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This paper describes the design of an interval observer for the estimation of unmeasured quality state variables in drinking
water distribution systems. The estimator utilizes a set bounded model of uncertainty to produce robust interval bounds on
the estimated state variables of the water quality. The bounds are generated by solving two differential equations. Hence
the numerical efficiency is sufficient for on-line monitoring of the water quality. The observer is applied to an exemplary
water network and its performance is validated by simulations.
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1. Introduction

Information about state variables is important for safe
and efficient process operation. Monitoring the system in
question provides this kind of knowledge. Unfortunately,
all process state variables can rarely be directly measured.
This is because of the lack of suitable sensors or due to
their high cost. Therefore, the missing information about
states has to be recovered by employing their estimate
that is based on other hard measurements and a math-
ematical model of the process. The modelling involves
also modelling uncertainty. There are several approaches
to uncertainty modelling. A set-membership approach is
an attractive option (Brdys and Kang, 1994). Optimisa-
tion based set-membership algorithms for set bounded es-
timation of the quantity and integrated quantity and qual-
ity in drinking water distribution systems are presented in
(Brdys and Chen, 1995; Duzinkiewicz, 2006) and (Brdys
and Chen, 1996), respectively. Unfortunately, due to the
necessity of solving highly non-linear and non-convex op-
timisation problems during the estimation process, such
estimation methods are time-consuming, and thus not al-
ways applicable to on-line estimation. Hence, the paper
proposes an alternative estimation method that further de-
velops an observer known as an interval observer (Gouzé

et al., 2000) so that it can now be realistically applied to
the estimation of the water quality in drinking water dis-
tribution systems (DWDSs).

The paper is organized as follows: A physical qual-
ity model of a DWDS and a model for the estimation pur-
poses are presented in Section 2. The quality estimation
problem is analyzed in Section 3 and the estimation prob-
lem is quantitatively formulated. Next, the interval ob-
server is derived in Section 4 and its computational effi-
ciency is assessed in Section 5. In Section 6, the proposed
observer is applied to quality estimation in an exemplary
DWDS and its performance is validated by simulations.
Finally, the conclusions are drawn and future work is pre-
sented.

2. Presentation of Drinking Water

Distribution Systems

The main objective for a DWDS is to meet demand on wa-
ter of required quality for all industrial and domestic con-
sumers (Brdys and Ulanicki, 1994). On-line information
about the state of the DWDS for efficient operation of the
DWDS is needed. Both the water quality monitoring sys-
tem and the water quantity monitoring system deliver this
kind of information. In this paper, the water quality mon-
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itoring system is considered. Measurements of the water
quality are composed of two types: laboratory and on-line.
Bacteriology measurements are among typical laboratory
measurements in DWDSs (e.g., the number of coli bacte-
ria).

Due to obvious reasons, this kind of measurements
cannot be utilized on-line. At present, the main on-line
quality measurement in a DWDS is free chlorine concen-
tration. The water quality is determined by quality factors.
There are many such factors. Disinfectant concentration
is one of the most popular ones. Chlorine is one of the
mostly utilized disinfectants. In this paper, the water qual-
ity is determined by free chlorine concentration. Hence,
free chlorine concentration measurements in the network
nodes are most important for gathering knowledge about
the quality state of the DWDS. Clearly, it is impossible to
locate chlorine concentration sensors at all nodes of the
DWDS. Therefore, achieving complete knowledge about
the DWDS state requires state estimation.

Because chlorine reacts with organic and non-
organic matter in water, the chlorine concentration de-
creases in time (chlorine decay) (Males et al., 1988; Ross-
man et al., 1994; Clark et al., 1995; Boccelli et al., 2003).
If the concentration is too low, pathogenic bacteria can
grow in water and this growth can even lead to a bacterio-
logical instability. Strong chlorination performed at water
treatment stations and within the network by booster sta-
tions can recover safe water. However, this activity can
increase the concentration of disinfections by-products
(DBPs) being chemical compounds that are produced by
the reaction of free chlorine with organic components in
water. Trihalomethanes (THMs) are common harmful
DBPs. A THM formation model can be found in (Boc-
celli et al., 2003). THMs are formed in a small amount
but their cancerous character must be taken into account
at least by maintaining the free chlorine concentration be-
low certain upper limit.

2.1. Quality Model. A DWDS quality model is nec-
essary for water quality estimation purposes. The basic
quality model requires the following assumptions to be
met:
(1) The water distribution network is composed of water

sources, pipes and nodes.
(2) Flow directions are constant over considered time

horizon.
(3) All hydraulic quantities (i.e., flow rates, linear water

flow velocities, etc.) are available.
(4) Concentrations of chlorine at the external water

sources are known.
The water quality model considers changes in the

chlorine concentration at nodes and along pipes. Note that
the magnitudes and directions of water flows determine
the structure of the water quality model. Hence, under

the assumption (2), the main structure of the water quality
model is constant over the time horizon considered. This
assumption is introduced due to the clarity of presenta-
tion. It will be shown how it can be altered in order to
allow for strong variations in the hydraulic quantities over
considered time horizon. Additionally, tanks can easily be
introduced into the model.

Physical models of chlorine decay during the wa-
ter transfer through the network elements can be found
in many papers. Models of chlorine decay at pipes can
be found in (Males et al., 1988; Rossman et al., 1994;
Clark et al., 1995; Park and Kuo, 1999). It was shown
(Al-Omari and Chaudhry, 2001) that for turbulent flows
the diffusive transport can be disregarded and the equation
describing the advection chlorine transport with first-order
decay for pipes is as follows:

∂CA(z, t)
∂t

+ v(z, t)
∂CA(z, t)

∂z
− kACA(z, t) = 0 (1)

subject to the initial and boundary conditions

CA(z, 0) = C0,t(z),

CA(0, t) = C0,z(t),

respectively, where t is the time instant over the hydraulic
step period, CA(z, t) stands for the chlorine concentration
in pipe at the instant t at the distance of z from the initial
node, v(z, t) signifies the linear water flow velocity, and
kA denotes the bulk reaction rate coefficient (it is negative
due to the chlorine concentration decay in time).

Remark 1. Notice that the linear water flow velocity and
the flow rate are the same at a given pipe, i.e., v(z, t) =
v(t). This is because of the assumption of water incom-
pressibility and because the pipes are of the pressure type.

When modelling the water quality at the network
nodes, we should distinguish between two types of nodes:
quality controlled nodes (Boulos et al., 2004) and uncon-
trolled quality nodes. The chlorine is directly dosed into
the controlled quality nodes in order to maintain the re-
quired chlorine concentration, which is prescribed by the
quality controller (Duzinkiewicz et al., 2005). A typi-
cal arrangement involves a booster station and a PI con-
trol loop around the node. The control transients are
fast enough to consider the node as having the chlorine
concentration independent on the pipe flows entering the
nodal junction. Without any loss of generality, such nodes
are not considered in the paper. In turn, the quality in
the uncontrolled nodes depends on the chlorine concen-
trations at the pipes supplying water into these nodes. In-
deed, the following holds:∑

l∈WEn(t)

Ql(t)CA,l(t) +
∑

d∈Dn(t)

Qd(t)CA,d(t)

−
∑

q∈WYn(t)

Qq(t)CA,q(t) = 0, (2)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator
201

where WEn(t) is the set of pipes supplying water to the
node n at the instant t, WYn(t) denotes the set of pipes
draining water from the node n at the instant t into the net-
work, Dn(t) stands for the set of pipes supplying water
from external sources to the node n at the instant t, Ql(t),
Qd(t), Qq(t) are the corresponding flow rates, CA,l(t)
and CA,d(t) are the corresponding chlorine concentrations
into the node n at the instant t, and CA,q(t) is the corre-
sponding chlorine concentration out of the node n at t.

