seems reasonable to model them assuming the

drained behaviour during the tunnel contraction phases. For this reason, in the third variant

of the simulation conditions, undrained behavior is applied only to the London Clay layers and

the recommended values of contractions were reduced to give the depths of settlement trough

being equal to the measured ones. The lowered contraction values for the WB and EB tunnels

are 2.8% and 2.4%, respectively. This set of modelling conditions gives the best fit to the

measured surface settlement troughs as can be seen in Fig. 18.

In the following, the results of performed numerical simulations are presented for the drained

behaviour of cover soils, i.e. for the first and third variant of the modelling conditions. The

calculated and measured profiles of displacement components, induced during the tunnel con-

struction phases, in vertical axes A,B,C and E,F,G (shown in Fig. 16) are presented in Figs. 19

and 20 for the WB and EB tunnels, respectively. Generally, a good compatibility is displayed

and the calculated displacements are slightly higher than the measured ones. The difference be-

tween the displacements calculated with the high and reduced contraction is also not significant

from the practical point of view.

The additional deformation during the consolidation phases, i.e. between the WB and EB

tunnel constructions and after the EB tunnel construction, is uniform. The comparison of

the calculated and measured long-term deformation is shown for the settlement trough located

5.0m under the ground surface in Fig. 21. The total settlement profiles are shown, i.e. both

the settlement induced in the undrained tunnel construction phases and the consolidation

settlement, are included. The results of field measurements are taken from [3]. The calculated

long-term settlement profiles present satisfactory agreement with the measured ones only during

the period of the WB and EB tunnel constructions including 256 days of consolidation. However,

the measured settlements during 5686 days (ca. 15.5 years) after the EB tunnel construction are

almost two times higher then the calculated. In the calculations, the consolidation settlement
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contraction 3.3%

contraction 2.8%

WB tunnel, London Clay undrained

field measurements

A B C

A C

1

3

Figure 19: The immediate deformation induced during the WB tunnel undrained construction phase: calculated

and measured vertical displacement component profiles uy in axes A,B,C and horizontal displacement component

profiles ux in axes A,C.

is stabilising in 15.5 years, whereas in the field measurements the long-term deformations are

still increasing.

5. Conclusions

The application of a new anisotropic hyperelastic-plastic constitutive model for stiff soils in the

FE simulations of tunnelling-induced deformation is presented in the article. The structure of

the model is simple, and it inherits the one used in the standard elastic-plastic models where

admissible stress states are limited only by the conventional shear strength criterion. The most

important improvement is the novel material description of the pre-failure barotropic stiffness,

which is based on the anisotropic hyperelastic stress-strain relation controlled by the strain

based Brick-type procedure. The number of material constants is not excessive, and the
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contraction 2.9%

contraction 2.4%

EB tunnel, London Clay undrained

field measurements

1

3

E F G

E G

Figure 20: The immediate deformation induced during the EB tunnel undrained construction phase: calculated

and measured vertical displacement component profiles uy in axes E,F,G and horizontal displacement component

profiles ux in axes E,G.

model parameters are determinable in the present experimental routines. The results of the

conducted FE tunnelling simulations are shown to be in a good agreement with deformation

observed in the real cases, judging by field measurements of the surface settlement troughs and

displacement field around the tunnel excavations. The final shapes of the settlement troughs are

shown to be dependent both on the inherent cross-anisotropy coefficient αG and the initial stress

ratio K0 values. Nevertheless, the magnitude of the settlement is proportional to the applied

tunnel contraction value which is the technological parameter in the modelling of tunnelling-

induced deformation. The performance of the model is best in the short-term analyses in

soil undrained conditions. This is an important practical aspect as the most unfavourable

differential displacements are induced in the short-term undrained conditions. However, the

calculated long-term settlements for the analysed tunnelling case study at St James’s Park are
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WB centreline EB centreline WB centreline EB centreline

WB construction

EB construction

consolidation �t=265 days consolidation �t=3440 days

consolidation �t=415 days

consolidation �t=1831 days

(a) (b)

Figure 21: Calculated (thick solid lines) and measured long-term total settlements troughs in the horizontal

cross-section located 5.0m under the ground surface. The case with the reduced tunnel contraction is presented:

(a) construction period of the WB and EB tunnels, (b) settlements after the EB tunnel construction.

too small, and this problem needs to be improved in the further development of the model.

It can be achieved by introduction of a boundary yield surface or surfaces controlled by the

evolution of new state variables with a cost of additional material parameters. In the future

works, it is planned to take into account the small-strain cross-anisotropy incorporation in the

elastic region of the HSBrick model introduced recently in [10].
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