
Received November 30, 2021, accepted February 16, 2022, date of publication February 18, 2022, date of current version February 28, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3152803

Monolithic vs. Microservice Architecture:
A Performance and Scalability Evaluation
GRZEGORZ BLINOWSKI 1, (Member, IEEE), ANNA OJDOWSKA2, AND ADAM PRZYBYŁEK 2
1Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
2Faculty of Electronics, Telecommunications and Informatics, Gdańsk University of Technology, 80-233 Gdańsk, Poland

Corresponding author: Grzegorz Blinowski (grzegorz.blinowski@pw.edu.pl)

ABSTRACT Context. Since its proclamation in 2012, microservices-based architecture has gained
widespread popularity due to its advantages, such as improved availability, fault tolerance, and horizontal
scalability, as well as greater software development agility. Motivation. Yet, refactoring a monolith to
microservices by smaller businesses and expecting that the migration will bring benefits similar to those
reported by top global companies, such as Netflix, Amazon, eBay, and Uber, might be an illusion. Indeed,
for systems that do not have thousands of concurrent users and can be scaled vertically, the benefits
of such migration have not been sufficiently investigated, while the existing evidence is inconsistent.
Objective. The purpose of this paper is to compare the performance and scalability of monolithic and
microservice architectures on a reference web application. Method. The application was implemented in
four different versions, covering not only two different architectural styles (monolith vs. microservices)
but also two different implementation technologies (Java vs. C# .NET). Next, we conducted a series of
controlled experiments in three different deployment environments (local, Azure Spring Cloud, and Azure
App Service).Findings.The key lessons learned are as follows: (1) on a single machine, a monolith performs
better than its microservice-based counterpart; (2) The Java platform makes better use of powerful machines
in case of computation-intensive services when compared to .NET; the technology platform effect is reversed
when non-computationally intensive services are run on machines with low computational capacity; (3)
vertical scaling is more cost-effective than horizontal scaling in the Azure cloud; (4) scaling out beyond a
certain number of instances degrades the application performance; (5) implementation technology (either
Java or C# .NET) does not have a noticeable impact on the scalability performance.

INDEX TERMS Software architecture, microservices, monolith, software measurement, benchmarking,
performance, scalability, cloud computing, Azure.

I. INTRODUCTION
The evolution of software architectures has been driven by
the need to achieve a better separation of concerns. The term
separation of concerns refers to the ability to decompose and
organise systems into logically cohesive and loosely-coupled
modules that hide their implementation from each other and
present services through well-defined interfaces [1], [2].

Nowadays, two software engineering paradigms dominate
modern enterprise application development: monolithic and
microservice-based architecture [3]. The first is a traditional
approach in which an application is built with a single
code base that includes multiple services. These services
are not independently executable [4]. They communicate

The associate editor coordinating the review of this manuscript and

approving it for publication was Muhammad Ali Babar .

with end-users and external systems via different inter-
faces, including HTTP(S)/HTML, Web services, and REST
API [5].

A microservice architecture decomposes a business
domain into small, consistently bounded contexts imple-
mented by autonomous, self-contained, loosely coupled, and
independently deployable services [6]–[8]. One of the pio-
neers of microservices was Netflix which began moving
away from its monolithic architecture in 2009 when the term
microservice did not even exist. The term was coined by a
group of software architects in 2011 and officially announced
a year later at the 33rd Degree Conference in Kraków [6].
However, it did not start gaining in popularity until 2014,
when Lewis and Fowler published their blog on the topic [6],
while Netflix shared their expertise from a successful tran-
sition [9] paving the way for other companies. Since that

VOLUME 10, 2022 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 20357

https://orcid.org/0000-0002-0869-2828
https://orcid.org/0000-0002-8231-709X
https://orcid.org/0000-0001-9696-3626


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

time, microservices have received significant attention from
both academia and industry [4], [10]–[18], while the spread
of container technologies, such as Kubernetes and Docker
[19]–[22] has helped this new architectural style to gain
even more momentum, especially in cloud-based environ-
ments [23]–[25]. Indeed, microservices have been success-
fully adopted by global companies, such as Amazon, eBay,
Zalando, Spotify, Uber, Airbnb, LinkedIn, Twitter, Groupon,
and Coca-Cola.