Assuming instantaneous and complete mixing of the
chlorine at the node n, we get

CA,q(t) = CA,out,n(t), (3)

where CA,out,n(t) is the resulting chlorine concentration
at the node n at the instant t.

Combining (3) and (2) gives∑
l∈WEn(t)

Ql(t)CA,l(t) +
∑

d∈Dn(t)

Qd(t)CA,d(t)

− CA,out,n(t)
∑

q∈WYn(t)

Qq(t) = 0. (4)

The mass balance law yields∑
l∈WEn(t)

Ql(t) +
∑

d∈Dn(t)

Qd(t) =
∑

q∈WYn(t)

Qq(t). (5)

Hence, from (5) and (4) it follows (Males et al., 1985;
Rossman and Boulos, 1996) that

CA,out,n(t) =

∑
l∈WEn(t)

Ql(t)CA,l(t) +
∑

d∈Dn

Qd(t)CA,d(t)∑
l∈WEn(t)

Ql(t) +
∑

d∈Dn

Qd(t)
.

(6)
The observe that the chorine concentration at the

node n at instant t directly depends only on the chlo-
rine concentrations CA,l(t), l ∈ WEn(t) and CA,d(t),
d ∈ Dn(t) at the ends of the pipes supplying water into
the node at t.

2.2. Quality Model for Estimation Purposes. As was
shown in Section 2.1, the DWDS model is composed
of the system of algebraic equations that describe the
changes in the chlorine concentration at network nodes
as well as the system of partial differential equations that
describe the distribution of chlorine concentrations along
the network pipes. The method of (Mitchel and Griffiths,
1980) can be used in order to discretize (1) in the time
and space domains. Here (1) will be discretized only in
space and time will remain continuous. The discretization
procedure is as follows: Assuming that z = mΔl, where
Δl denotes the length of an elementary pipe segment, and
standing for c(t,m) = c(t, mΔl), Eqn. (1) can be approx-
imated as

dCA(m, t)
dt

+ v(m, t)
CA(m, t) − CA(m − 1, t)

Δl
− kACA(m, t) = 0. (7)

Hence (7) describes the chlorine concentration over time
at a pipe point located at the distance mΔl from the pipe
origin. The pipe partitioning into the elementary segments
and the models described by (7) are illustrated in Fig. 1.

Notation: L – pipe length; Φ – pipe diameter.

Fig. 1. Example of a pipe quality model.

Note that the linear water flow velocity and flow rate
through each segment within a given pipe are the same,
i.e., v(m − 1, t) = v(m, t) = v(m + 1, t) = v(L, t) (see
Remark 1). Moreover, the linear water flow velocity and
flow rate through a given pipe can be assumed constant
over an interval called the hydraulic time step TH . The
value of TH depends on the demand rate of change and
is typically between 0.5 and 2 [h] (Brdys and Ulanicki,
1994). Clearly, the number of constant flow rate intervals
over a time horizon T equals J = T/TH .

The water quality equation (7) requires determining
the length of an elementary pipe segment Δl for each pipe.
The pipe partitioning method is as follows (Rossman et
al., 1993):

Step 1. The travelling time TT is calculated for each pipe
over TH :

TT,l =
Vl

Ql
, (8)

where l is the pipe number, Vl stands for the volume of
the l-th pipe, Ql denotes the flow rate at the l-th pipe over
TH .

Step 2. A quality step TQ is determined over TH :

TQ = min
l

TT,l. (9)

Notice that the quality step results from the water quality
dynamics and it is assumed that TH is an integer multiple
of TQ. Typically, in a DWDS, TQ is several minutes.
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Table 1. Data of an exemplary water network.

Element ID Elevation
[m]

Base
demand
[LPS]

Total head
[m]

Length
[m]

Diameter
[mm] Roughness

Node 2 10 — — — — —
3 5 — — — — —
4 8 — — — — —
5 5 7 — — — —
6 5 10 — — — —

Reservoir — — — 130 — — —

Pipe 1r — — — 300 100 100
2r — — — 250 100 100
3r — — — 150 80 100
4r — — — 150 80 100
5r — — — 250 100 100
6r — — — 250 60 100
7r — — — 250 60 100

Flow units: LPS (litre per second)

Headloss formula: H–W (Hazen–Williams)

Table 2. Division results for an exemplary network for the first TH .

Pipe ID Flow rate Q
[LPS]

Travelling time
TT [min]

Number of
segments N

Segment length
Δl [m]

1r 5.1 7.7 2 150

2r 2.33 14.07 3 83.33

3r 2.77 4.53 1 150

4r 2.33 5.4 1 150

5r 1.25 26.19 6 41.67

6r 1.52 7.73 2 125

7r 1.48 7.98 2 125

Step 3. The number of segments N for each pipe is cal-
culated over TH :

Nl = round
(

Ll/vl

TQ

)
, (10)

where Ll is the length of the l-th pipe, and vl denotes the
linear water flow velocity at the l-th pipe over TH .

Step 4. The length of an elementary pipe segment Δl for
each pipe is calculated over TH :

Δll =
Ll

Nl
. (11)

The above partitioning method is repeated for each
TH . Hence, a number of segments within a single pipe
can be different for each hydraulic step and, therefore, the
quality model has a time-varying structure.

Consequently, Eqns. (6) and (7) describe a time-
continuous lumped water quality model for estimation

purposes. An example of a DWDS is shown in Fig. 2.
The detailed water network data are presented in Table 1.
For this water network, the pipes are partitioned as above
and the results for the first hydraulic step TH are shown in
Table 2.

Fig. 2. Exemplary water network.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator
203

The corresponding water quality model was imple-
mented in MATLAB. The model performance was ex-
amined by comparing its results with those obtained by
applying the well-known EPANET simulator. EPANET
accurately integrates the quality model (1) and (6) and
the hydraulic model equations that are not presented in
the paper in order to determine the flow rates Q(t) and
the linear water flow velocities v(t) (Brdys and Ulan-
icki, 1994). The network quantity-quality model equa-
tions can be considered as a faithful representation of real-
ity. Hence, EPANET simulator results will be taken in the
paper as the real network responses. In contrast, Eqn. (7)
is only an approximation to Eqn. (1). The water quality
model described by (6) and (7) is viewed as an approx-
imate model of reality. It is implemented in MATLAB.
Hence, in the sequel it is called the MATLAB model. Tra-
jectories of the chlorine concentration at Nodes 3, 5 and 6
are shown in Figs. 3–5, respectively, and a reasonable ap-
proximation accuracy of the MATLAB model can be no-
ticed.

Fig. 3. Trajectory of chlorine concentration at Node 3.

Fig. 4. Trajectory of chlorine concentration at Node 5.

Fig. 5. Trajectory of chlorine concentration at Node 6.

3. Examining the Problem of Chlorine

Concentration Estimation in DWDS

The chlorine concentrations at the DWDS nodes are
viewed as the system outputs and they can be calculated
in accordance with (6). Let yn(t) denote the concentra-
tion at the node n. Notice that yn(t) can be determined by
applying (6). Clearly, the equation structure depends on
the node structure. Moreover, the chlorine concentrations
at the pipe ends are the quality state variables (see (7)). As
presented in Section 2.2, due to different travelling times
through the pipes in the DWDS, pipe partitioning into the
segments is applied. This introduces new state variables
into the quality model. Hence, the quality state x(t) is
composed of the chlorine concentrations at all the pipe
segment ends and its structure is constant over a hydraulic
time step. For the DWDS output, the following holds over
the entire horizon:

y(t) = C(t)x(t). (12)

The state equations can be derived from (7). Denote
by xr(t) the chlorine concentration at the end of the pipe
segment r. From (7), we see that

dxr(t)
dt

=
(
−vr(t)

Δlr
+ kA

)
xr(t) +

vr(t)
Δlr

Cin(t), (13)

where vr(t) is the linear flow velocity along the segment,
Δlr denotes the segment length, and Cin(t) signifies the
chlorine concentration at the segment beginning.

Three cases for the segment quality input Cin(t) can
be distinguished:

(i) Cin(t) equals the chlorine concentration at the end
of the segment r − 1,

(ii) Cin(t) equals the chlorine concentration at the exter-
nal source, and

(iii) Cin(t) equals the chlorine concentration at the
DWDS pipe junction node p.
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In Case (i), Eqn. (13) becomes

dxr(t)
dt

=
(
−vr(t)

Δlr
+ kA

)
xr(t)+

vr(t)
Δlr

xr−1(t), (14)

where xr−1(t) stands for the chlorine concentration at the
end of the segment r − 1.

In Case (ii), Eqn. (13) is

dxr(t)
dt

=
(
−vr(t)

Δlr
+ kA

)
xr(t) +

vr(t)
Δlr

Czr(t), (15)

where Czr(t) means the chlorine concentration at the ex-
ternal water source.

Finally, in Case (iii), Eqn. (13) becomes

dxr(t)
dt

=
(
−vr(t)

Δlr
+ kA

)
xr(t) +

vr(t)
Δlr

yp(t), (16)

where yp(t) denotes the chlorine concentration at the pipe
junction node p.

Finally, on account of (12), the chlorine concentra-
tion dynamics throughout the entire DWDS can be written
as

ẋ(t) = A(t)x(t) + b(t), (17)

where A(t) is the time-varying state matrix, whose ele-
ments are composed of hydraulic quantities, lengths of
pipes segments and reaction rate coefficients. Further-
more, b(t) is the input vector, whose elements are depen-
dent on the hydraulic quantities, lengths of pipes segments
and quality quantities at the reservoirs.

As state variables represent chlorine concentrations
at the ends of pipes segments, the chlorine concentrations
at certain network nodes only are simultaneously state
variables (the state is directly transferred to the system
output). This situation occurs at nodes where the water
inflow to a node is only from one pipe (Nodes 2, 3 and 4,
see Fig. 2). In this case, each of the output measurement
equations is as follows:

y(t) = x2(t), (18)

where x2(t) denotes the vector of measurable state vari-
ables.

If water is supplied to a node from several pipes, the
chlorine concentration at this node is a combination of the
state variables. This happens at Nodes 5 and 6.

If all parameters of the model (17) are exactly known,
i.e., A(t) and b(t) are exactly known, and the measure-
ment errors are negligible, then a Luenberger observer for
the estimation of unmeasured state variables can be used
(Luenberger, 1979). In practice, however, most measure-
ments are contaminated by noise and there is also uncer-
tainty in the input vector b(t). In this case, in order to
estimate unmeasured state variables, a Kalman filter can
be applied. However, the Kalman filter requires specific

assumptions regarding the measurement noise and distur-
bance inputs. In order to satisfy these assumptions, special
filters would have to be designed to generate these signals
based on the plant input disturbances that are not white,
mutually correlated and represented by non-stationary sto-
chastic processes (Grewal and Andrews, 2001). Typically,
probabilistic models of uncertainty are used if the assump-
tions of the Gaussian probability distribution as well as the
lack of a time structure of the noise are fulfilled. Unfor-
tunately, in many situations the desired random nature of
uncertainty may be questionable. This is because, in real-
ity, the measurement error statistical properties are rarely
known and the assumption about the Gaussian probabil-
ity distribution and the lack of a time structure are rarely
valid. This routinely applies to DWDSs (Brdys and Ulan-
icki, 1994; Chen, 1997). An alternative approach to uncer-
tainty modelling known as the set-membership approach
can be found, e.g., (Brdys and Kang, 1994; Milanese et
al., 1996). In this approach, the uncertainty is described
by means of an additive bounded noise where only the
bounds are known. The bounds on the measurement er-
rors as well as on the modelling errors are rather easily
available, and the bounded models of uncertainty are more
realistic because they need less a priori information about
the system and they are less demanding than the proba-
bilistic models.

Notice that, in order to solve the water quality model
(see Section 2.2), system hydraulic quantities must be
available. This kind of information is delivered by a mon-
itoring system of the hydraulics. The monitoring system
gathers information from the hydraulic sensors which are
used in the DWDS. Typically, only a limited number of
hydraulic quantities are directly measured in the DWDS
due to high costs of sensors and maintenance. There-
fore, in order to overcome the lack of hydraulic infor-
mation, the necessity of employing a hydraulic estima-
tion based on available hydraulic hard measurements and
hydraulic mathematical models arises. A hydraulic esti-
mator based on a set-membership uncertainty modelling
can be found in (Brdys and Chen, 1995; Duzinkiewicz,
2006). Hence, the hydraulic estimator delivers estimates
of hydraulic quantities in interval form. Clearly, the upper
and lower trajectories of hydraulic quantities estimates are
constant over the hydraulic steps. It is assumed that hy-
draulic information in this form is known for the DWDS
considered, but it is not obtained from the hydraulic es-
timator. In order to simulate the estimator, an EPANET
DWDS simulator is used. Let assume that TH = 1 [h],
T = 24 [h], and for a nominal demand pattern hydraulic
simulation results are obtained from EPANET. Next, the
values of the hydraulic quantities are distorted by about
±Δ%. Hence, the interval form of the hydraulic quanti-
ties is as follows:

Q+
l (j) = Ql(j) + Δ · Ql(j),

Q−
l (j) = Ql(j) − Δ · Ql(j), (19)

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Monitoring of chlorine concentration in drinking water distribution systems using an interval estimator
205

v+
l (j) = vl(j) + Δ · vl(j),

v−l (j) = vl(j) − Δ · vl(j), (20)

where j = 1, 2, 3, . . . , J , J = T/TH = 24 [h]/1 [h] =
24, Ql(j) is the flow rate gathered from the EPANET sim-
ulator for the l-th pipe over the j-th hydraulic step TH ,
l = 1r, 2r, . . . , 7r, and vl(j) is the linear water flow ve-
locity gathered from the EPANET simulator for the l-th
pipe over the j-th hydraulic step TH , l = 1r, 2r, . . . , 7r.

In accordance with (19) and (20), the upper and
lower trajectories for hydraulic quantities are constant
over each hydraulic step TH . Nevertheless, over the entire
time horizon T , these trajectories can be treated as con-
tinuous and time varying. It is obvious that the resulting
trajectories of hydraulic quantities are more conservative
than those that could be obtained by the hydraulic estima-
tor. However, for water quality estimation purposes, the
hydraulic information obtained as above is sufficient.

Hence, the uncertainty in (17) is as follows:
(a) The input vector b(t) is not exactly known because

the hydraulic quantities and the quality at the reser-
voir are not exactly known; only lower and upper
bounds are available, so that b−(t) ≤ b(t) ≤ b+(t).