A. MOTIVATION AND PROBLEM STATEMENT
Inspired by success stories of tech giants, many small
companies or startups are considering joining the trend
and are adopting microservices as a game changer. They
expect that it will help them improve scalability, availability,
maintainability, and fault tolerance of deployed applications
[26], [27] (which have been reported as difficult to achieve in
IT systems [28], [29]). Yet, microservice-based applications
come with their own challenges, including:

• identifying optimal microservice boundaries [30], [31];
• orchestration of complex services (the complexity of
microservices applications is pushed from the compo-
nents to the integration level [15], [23]);

• maintaining data consistency and transaction manage-
ment across microservices [15], [19], [32], [33];

• the difficulty in understanding the system holisti-
cally [7], [27];

• increased consumption of computing resources
[7], [11], [17].

For small scale systems, these challenges may outweigh the
benefits [27].

On the contrary, the aforementioned global companies
moved to microservices in response to the growth pressures
they faced rather than jumping on the latest trend [32].
The volume of activity their systems performed outgrew the
capacity of original technology choices, while the sheer size
of the systems enormously slowed down the development
carried out by multiple teams [30]. Therefore, microservices
have been a compelling solution for them despite the added
complexity of building and running a fine-grained distributed
application [32].

On top of that, there are thousands of successful businesses
around the world that are built on monolithic applications.
So when does a company need microservices? Unfortunately,
there is limited knowledge on this topic due to a lack of
empirical evidence. Having witnessed this gap, we set forth
to compare the performance and scalability of monolithic and
microservice architectures in the context of a system that does
not have thousands of concurrent users and can be scaled
vertically. The following research questions were posed to
guide the study:

• (RQ1) What is the performance difference between a
monolithic application versus a microservice
application?

• (RQ2) Which of the two architectures and scaling
approaches should be chosen to best benefit an appli-
cation from scaling?

• (RQ3) In what circumstances do the implementation
technologies (Java vs. C# .NET) have any performance
advantages or disadvantages?

B. OUTLINE OF THE PAPER
The rest of the paper is organised as follows. The follow-
ing section describes monolithic and microservices archi-
tectural styles, and compares and contrasts their advantages
and disadvantages. Section 3 discusses related work. The
research method and the experimental design are explained in
Section 4. This is followed by Section 5, which contains the
experimental results. In Section 6, we discuss our findings.
In Section 7, we elaborate on threats to validity that are
relevant to our study and how we addressed them. Finally,
Section 8 concludes the study along with suggestions for
future research.

II. BACKGROUND
In the subsequent sections, we present more details on both
the similarities and differences and the pros and cons of the
two architectural styles, as well as two primary approaches to
application scaling.

A. MONOLITHIC ARCHITECTURE
Enterprise applications are often internally built according
to the classic three-tier model and hence consist of: (1) user
interface code (typically HTMLpages and JavaScript running
in a browser on the user’s machine); (2) server-side business
logic which handles HTTP requests, executes domain logic,
retrieves and updates data from the database, and selects
and populates HTML views to be sent to the browser; and
(3) database backend [34]. The server-side application is a
monolith - a single logical executable [6].

From the operating system’s point of view, a mono-
lithic application runs as a single process in the application
server’s environment.When a new version of an application is
deployed, it replaces the previous version of the application in
a single step (for example, to deploy an application under the
JEE Application Server, a single EAR/WAR file containing
the application executable must be copied to a designated
folder).

The most significant advantage of the monolithic archi-
tecture is its simplicity – in comparison to distributed appli-
cations of various genres, monolithic ones are much easier
to test, deploy, debug and monitor. All data is retained in
one database with no need for its synchronization; all inter-
nal communication is done via intra-process mechanisms.
Hence it is fast and does not suffer from problems typi-
cal to inter-process communication (IPC). The monolithic
approach is a natural and first-choice approach to building
an application – all logic for handling requests runs in a
single process. The basic features of the development team’s

20358 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

preferred language can be used to structure the application
into classes, functions, and namespaces.

However, as the application’s size and complexity grow,
problems start to arise – modifying the application’s source
becomes harder as more and more complex code starts to
behave in unexpected ways. Changes in one module may
lead to unexpected behavior in other modules and a cascade
of errors. The very size of the monolith results in longer
start-up time, which in turn slows down the development
and becomes an obstacle to continuous deployment. Over
time it is increasingly harder for the development team to
keep changes that related to a particular module to only
affect this very module, and in effect, to retain a mod-
ular structure of the application. Also, as the application
grows, the number of developers increases, which often leads
to unequal workforce utilization and, in effect, losses in
productivity [34].