(b) State matrix A(t) is not exactly known, because hy-
draulic quantities are not exactly known, but certain
lower and upper bounds on these quantities are still
available; hence A−(t) ≤ A(t) ≤ A+(t).
Moreover, the state measurement is contaminated by

the measurement noise. Hence, (18) is rewritten as

y(t) = x2(t) + ε(t), (21)

where ε(t) is the measurement error.
We assume that ε(t) is bounded, i.e., |ε(t)| ≤ εmax.

Hence, the measured state can be bounded as

x−
2 (t) ≤ x2(t) ≤ x+

2 (t), (22)

where

x−
2 (t) = y(t) − εmax, x+

2 (t) = y(t) + εmax. (23)

Additionally, we assume that, although the state ini-
tial conditions are unknown, some bounds are available
so that x−(0) ≤ x(0) ≤ x+(0). Therefore, in order
to estimate the chlorine concentration in the DWDS de-
scribed above, set bounded estimation can be applied. A
set bounded estimation algorithm of integrated quantity
and quality in a DWDS can be found in (Brdys and Chen,
1996). Unfortunately, this estimation algorithm requires
solving on-line highly non-linear and non-convex optimi-
sation tasks. This limits its applicability to on-line moni-
toring. Therefore, in this paper, an alternative set bounded
estimation method that utilizes and further develops an ob-
server known as an interval observer (Gouzé et al., 2000)
is proposed.

4. Interval Observer

The structures of interval observers can be found in
(Gouzé et al., 2000; Alcaraz-González et al., 2004; Ra-
paport and Dochain, 2005). In (Alcaraz-González et al.,
2004), it was shown that, if some conditions are satisfied
by the system (24), then the interval observer for this sys-
tem is stable and robust in spite of the uncertainty in the
non-linear part of the system dynamics, inputs and initial
conditions. We have

ẋ(t) = Cf
(
x(t), t

)
+ A(t)x(t) + b(t), (24)

where x(t) is the state vector, f(x(t), t) denotes an un-
known non-linear vector function, C stands for a known
matrix, A(t) means the state matrix, and b(t) is the input
vector.

The input vector is not exactly known but certain
bounds are available so that b−(t) ≤ b(t) ≤ b+(t).
Similarly, the unknown initial conditions are bounded as
x−(0) ≤ x(0) ≤ x+(0). Nevertheless, the linear part
of the system dynamics represented by the state matrix
A(t) is known and bounded A− ≤ A(t) ≤ A+, and
there is no noise in the state measurements. Moreover, in
(Rapaport and Dochain, 2005) it was shown that if state
measurements are uncertain, the interval observer can still
be stable. An application of the interval observer to the
wastewater treatment process can be found in (Gouzé et
al., 2000; Hadj-Sadok and Gouzé, 2001; Harmand and
Rapaport, 2002; Alcaraz-González et al., 2004).

4.1. Interval Observer for a DWDS. For the DWDS
presented in Section 2.2, the interval estimator for chlo-
rine monitoring was proposed in (Łangowski and Brdys,
2006):

(S+) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẇ+(t) = A+
11(t)w

+(t) + A+
12(t)x

+
2 (t)

+Mv+(t),

w(0)+ =Nx(0)+,

x̂+
1 (t) = N−1

1 w+(t),

(S−) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ẇ−(t) = A−
11(t)w

−(t) + A−
12(t)x

−
2 (t)

+Mv−(t),

w(0)− = Nx(0)−,

x̂−
1 (t) = N−1

1 w−(t),

(25)

where x̂+
1 (t) and x̂−

1 (t) are respectively upper and
lower bounds on the estimated state variables, x+

2 (t)
and x−

2 (t) are respectively upper and lower bounds
on the measured state variables given by (23), w(t)
is the auxiliary variable defined as w(t) = Nx(t),
M = [ N1 | 0 | 0 ], N = [ N1 | 0 ]. Moreover,
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N1 = kI is a matrix proportional to the identity matrix
(k is an arbitrary positive and constant parameter), and
A11(t), A12(t), A21(t), A22(t) are suitable parts of the
matrix A(t) structured by the measurement nodes. For
example, for one measurement node we have

A(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 a1,2 · · · a1,n−1
|
|

a1,n

a2,1 a2,2 · · · a2,n−1
|
|

a2,n

...
. . .

... |
|

...

an−1,1 an−1,2 · · · an−1,n−1
|
|

an−1,n

an,1 an,2 · · · an,n−1
|
|

an,n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

A11(t) |
|

A12(t)

−−−−−−−−−−−−−−−−−−−
measurement

A21(t) |
|

A22(t)

Furthermore b1(t), b2(t) are suitable parts of the input
vector b(t) structured by the measurement nodes. For ex-
ample, for one measurement node we get

b1(t) |
|

b2(t)

b(t) =
[

b1 b2 · · · bn−1
|
|

bn

]T

,

|
|
measurement

v+(t)

=
[
b+
1 (t)

1
2
(
b+
2 (t)+b−

2 (t)
) 1

2
(
b+
2 (t)−b−

2 (t)
) ]T

,

v−(t)

=
[
b−
1 (t)

1
2
(
b+
2 (t)+b−

2 (t)
) −1

2
(
b+
2 (t)−b−

2 (t)
) ]T

.

It is known that the pair of systems (S+,S−) con-
stitutes a truly interval observer generating trajectories
x−

1 (t) and x+
1 (t) bounding from below and above the es-

timated state trajectory x1(t), respectively, if each of the
systems S+ S− is cooperative (Gouzé et al. 2000).

Definition 1. (Smith, 1995) The system ζ̇ = f (ζ, t) +
g(t) is said to be cooperative iff its Jacobian matrix satis-
fies ∂fi (ζ, t) /∂ζj ≥ 0, ∀i �= j.

Notice that the cooperativeness generalizes a
monotone property of a system (Smith, 1995). Due to
specific properties of the water quality dynamics, the fol-
lowing properties can be shown:

(P1) The hydraulic and quality quantities are non-
negative and bounded. Hence, it is possible to find
two constant matrices A− and A+ over the entire
time horizon T , such that A− ≤ A−(t) ≤ A(t) ≤
A+(t) ≤ A+.

(P2) The quality model of the above DWDS has cooper-
ative dynamics.

For the water network considered (see Fig. 2), the
off-diagonal elements of the Jacobian matrix for the first
TH are (see Appendix A):

vl (TH)
Δll (TH)

,
v7r (TH) Q4r (TH)

Δl7r (TH) (Q4r (TH) + Q5r (TH))
,

v7r (TH) Q5r (TH)
Δl7r (TH) (Q4r (TH) + Q5r (TH))

,

(26)

where vl (TH) is the linear water flow velocity at the pipe
l [m/s] over TH , l = 2r, . . . , 6r, v7r (TH) denotes the
linear water flow velocity at the pipe 7r [m/s] over TH ,
Δll (TH) means the length of an elementary segment at
the pipe l [m] over TH , l = 2r, . . . , 6r, Δl7r (TH) signi-
fies the length of an elementary segment at the pipe 7r [m]
over TH , and Q4r (TH), and Q5r (TH) are the flow rates
at the pipes 4r and 5r [l/s] over TH , respectively.

Observe that for successive TH , the structures of the
off-diagonal elements are the same, but their values may
change. This is because the flow rates and linear water
flow velocities may change and, consequently, the number
and the lengths of pipe segments at each pipe vary in time
as well (see Section 2.2). Therefore, the number of state
variables may be different over each TH . This implies that
the dimensions of the state matrix A(t) and the Jacobian
matrix may be different over each TH . Nevertheless, dur-
ing estimation over each TH the flow directions remain
the same and the above quantities are non-negative and,
consequently, the DWDS quality dynamics are coopera-
tive. Moreover, if flow directions change, then, although
the quality dynamics model structure change, the values
of the off-diagonal elements of the Jacobian matrix remain
non-negative.