B. MICROSERVICE ARCHITECTURE
One of the first attempts to describe the microservice archi-
tectural style was by Lewis and Fowler [6]. In their famous
blog post, they defined this new architectural term as ‘‘an
approach to developing a single application as a suite of
small services, each running in its own process and com-
municating with lightweight mechanisms, often an HTTP
resource API’’. Each microservice contains its own user
handling functions, business logic, and backend functions.
Microservice may also include its own database service (but
it is also possible to share a single backend among multiple
microservices).

The main principles of this architecture are:

• Single responsibility per service – according to the
SOLID principles, a single unit should only have one
responsibility and at no point should two units share
one responsibility or one unit have more than one
responsibility.

• Microservices are autonomous – they are self-contained
and independently deployable services fully responsible
for executing a given business [33], [35]–[37]. Because
of their autonomy, they contain all dependencies such
as: libraries, the execution environments – web servers
and containers or virtual machines. Thereby, microser-
vices increase the possibility of monetization of system
parts, as access to relevant microservice APIs can be
charged [38].

• Services are first-class citizens – they expose service
endpoints as APIs and abstract all their implementation
details. The internal structure: implementation logic,
architecture, and technologies (including programming
language, database, etc.) are completely hidden behind
the API.

It is worth mentioning that the microservice communica-
tion paradigm differs significantly from approaches based
on Service Oriented Architecture (SOA) [39] such as Enter-
prise Service Bus (ESB), which include sophisticated and

‘‘heavy-weight’’ facilities of message routing, filtering, and
transformation. The microservice approach favors: ‘‘smart
endpoints and dumb pipes’’ [3]. There is no standard
for communication or transport mechanisms for microser-
vices. Microservices communicate with each other using
well-standardized lightweight internet protocols, such as
HTTP and REST [5], or messaging protocols, such as JMS
or AMQP.

Themost attractive feature of the microservice architecture
is the decomposition of complex applications into smaller
components which are easier to develop, manage and main-
tain than a single monolith application [40]. As long as
the public API does not change, internal modifications of
one service are more straightforward, easier, and less costly
than in the case of a similar change in a traditional model.
Microservices are autonomous and communicate via open
protocols, hence they can be developed fairly independently
and even with different technologies [5], [41]–[43].

Microservice-based applications scale well horizontally,
not only in the technical sense, but also concerning the
organization’s structuring of developer teams, which can be
kept smaller and more agile [5], [22], [44], [45]. Efforts to
seamlessly integrate such options into adaptive business pro-
cess management have already found their way into business
practice [46]. Furthermore, splitting large applications into
individual microservices provides the next degree of indepen-
dence to agile teams [7], [25], which supports scaling agile
methods. Each teammaywork on different microservices and
develops user stories that affect only their microservices [44].
As long as a team does not change the contracts among ser-
vices, a decision can be made within the service team rather
than among several teams working on a large monolithic
application [7]. Accordingly, the adoption of microservice
architecture implies reducing the need for inter-team coor-
dination, which is a serious challenge in large-scale software
development [47]–[52].

Another benefit of microservice applications is that
its loosely coupled architecture makes them more fault-
tolerant [37] – the failure of one component does not nec-
essarily result in the unavailability of the whole system,
as functioning services can still fulfill user requests. It is
also possible to identify critical business functionality and
deploy corresponding microservices in a more redundant
environment.

Apart from numerous advantages, the microservice archi-
tecture has its caveats and disadvantages mainly related to
its distributed nature. Deployment, scaling, and monitoring
of a multi-service system is a more complex task than in
the case of a monolithic application. For this reason, various
automatization procedures in the continuous integration /
continuous delivery (CI/CD) pipeline [53], monitoring, and
demand-based autoscaling are used in the development of
such applications [6], [34]. To fully take advantage of short
development-to-operations, life-cycle testing must also be
automated, which is a more challenging task in distributed
environments [42], [54]. Another challenge lies in the design

VOLUME 10, 2022 20359

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

of data management facilities – the principles of microservice
architecture state that maximum service isolation is preferred.
Hence, multiple independent database systems are introduced
into the distributed application, increasing complexity and
reducing manageability [34].