As Properties P1 and P2 hold, the pair of systems
(S+,S−) has cooperative dynamics. Hence, the interval
observer (25) produces upper and lower envelopes x+

1 (t)
and x−

1 (t), respectively, bounding the unmeasured state
variables x1(t) in spite of the uncertainty in the inputs
(chlorine measurements at reservoirs), initial conditions,
state measurements (chlorine measurements at network
nodes) and the linear part of the system dynamics (the
state matrix A(t)). A proof that the interval observer (25)
is robust and stable is still in progress. However, this pos-
tulate is validated by simulation.

The structure of the interval observer (25) requires to
determine the matrices A−(t) and A+(t). These matri-
ces are constant over each TH . The main parts of these
matrices are A−

11(t) and A+
11(t), respectively. They are

presented in Appendix B for the first hydraulic step and
sensor localization at Node 3. Notice that the majority of
elements in the matrices A−

11 (TH) and A+
11 (TH) are di-

rectly composed of pipe segments lengths, reaction rate
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coefficients and hydraulic quantities (see Section 3). Due
to the flow uncertainties, certain matrix elements are eval-
uated by solving suitable optimisation problems:

a+
15,6 (TH)

=
1

Δl7r (TH)
max

(
v7r (TH) Q4r

(TH)
Q4r (TH) + Q5r (TH)

)
,

a−
15,6 (TH) (27)

=
1

Δl7r (TH)
min

(
v7r (TH) Q4r (TH)

Q4r (TH) + Q5r (TH)

)
,

a+
15,12 (TH)

=
1

Δl7r (TH)
max

(
v7r (TH) Q5r (TH)

Q4r (TH) + Q5r (TH)

)
,

a−
15,12 (TH) (28)

=
1

Δl7r (TH)
min

(
v7r (TH) Q5r (TH)

Q4r (TH) + Q5r (TH)

)
,

where the right-hand sides are minimized and maximized
with respect to v7r(TH), Q4r(TH) and Q5r(TH).

Because the upper and lower trajectories of hydraulic
quantities are constant over each TH , the optimisation
problems (27) and (28) are solved only once over each
TH . Hence, for assumed TH = 1 [h] and T = 24 [h],
each of the optimisation problems (27) and (28) is solved
48 times at the j-th (jTH) time instant over T . The time
index j refers to successive TH . Clearly, for j = 1 we
have t ∈ [0, 1] [h], for j = 2 we have t ∈ (1, 2] [h],. . . ,
for j = 24 we have t ∈ (23, 24] [h]. Hence, formulations
of the optimisation problems (27) and (28) at each time
instant j ∈ [1, 24] are substantiated as follows:

a+
15,6(j)

=
1

Δl7r(j)
max

v7r(j),Q4r(j),Q5r(j)

(
v7r(j)Q4r(j)

Q4r(j) + Q5r(j)

)
,

a−
15,6(j) (29)

=
1

Δl7r(j)
min

v7r(j),Q4r(j),Q5r(j)

(
v7r(j)Q4r(j)

Q4r(j) + Q5r(j)

)
,

subject to

Q−
4r(j) ≤ Q4r(j) ≤ Q+

4r(j),

Q−
5r(j) ≤ Q5r(j) ≤ Q+

5r(j),

v−7r(j) ≤ v7r(j) ≤ v+
7r(j),

where j = 1, 2, 3, 4, . . . , 24.

a+
15,12(j)

=
1

Δl7r(j)
max

v7r(j),Q4r(j),Q5r(j)

(
v7r(j)Q5r(j)

Q4r(j) + Q5r(j)

)
,

a−
15,12(j)

=
1

Δl7r(j)
min

v7r(j),Q4r(j),Q5r(j)

(
v7r(j)Q5r(j)

Q4r(j) + Q5r(j)

)
,

(30)
subject to

Q−
4r(j) ≤ Q4r(j) ≤ Q+

4r(j),

Q−
5r(j) ≤ Q5r(j) ≤ Q+

5r(j),

v−7r(j) ≤ v7r(j) ≤ v+
7r(j),

where j = 1, 2, 3, 4, . . . , 24.
Note that the matricesA+

11(j) and A−
11(j) are piece-

wise constant over T .
As was pointed out in Section 3, the quality measure-

ments at the DWDS nodes are at the same time the state
measurements only for certain nodes, namely for Nodes 2,
3 and 4. Hence, the observer described by (25) is not di-
rectly applicable if, e.g., the quality measurements are car-
ried out at Node 5. The proposed interval observer (25)
will be modified in Section 4.2 in order to handle the case
when a chlorine concentration measurement is carried out
at a node with several connected pipes (Node 5).

Clearly, the chlorine concentration is measured only
at some time instants. It is assumed that the sampling in-
terval is sufficiently small so that the chlorine concentra-
tion over the sampling intervals can be assumed constant.
In this paper, the sampling interval is TMQ = 5 [min]. By
the definition of the state variables, the observer (25) re-
turns the quality estimates only at the DWDS nodes that
are supplied by one pipe, e.g., at Nodes 2, 3 and 4. The
chlorine concentrations at Nodes 5 and 6 are linear com-
binations of the appropriate state variables. Therefore, the
chlorine concentrations at Nodes 5 and 6 are calculated
based on the estimates of these state variables by solving
the appropriate optimisation problems:

C−
A,5(t) = min

(
Q4r(t)x4r(t) + Q5r(t)x5r(t)

Q4r(t) + Q5r(t)

)
,

C+
A,5(t) = max

(
Q4r(t)x4r(t) + Q5r(t)x5r(t)

Q4r(t) + Q5r(t)

)
,

(31)
where the right-hand sides are minimized and maximized
with respect to Q4r(t), Q5r(t), x4r(t), x5r(t).

C−
A,6(t) = min

(
Q6r(t)x6r(t) + Q7r(t)x7r(t)

Q6r(t) + Q7r(t)

)
,

C+
A,6(t) = max

(
Q6r(t)x6r(t) + Q7r(t)x7r(t)

Q6r(t) + Q7r(t)

)
,

(32)
where the right-hand sides are minimized and maximized
with respect to Q6r(t), Q7r(t), x6r(t), x7r(t).

The optimisation problems (31) and (32) are differ-
ent from the optimisation problems (27) and (28) because,
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apart from the hydraulic quantities, they also involve esti-
mates of the state variables x4r(t), x5r(t), x6r(t), x7r(t)
representing chlorine concentrations at the ends of pipes:
4r, 5r, 6r and 7r, respectively. The optimisation tasks
are solved at discrete time instants imposed by the quality
sampling interval to produce the estimates at these time
instants. Hence, for assumed TMQ = 5 [min], TH = 1 [h]
and T = 24 [h], the optimisation problems (31) and (32)
are solved 289 times. Clearly, for k = 0 we have t =
0 [min], for k = 1 we have t = 5 [min],. . . , for k = 288
we have t = 1440 [min]. Hence, the formulation of the
optimisation problems (31) and (32) over T is as follows:

C+
A,5(k) = max

Q4r(j),Q5r(j),x4r(k),x5r(k)(
Q4r(j)x4r(k) + Q5r(j)x5r(k)

Q4r(j) + Q5r(j)

)
,

(33)
C−

A,5(k) = min
Q4r(j),Q5r(j),x4r(k),x5r(k)(

Q4r(j)x4r(k) + Q5r(j)x5r(k)
Q4r(j) + Q5r(j)