In this work, we focus on application performance –
IPC required between microservice components intro-
duces substantial overhead when compared to intra-process
communication (function calls and method invocations) used
in monolithic applications. IPC is implemented as an oper-
ating system’s kernel service. In most cases, it requires data
copying between user and kernel space, and hence it reduces
(in many cases significantly) application performance. Appli-
cations that do not service significant user traffic will show
degraded throughput and response times when migrated from
monolithic to a distributed architecture. Only as the user
request increases, proper scaling of a microservice-based
application can outweigh communication overhead – study-
ing of this phenomenon is, in fact, themajor topic of our work.

C. VERTICAL AND HORIZONTAL SCALING
Scalability is the property of a system to handle a growing
amount of work by adding resources to the system [55].
The manner in which additional resources are added defines
which of two scaling approaches is taken [8], [14], [56],
[57] - vertical scaling or horizontal scaling. The former,
also known as scaling up, refers to adding more resources
(CPU, memory, and storage) to an existing machine. It is the
more straightforward approach, but it is limited by the most
powerful hardware available on the market [56]. As for the
Azure App Service, the most powerful VM instance avail-
able has only eight cores and 32 GB of RAM. Additionally,
beyond a specific configuration of hardware resources, costs
increase tremendously. It is worth mentioning that in cloud
platforms, vertical scaling allows for adding or removing
virtual resources to a running virtual machine (VM) [58], thus
it does not lead to downtime.

In contrast, horizontal scaling, also known as scaling out,
refers to adding more machines and distributing the work-
load. It is more complex because it has an influence on the
application architecture, but can offer scales that far exceed
those that are possible with vertical scaling [56]. Horizontal
scaling is more common with microservice applications [36],
even though a monolith may be also scaled out by running
many instances behind a load-balancer [6]. Nevertheless,
scaling out a monolithic application may not be so effective
because it commonly offers a lot of services - some of them
more popular than others. In order to increase the availability
of a monolithic application, the entire application needs to be
replicated. This leads to over scaling in non-popular services,
which consume server resources even when they are idle,
and in effect results in sub-optimal resource utilization [59].
On the other hand, in order to increase the availability of
a microservice application, only highly demanded microser-
vices that consume a large amount of server resources will
get more instances [18].

III. RELATED WORK
A. BENCHMARKING APPLICATIONS FOR COMPARING
MONOLITHIC VERSUS MICROSERVICE ARCHITECTURE
To compare the performance and scalability of the two
investigated architectures, we need both monolithic and
microservices versions of the same application. When
exhaustively searching the web, Aderaldo et al. [23] found
only two such systems: Acme Air and MusicStore. Three
years later, Francesco et al. [15] conducted a systematic map-
ping study to characterize state of the art on architecting
with microservices. After screening 103 primary studies, they
identified only one benchmarking application, namely Acme
Air. Consequently, they called for developing open-source
benchmarking applications that can be used for comparing
monolithic versus microservice architecture. In addition,
we identified one more benchmarking application, namely
JHipster. All three aforementioned applications are shortly
discussed below.
MusicStore was originally developed by Microsoft to

demonstrate ASP.NET components. Later on, it was bro-
ken up into multiple independent services by the Steeltoe
team1 to illustrate how to use their open source library aimed
at developing cloud native .NET microservice applications.
Unfortunately, the original monolithic implementation has
not been updated since 2018, while its GitHub repository
has been archived. Seeing that the monolith uses obsolete
technologies, whereas the microservice-based implementa-
tion uses the third party library, MusicStore is not a suitable
benchmark application.
Acme Air2 simulates the website for a fictitious air-

line company. It is available not only in two architectural
styles but also in two different languages (i.e., Java EE and
Node.js). Besides, it has already been frequently used and
discussed in the microservices research literature [59], [60].
Unfortunately, Acme Air has also not been updated since
August 2015, while Java has evolved significantly in that
time. Accordingly, this application also cannot be used as a
benchmark.
JHipster [41] is a development platform utilized to gen-

erate web applications. It is implemented with Java Spring
Boot and Angular JS frameworks. Its source code is publicly
available on GitHub in both monolithic and microservice
versions.3 Nonetheless, when the Java version of our bench-
mark application was developed [61], we were not aware of
JHipster, as the paper that popularizes it was published later.