)
,

subject to

Q−
4r(j) ≤ Q4r(j) ≤ Q+

4r(j),

Q−
5r(j) ≤ Q5r(j) ≤ Q+

5r(j),

x−
4r(k) ≤ x4r(k) ≤ x+

4r(k),

x−
5r(k) ≤ x5r(k) ≤ x+

5r(k),

with respect to

j =

{
1 if k ≥ 0 and k ≤ 12,

j + 1 if k > 12 and mod(k, 12) = 1,

where k = 0, 1, . . . , 288, and j = 1, 2, . . . , 24,

C+
A,6(k) = max

Q6r(j),Q7r(j),x6r(k),x7r(k)(
Q6r(j)x6r(k) + Q7r(j)x7r(k)

Q6r(j) + Q7r(j)

)
,

(34)
C−

A,6(k) = min
Q6r(j),Q7r(j),x6r(k),x7r(k)(

Q6r(j)x6r(k) + Q7r(j)x7r(k)
Q6r(j) + Q7r(j)

)
,

subject to

Q−
6r(j) ≤ Q6r(j) ≤ Q+

6r(j),

Q−
7r(j) ≤ Q7r(j) ≤ Q+

7r(j),

x−
6r(k) ≤ x6r(k) ≤ x+

6r(k),

x−
7r(k) ≤ x7r(k) ≤ x+

7r(k),

with respect to

j =

{
1 if k ≥ 0 and k ≤ 12,

j + 1 if k > 12 and mod(k, 12) = 1,

where k = 0, 1, . . . , 288, and j = 1, 2, . . . , 24.
Clearly, the above is time consuming and the follow-

ing can be tried instead:

C−
A,5(t) =

Q−
4r(t)x

−
4r(t) + Q−

5r(t)x
−
5r(t)

Q+
4r(t) + Q+

5r(t)
,

C+
A,5(t) =

Q+
4r(t)x

+
4r(t) + Q+

5r(t)x
+
5r(t)

Q−
4r(t) + Q−

5r(t)
, (35)

C−
A,6(t) =

Q−
6r(t)x

−
6r(t) + Q−

7r(t)x
−
7r(t)

Q+
6r(t) + Q+

7r(t)
,

C+
A,6(t) =

Q+
6r(t)x

+
6r(t) + Q+

7r(t)x
+
7r(t)

Q−
6r(t) + Q−

7r(t)
. (36)

In a much the same way, the optimisation problems (27)
and (28) can be rewritten as

a+
15,6 (TH) =

1
Δl7r (TH)

(
v+
7r (TH) Q+

4r(TH)
Q−

4r (TH)+Q−
5r (TH)

)
,

a−
15,6 (TH) =

1
Δl7r (TH)

(
v−7r (TH) Q−

4r(TH)
Q+

4r (TH)+Q+
5r (TH)

)
, (37)

a+
15,12 (TH) =

1
Δl7r (TH)

(
v+
7r (TH) Q+

5r(TH)
Q−

4r (TH)+Q−
5r (TH)

)
,

a−
15,12 (TH) =

1
Δl7r (TH)

(
v−7r (TH) Q−

5r(TH)
Q+

4r (TH)+Q+
5r (TH)

)
. (38)

Clearly, using the relationships (35)–(38) introduces a
conservatism into the estimates that can be significant.

4.2. Interval Observer for a DWDS with Quality

Measurements at a Node Supplied by Several Pipes.

Let us consider the case where a chlorine concentration
sensor is located at Node 5 (see Fig. 2). The chlorine con-
centration at Node 5 is described by (cf. Section 2.1):

CA,5(t) =
Q4r(t)x4r(t) + Q5r(t)x5r(t)

Q4r(t) + Q5r(t)
. (39)

The measurement of CA,5(t) cannot be directly used by
the observer as it is not a state variable measurement.
However, by (39), the state variable x5r(t) can be ex-
pressed as

x5r(t) =
Q4r(t)
Q5r(t)

CA,5(t)+CA,5(t)−Q4r(t)
Q5r(t)

x4r(t) (40)

to define a pseudomeasurement x̃5r(t) indirectly mea-
sured x5r(t) as

x̃5r(t) =
Q4r(t)
Q5r(t)

CA,5(t) + CA,5(t) − Q4r(t)
Q5r(t)

x̂4r(t).

(41)
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Table 3. Solver efficiency for an examplary network.

Optimisation
problem (16)

Optimisation
problem (17)

Optimisation
problem (22)

Optimisation
problem (23)

min max min max min max min max

Number of
decision variables 3 3 3 3 4 4 4 4

Number of constraints 6 6 6 6 8 8 8 8

Number of single
optimizations (over 24 [h]) 24 24 24 24 289 289 289 289

Average computation time
for single optimization
[sec] ×10−3 8 8 8 8 9 9 9 9

The needed upper and lower bounds on x̃5r(t) are calcu-
lated from (41) as follows:

x̃+
5r(t) = C+

A,5(t)
Q+

4r(t)
Q−

5r(t)
+ C+

A,5(t) − x̂−
4r(t)

Q−
4r(t)

Q+
5r(t)

,

x̃−
5r(t) = C−

A,5(t)
Q−

4r(t)
Q+

5r(t)
+ C−

A,5(t) − x̂+
4r(t)

Q+
4r(t)

Q−
5r(t)

.

(42)

The state variable x5r(t) is now removed from the es-
timated states, and the vector of hard measurements x2(t)
is augmented by adding the pseudomeasurement x̃5r(t)
to produce the interval observer according to (25). The
analysis of the observer properties including stability is
under way. Note that there is now a feedback from the
state estimates into the measurements that requires atten-
tion from the stability point of view.

5. Efficiency of the Interval Estimation

Algorithm

It is obvious that for on-line estimation purposes the ef-
ficiency of the estimation algorithm should be high. The
computation time of the estimated chlorine concentration
bounds for each hydraulic step TH is about 3 [sec]. Note
that during the estimation process the optimisation prob-
lems (29) and (30) as well as (33) and (34) are solved. The
following properties characterize the optimisation prob-
lems (29) and (30), which are solved in the j-th step, as
well as the optimisation problems (33) and (34), which are
solved in the k-th step:

• non-linear objective function,
• inequality linear constrains,
• continuous decision variables.
In this paper, in order to solve these optimisation

problems, the SQP (Sequential Quadratic Programming)
solver is used. The SQP solver is implemented in the
MATLAB optimisation toolbox. This solver is called by
the MATLAB function fmincon. The average compu-
tation times (in seconds) of solving a single optimisation
task are shown in Table 3.

The above refers to the following settings:
• simulation environment: Matlab/Simulink V. 7.1

(R14) Service Pack 3,
• operating system: Microsoft Windows XP Profes-

sional Service Pack 2,
• hardware set-up: Intel Pentium 4, 3.00 GHz CPU,

1.00 GB RAM.

Clearly, the average computation time for a single opti-
misation task will increase for larger networks due to an
increased number of nodes. The computation time asso-
ciated with a single node will remain the same, i.e., about
0.009 [sec], as long as there are up to two pipes supplying
water. It will increase, but not significantly, if the number
of such pipes increases.