B. PERFORMANCE EVALUATION OF MONOLITHIC VERSUS
MICROSERVICE ARCHITECTURE
The topic of performance and cost comparison of microser-
vice and monolithic applications has already been tackled
in the literature. In [41] Al-Debagy and Martinek compared
the performance of an application built both in monolithic

1https://github.com/SteeltoeOSS/Samples/tree/main/MusicStore
2https://github.com/acmeair/acmeair
3https://github.com/eugenp/tutorials/tree/master/jhipster

20360 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

TABLE 1. Independent and dependent variables by experiment.

and microservice style. The application was developed with
Spring Boot and AngularJS with Apache JMeter used as
a testbed. Tests were conducted in a local environment.
Response time and throughput were used as performance
metrics. In concurrency testing, the monolithic version of the
application showed better performance by 6% in throughput
with respect to the microservice-based variant, while in the
load testing scenario, there was no significant difference
between the two approaches. It is worth noting that in work
quoted above, the application ran in a local (i.e., non-cloud)
environment, whereby neither vertical nor horizontal scaling
effects were evaluated.

In [62] Garces et al. have conducted a cost comparison of
running web applications in three architecture variants: using
bothmonolithic and client-operatedmicroservice under AWS
EC2 cloud as well as a provider-operated microservice under
AWS Lambda cloud environment. The authors used Java
technology with Play and Jax-RX frameworks and Node.js.
The monolithic architecture was used as a baseline, to which
subsequent microservice tests referred. The measure that was
used was the maximum number of requests per minute sup-
ported by a given architecture. Test results have shown that
client-operated microservices indeed reduce infrastructure
costs by 13% in comparison to standard monolithic archi-
tectures and in the case of services specifically designed for
optimal scaling in the provider-operated cloud environment,
infrastructure costs were reduced by 77%.

In [59] Ueda et al. analyzed the behavior of an application
implemented as a microservice and monolithic variant for
two popular language runtimes – Node.js and Java Enterprise
Edition (EE) using Acme Air benchmark suite and Apache
JMeter for performance data collection. Additionally, tests
were conducted both for native process and Docker container
deployments. Throughput and cycles per instruction (CPI)
were used as performance metrics; the test environment
was equivalent to a private cloud deployment. The authors
observed a significant overhead in the microservice architec-
ture – on the same hardware configuration the performance
of the microservice model was 79% lower with respect to
the monolithic model. The microservice model spent a more
significant amount of time in runtime libraries to process one
client request than the monolithic model, namely – 4.22x

on a Node.js application server and by 2.69x on a Java EE
application server.

As this short review shows, the performance test results
conducted with different assumptions, and in environments
which are difficult to relate to each other give conflicting
results. Some show significant performance improvement
for microservice, while others for monolithic architectures.
In this work, we present a more comprehensive benchmark
environment focusing on the cloud deployment only, and
spanning multiple variants of differently scaled deployments
– more information follows in the next section.

IV. METHOD
A. RESEARCH DESIGN
To answer the research questions, we carried out three con-
trolled experiments. Each experiment was conducted in a
different deployment environment (see Table 1) and inves-
tigated the effects of several factors (i.e. independent vari-
ables), which varied among the deployment environments,
on performance and infrastructure cost. Performance was
calculated as the number of requests processed per second.
In turn, infrastructure cost was determined by the number and
type of virtual machine instances that were used to deploy an
application.

When it comes to our local environment, we considered
the effects of architecture (monolith vs. microservices), ser-
vice (City vs. Route), and technology (Java vs. C# .NET).
Accordingly, we used a 2 × 2 × 2 factorial design. In a
factorial design, each level of one factor is combined with
each level of the others to produce all possible combinations.
Each combination, then, becomes a condition in the experi-
ment [63]. Note, that the infrastructure cost was the same for
all experimental runs in the local environment as the same
hardware configuration was used, thus we did not calculate it.

When it comes to both cloud experiments, they involved
two more factors:
• VM type - as for Azure Spring Cloud, it specifies the
number of vCPU the amount of memory for a single VM
instance, while in the case ofAzureApp Service, it refers
to a generic description of a VM;

• #instances - denotes the number of instances of VM
type.

VOLUME 10, 2022 20361

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

Since all combinations of levels for all factors would
require a large number of experimental runs and a signif-
icant amount of resources, a full factorial design was not
practical in that case. Besides, not all possible combinations
of levels across all factors were available or interesting.
For example, as for B1 machines of Azure App Service,
the maximum number of instances was three, while Azure
Spring Cloud supported only Java Spring Boot applications.
Thereby, we used a fractional factorial design consisting of
an adequately selected subset of the experimental runs of a
full factorial design. All scenarios, as well as independent and
dependent variables, are discussed in detail in the following
subsections.

B. EXPERIMENTAL OBJECT
Since none of the existing benchmarking applications were
suitable to compare the performance of the investigated archi-
tectures fairly, we developed a new one. Our benchmark-
ing application is implemented in four functionally identical
versions, covering not only two different architectural styles
(monolith and microservices) but also two leading technolo-
gies intended for the development of server-side software:

• Java – implemented in Java 84 with Spring Boot frame-
work 2.3.0,

• .NET – implemented in C# version 8 with ASP.NET
Core framework 3.1.

The rationale behind the selection above is the following:
Spring Boot is the most dominant Java framework today [65],
and is definitely the best documented and most common in
cloud deployments [8]; ASP.NET Core is the new version of
the popular andmature ASP.NET programming environment,
its codebase is licensed as open-source and available on
GitHub. Similar to Spring, it is well documented and has a
large developer community backing it. It is also the first and
natural choice for deployments of microservice applications
in the Azure cloud.

All versions of our application expose twoREST endpoints
that return serialized JSON objects as shown on Figure 1. The
REST endpoints correspond to two services:

• City service – simulates a simple single object query, the
input contains city name string, while response contains
city data (id, name, state and population)

• Route service – simulates computationally intensive
query, the output contains a path (an ordered series of
points) being the shortest route between 10,000 ran-
domly chosen points, each time the route is computed by
the heuristic algorithm of the traveling salesman class.

The basic scheme of monolithic and microservice versions
is shown in Figure 2 – in the case of the monolith, the
REST API directs client queries directly to the application’s
business logic. In the case of the microservice version, an API

4The annual survey on the state of the JVM ecosystem conducted in
2020 [64], shows that 64% of developers still use Java 8 in production
environments.

FIGURE 1. City and route services - response data and basic
communication scheme.

FIGURE 2. Monolithic and microservice logical architectures.

gateway is used to direct requests to the responsible service,
which is a typical solution for this type of architecture.

The application was tested in a local (i.e., non-cloud)
environment to established baselines and in the Azure cloud.
In the case of the Java version of the application, we have
tested two deployment variants: Azure Spring Cloud and
Azure App Service. In the case of the monolithic version,
there is no difference between the local and cloud version.
In the case of microservice variants, additional components
were added to enable horizontal scaling, namely – the appli-
cation was extended to use Sprint Cloud framework, which

20362 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

includes: Zuul load balancer, Spring Cloud Config, and
Eureka5 – a registry providing service discovery.

In the case of Java, the difference between Azure Spring
Cloud and Azure App Service deployment is that the latter
offers a ‘‘built-in’’ application gateway component which is
a part of the framework. Still, in the case of Spring cloud, the
gateway must be deployed manually as a service provided
by the user. The architecture of the microservice version of
our test application under Azure Sprint Cloud is shown in
Figure 3.

FIGURE 3. Microservices application deployed to Azure spring cloud.

C. EXPERIMENTAL SETUP
1) LOCAL ENVIRONMENT
Local tests were conducted on a PC machine running under
Microsoft Windows version 10 Enterprise with the fol-
lowing hardware parameters: Intel(R) Core(TM) i7-9850H
CPU 2.60GHz, six physical, 12 logical cores, and 32 GB
RAM (Dell Precision 7540). During the local tests, only one
instance of each service without scaling was used.

2) AZURE SPRING CLOUD ENVIRONMENT
Test environment configurations for Azure Spring Cloud are
shown in Table 2. Unfortunately, Azure Spring Cloud does
not offer fine-grained resource scaling. In the Standard Tier,
if the size of consumed resources does not exceed 16 cores
and 32 GB RAM, Azure Spring Cloud charges a fixed fee
per hour. It means that according to the pricing list available
to the US East Region in September 2020, the infrastruc-
ture costs of running our application in each deployment
scenario were fixed at 1.65 USD per hour (39.6 USD per
24h). Thereby, to compare the cost effectiveness of each
deployment scenario, we calculated ‘‘24H Effective Cost’’ by
assuming fine-grained resource prices as follows: 0.08 USD
per core per hour and 0.01 USD per 1GB RAM per hour. This

5https://github.com/Netflix/eureka

TABLE 2. Deployment scenarios for Azure spring cloud.

calculation takes into account provider’s overage memory
price (0.00825 USD per GB-hour) and overage vCPU price
(0.0783 USD per vCPU-hour). Note, that ‘‘24H Effective
Cost’’ refers to a total cost, including the cost of API Gateway
service configured with 1 CPU core and 1 GB RAM.