6. Simulation Results

This section presents simulation results for an exemplary
DWDS illustrated in Fig. 2. It is composed of one water
source, seven pipes and five nodes. The flow directions
remain the same during the network operation and they
are clearly marked in Fig. 2. Nodes 5 and 6 are the water
demand nodes. The nominal and real demand patterns at
these nodes are the same and are shown in Fig. 6. Both de-
mand patterns represent typical demand loads: two peaks
of water consumption can be seen. The nominal demand
pattern is used in order to obtain the nominal values of
hydraulic quantities and then they are distorted by about
±Δ% (see Section 3). The chlorine concentration mea-
surements and chlorine concentration at the reservoir are
provided by a real EPANET simulator. Clearly, EPANET
with real demand pattern scenarios is used in order to
generate the chlorine concentration measurements. The
measurements are contaminated by measurement noise
(see (21)).

6.1. Estimation Results at Unmeasured Nodes. In
this section, an application of the interval observer for
estimating the chlorine concentration is presented. The
chlorine concentration sensor is placed at Node 3. The es-
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Fig. 6. Demand pattern at Nodes 5 and 6.

timation results at Nodes 5 and 6 are illustrated in Figs. 7
to 14, and they are compared with the real EPANET re-
sults. Four trajectories are presented in each figure: the
chlorine concentration from real EPANET, bounds on the
estimated chlorine concentration and the Chebyshev cen-
tres. Uncertainties in the quantity and quality parameters
have significant impact on the estimation performance.
For the estimation carried out at Nodes 5 and 6, this is
illustrated in Figs. 7 to 10 and Figs. 11 to 14, respectively.
The uncertainty is introduced by distorting the water qual-
ity and quantity by about ±5% and ±10%. The initial
conditions for the calculation of the upper and lower chlo-
rine concentration bounds are 0.1 [mg/l] and 0 [mg/l], re-
spectively.

The real chlorine concentration trajectory is always
inside the estimation bounds. The uncertainty influences
the bound radius as expected. That is, if uncertainty in-
creases, then the estimation bounds are widened. Note
that the magnitude of uncertainty in hydraulic quantities
has crucial impact on estimation performance.

If (35)–(38) are used instead of the optimisation

Fig. 7. Interval observer estimation results at Node 5 under
±10% uncertainty in hydraulic and quality quantities.

Fig. 8. Interval observer estimation results at Node 5 under
±5% uncertainty in hydraulic and quality quantities.

Fig. 9. Interval observer estimation results at Node 5
under ±10% uncertainty in hydraulic quantities
and ±5% uncertainty in quality quantities.

Fig. 10. Interval observer estimation results at Node 5
under ±5% uncertainty in hydraulic quantities
and ±10% uncertainty in quality quantities.

problems (29)–(30) and (33)–(34), the estimation bounds
are widened. For this case, the estimation results at
Nodes 5 and 6 are shown in Figs. 15 and 16, respectively.
Similarly, four trajectories are presented in each figure:
the chlorine concentration from real EPANET, bounds on
the estimated chlorine concentration and the Chebyshev
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Fig. 11. Interval observer estimation results at Node 6 under
±10% uncertainty in hydraulic and quality quantities.

Fig. 12. Interval observer estimation results at Node 6 under
±5% uncertainty in hydraulic and quality quantities.

Fig. 13. Interval observer estimation results at Node 6
under ±10% uncertainty in hydraulic quanti-
ties and ±5% uncertainty in quality quantities.

centres. The ±5% uncertainty is in hydraulic and quality
quantities.

A comparison of the estimated chlorine concentra-
tion bounds at Node 5 with and without solving the op-
timisation problems is illustrated in Fig. 17. The worse
estimation performance without solving the optimisation
problems can be noticed in Fig. 17. In this case, the only
advantage during the estimation process is reduction in
computation time.

Fig. 14. Interval observer estimation results at Node 6
under ±5% uncertainty in hydraulic quantities
and ±10% uncertainty in quality quantities.

Fig. 15. Interval observer estimation results at Node 5 without
solving the optimisation problems under ±5% uncer-
tainty in hydraulic and quality quantities.

Fig. 16. Interval observer estimation results at Node 6 without
solving the optimisation problems under ±5% uncer-
tainty in hydraulic and quality quantities.

6.2. Estimation Results at Measurement Nodes. In
the presented set bounded estimation method, the estima-
tion of the chlorine concentration at a measurement node
(Node 3) is not performed directly. Nevertheless, once
the quality estimates at the unmeasured nodes have been
produced by the observer, upper and lower bounding tra-
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Fig. 17. Comparison of estimation performance at
Node 5 under ±5% uncertainty in hy-
draulic and quality quantities.

jectories on the chlorine concentration at the measurement
node can be calculated by solving the following two dif-
ferential equations:

˙̂x+
2r(t) =

(
− v−2r(t)

Δl2r(t)
+kA

)
x̂+

2r(t)+
v+
2r(t)

Δl2r(t)
x̂+

2r−1(t),

(43)

˙̂x−
2r(t) =

(
− v+

2r(t)
Δl2r(t)

+kA

)
x̂−

2r(t)+
v−2r(t)
Δl2r(t)

x̂−
2r−1(t),

(44)

where x̂+
2r(t) and x̂−

2r(t) are respectively upper and lower
trajectories bounding the chlorine concentration at the
end of the last segment of the pipe 2r, and x̂+

2r−1(t)
and x̂−

2r−1(t) are respectively upper and lower trajecto-
ries bounding the chlorine concentration at the end of the
segment of the pipe 2r, which is adjacent to the last seg-
ment.

Estimation results at Node 3 under ±5% uncertainty
in hydraulic quantities and quality quantities are shown in
Fig. 18. Five trajectories are illustrated in Fig. 18: up-
per and lower bounds on the real chlorine concentration
measurements (from real EPANET) at Node 3, bounds
on the estimated chlorine concentration at Node 3 and the
Chebyshev centre.

Note that the measurement bounds on CA,3(t) are
much tighter than the post-estimated ones produced
by (43) and (44). However, this may not be so in gen-
eral. Hence, a sensible approach is to take an intersection
of the two bounds to produce the final estimates at the
measurement nodes.

6.3. Number and Location of Sensors. In this sec-
tion, the performance of the proposed set bounded estima-
tion method is examined with respect to the number and
location of sensors. All the estimation results presented in
this section are under ±5% uncertainty in hydraulic and
quality quantities. The estimation results at Nodes 5 and 6

Fig. 18. Interval observer estimation results at Node 3 under
±5% uncertainty in hydraulic and quality quantities.

when a chlorine concentration sensor is located at Node 3
are shown in Figs. 8 and 12, respectively. A similar situa-
tion is presented in Figs. 19 and 20, respectively, while the
sensor is located at Node 4 instead of Node 3. Finally, the
estimation results at Nodes 5 and 6 for the sensor place-
ment at Nodes 3 and 4 are shown in Figs. 21 and 22, re-
spectively.

Fig. 19. Interval observer estimation results at Node 5
under ±5% uncertainty in hydraulic and quality
quantities (the measurement node is Node 4).

Fig. 20. Interval observer estimation results at Node 6 under
±5% uncertainty in hydraulic and quality quantities
(the measurement node is Node 4).
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Fig. 21. Interval observer estimation results at Node 5 under
±5% uncertainty in hydraulic and quality quantities
(the measurement nodes are Nodes 3 and 4).

Fig. 22. Interval observer estimation results at Node 6 under
±5% uncertainty in hydraulic and quality quantities
(the measurement nodes are Nodes 3 and 4).

A comparison of estimation performance at Nodes 5
and 6 for various locations and numbers of sensors is pre-
sented in Figs. 23 and 24, respectively.

The simulation results presented above show that the
location and number of sensors have crucial impact on es-
timation performance. Notice that real conditions in the
DWDS may be considerably different from nominal ones.
Clearly, real demand patterns at consumer nodes may dif-
fer from nominal demand patterns more than it is pre-
sented in Fig. 6. Moreover, the reaction rate coefficients
may change, etc. In these cases, the presented water qual-
ity estimator is better than the water quality simulator (the
open-loop estimator). This is because during the estima-
tion process, in addition to the quality model, also current
chlorine concentration measurements are utilized. This is
illustrated in Figs. 25 and 26. The trajectories of the real
chlorine concentration, the nominal chlorine concentra-
tion (the open-loop estimator) and the Chebyshev centre
at Nodes 5 and 6 are shown in Figs. 25 and 26, respec-
tively. The chlorine concentration sensors are placed at
Nodes 3 and 4.

Fig. 23. Comparison of estimation performance at Node 5 for
various locations and numbers of sensors.

Fig. 24. Comparison of estimation performance at Node 6 for
various locations and numbers of sensors.

7. Conclusions and Future Work

In the paper, the water quality model for estimation pur-
poses has been derived and implemented in MATLAB. The
interval observer was derived for a class of DWDSs and
applied to an exemplary network. Estimation performance
was examined for various locations of chlorine concentra-
tion sensors. The proposed observer produced promising
results and the computational efficiency allows applying
this observer to on-line water quality monitoring. Future
work will focus on more complex network structures in-
cluding tanks. Further research towards optimal use of the
measurement information at the nodes with several con-
nected pipes will be pursued. A rigours proof of the cor-
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Fig. 25. Chlorine concentration point estimates and
the real chlorine concentration at Node 5.

Fig. 26. Chlorine concentration point estimates and
the real chlorine concentration at Node 6.

rectness of the bounds produced by the interval observer
is under way.
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Appendices

A. Jacobian matrix

We have J = A (TH). For our DWDS, the size of the
Jacobian matrix for the first TH is 17 × 17:

J = A (TH)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1,1 (TH) · · · a1,i (TH) · · · a1,17 (TH)
...

. . .
...

aj,1 (TH) · · · aj,i (TH) · · · aj,17 (TH)
...

. . .
...

a17,1 (TH) · · · q17,i (TH) · · · a17,17 (TH)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The diagonal elements are

a1,1 (TH) = a2,2 (TH) = − v1r (TH)
Δl1r (TH)

+ kA,

a3,3 (TH) = a4,4 (TH)=a5,5 (TH)=− v2r (TH)
Δl2r (TH)

+kA,

a6,6 (TH) = − v3r (TH)
Δl3r (TH)

+ kA,

a7,7 (TH) = − v4r (TH)
Δl4r (TH)

+ kA,

a8,8 (TH) = · · · = a13,13 (TH) = − v5r (TH)
Δl5r (TH)

+ kA,

a14,14 (TH) = a15,15 (TH) = − v6r (TH)
Δl6r (TH)

+ kA,

a16,16 (TH) = a17,17 (TH) = − v7r (TH)
Δl7r (TH)

+ kA.

Since kA is negative the diagonal elements shown above
are also negative.

The non-zero off-diagonal elements are

a2,1 (TH) =
v1r (TH)
Δl1r (TH)

, a6,2 (TH) =
v3r (TH)
Δl3r (TH)

,

a7,5 (TH) =
v4r (TH)
Δl4r (TH)

, a17,16 (TH) =
v7r (TH)
Δl7r (TH)

,

a3,2 (TH) = a4,3 (TH) = a5,4 (TH) =
v2r (TH)
Δl2r (TH)

,

a14,6 (TH) = a15,14 (TH) =
v6r (TH)
Δl6r (TH)

a8,6 (TH) = an,n−1 (TH) =
v5r (TH)
Δl5r (TH)

,

where n = 9, . . . , 13,

a16,13 (TH) =
v7r (TH) Q5r (TH)

Δl7r (TH) (Q4r (TH) + Q5r (TH))
,

a16,7 (TH) =
v7r (TH) Q4r (TH)

Δl7r (TH) (Q4r (TH) + Q5r (TH))
.

B. Matrix AAA+
11 (TTT H)

In the exemplary DWDS considered, the matrix A+
11 (TH)

is sparse. Its size depends on the number of the estimated
state variables, and for the first TH it is equal to 16 × 16.
Hence
A+

11 (TH)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a+
1,1 (TH) · · · a+

1,i (TH) · · · a+
1,16 (TH)

...
. . .

...
a+

j,1 (TH) · · · a+
j,i (TH) · · · a+

j,16 (TH)
...

. . .
...

a+
16,1 (TH) · · · a+

16,i (TH) · · · a+
16,16 (TH)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The diagonal elements are

a+
1,1 (TH) = a+

2,2 (TH) = − v−1r (TH)
Δl1r (TH)

+ kA,

a+
3,3 (TH) = a+

4,4 (TH) = − v−2r (TH)
Δl2r (TH)

+ kA,

a+
5,5 (TH) = − v−3r (TH)

Δl3r (TH)
+ kA

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


216 R. Łangowski and M.A. Brdys

a+
6,6 (TH) = − v−4r (TH)

Δl4r (TH)
+ kA,

a+
7,7 (TH) = · · · = a+

12,12 (TH) = − v−5r (TH)
Δl5r (TH)

+ kA,

a+
13,13 (TH) = a+

14,14 (TH) = − v−6r (TH)
Δl6r (TH)

+ kA,

a+
15,15 (TH) = a+

16,16 (TH) = − v−7r (TH)
Δl7r (TH)

+ kA.

Since kA is negative the diagonal elements shown above
are also negative.

The non-zero off-diagonal elements are

a+
2,1 (TH) =

v+
1r (TH)

Δl1r (TH)
,

a+
3,2 (TH) = a+

4,3 (TH) =
v+
2r (TH)

Δl2r (TH)
,

a+
5,2 (TH) =

v+
3r (TH)

Δl3r (TH)
,

a+
7,5 (TH) = a+

n,n−1 (TH) =
v+
5r (TH)

Δl5r (TH)
,

where n = 8, . . . , 12,

a+
13,5 (TH) = a+

14,13 (TH) =
v+
6r (TH)

Δl6r (TH)
,

a+
16,15 (TH) =

v+
7r (TH)

Δl7r (TH)
,

a+
15,6 (TH) =

1
Δl7r (TH)

× max
v7r(TH),Q4r(TH),Q5r(TH)

(
v7r (TH) Q4r

(TH)
Q4r (TH)+Q5r (TH)

)
,

a+
15,12 (TH) =

1
Δl7r (TH)

× max
v7r(TH),Q4r(TH),Q5r(TH)

(
v7r (TH) Q5r (TH)

Q4r (TH)+Q5r (TH)

)
,

where v+
l (TH) and v−l (TH) are respectively the upper

and lower bounds on the linear water flow velocity at the
l-th pipe over TH , l = 1r, . . . , 7r, and Q4r (TH) and
Q5r (TH) are the flow rate at the pipes 4r and 5r over
TH , respectively.

The matrix A−
11 (TH) is determined in much the

same way. For example,

a−
15,6 (TH) =

1
Δl7r (TH)

× min
v7r(TH),Q4r(TH),Q5r(TH)

(
v7r (TH) Q4r

(TH)
Q4r (TH) + Q5r (TH)

)
,

a−
15,12 (TH) =

1
Δl7r (TH)

× min
v7r(TH),Q4r(TH),Q5r(TH)

(
v7r (TH) Q5r (TH)

Q4r (TH) + Q5r (TH)

)
.
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