3) AZURE APP SERVICE
In the case of Azure App Service, the cost is based on the size
and number of instances according to the pricing tiers shown
in Table 3. (Please note that values from the ‘‘Identifier’’ col-
umn will be further used in this work to designate hardware
resource configurations).

TABLE 3. Azure app service tiers.

In the case of the total cost of microservice variants,
we must also account for resources needed by the application
gateway, which is 0.025 USD per work-hour (the application
gateway needs only one core and 1 GB RAM).

Different deployment variants with respect to architec-
ture, technology and resources which we tested are listed in
Table 4. ‘‘24H Cost’’, is the cost of a 24 hour continuous run
of the application with all required components.

D. PROCEDURE
We have used Apache JMeter6 as a testing tool. JMeter is a
popular open-source software tool that can simulate a load
on a server, group of servers, network, or object. We have
selected it because of its flexibility – it allows us to precisely
configure the load configuration [66], i.e.:

• the total number of requests,
• the number of threads that will be used to execute the
test, which simulates the number of users accessing the
application simultaneously,

• the method of result verification.

6https://jmeter.apache.org

VOLUME 10, 2022 20363

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

TABLE 4. Deployment scenarios for Azure app service.

As the performance measure, we have used throughput,
which is calculated by JMeter as the number of requests
processed by the server, divided by the total time in seconds
to process the requests. The time is measured from the start
of the first request to the end of the last request. This includes
any intervals between requests, as it is supposed to represent
the load on the server.

Throughput is the most commonly used measure in similar
works – see for example [42], [59]. Other measures include
response time and cycles per instruction, CPI) but throughput
is best suited when we also want to compare the overall
costs of running the application in a given technology and
configuration.

To gather performance data, we used the following test
procedure: theCity service was invoked 1000 times, theRoute
service was invoked 100 times, the number of threads was set
to 10 for both scenarios. Each of the test runs was repeated

20 times. Since the cloud environments do not necessarily
guarantee stable performance due to many factors related to
network stability, virtual server availability, etc. – to com-
pensate for various unexpected variations, we repeated each
test series five times, computed the median of the results, and
finally, we chose the test with the median being the median
of obtained medians of all test runs. The validity of such an
approach is discussed in ‘‘Software Microbenchmarking in
the Cloud’’ work by Laaber et al. [67].
Note that when testing the performance of themicroservice-

based application, only one service was running. This is
a common approach when it comes to horizontal scaling
of microservices – each popular microservice gets its own
virtual machines according to the associated load [18], [68].
Nevertheless, this approach slightly handicapped the mono-
lithic application, where both services were running at one
time even though either was idle.

V. RESULTS
In this chapter, we present and analyze the results of applica-
tion performance and scalability tests.

A. LOCAL ENVIRONMENT
Tests executed in a local (non-cloud) environment let us
establish a performance baseline. In Figure 4 we present
throughput for monolithic and microservice applications
written in .NET and Java, both for City and Route services.

FIGURE 4. Throughput in the local environment, city service (left), route
service (right). Hereinafter, MS denotes microservices.

In the microservice application, requests are passed
between API Gateway and the backend service, which
imposes a communication overhead that deteriorates the
performance. As for the computationally intensive Route
service, this overhead is minor compared to the service exe-
cution time. Therefore, throughput is only slightly higher
for the monolithic application. In contrast, in the case of
non-computationally intensive City service, the CPU time
required to execute the service may be the same order of
magnitude as the CPU time, to pass the data to and from the
backend service. Accordingly, the monolith system handled

20364 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

on average over 2 times more requests in the .NET version,
and 1.37 times more requests in the Java version.

Comparing .NET and Java, we can conclude, that in the
case of the non-computationally intensive City service, .NET
is more efficient in communication request handling than
Java. This can be attributed to a high level of performance
optimization in .NET Core libraries, especially regarding net-
work request handling7 and JSON data serialization.8,9 On
the other hand, with the Route service, Java implementations
show better throughput than .NET both for monolithic and
microservice applications – respectively by 5% and 1.5%.
Some insight into CPU utilization gives an answer regarding
better Java throughput in this case – CPU usage in .NET vari-
ant was noticeably lower; hence we can conclude that Java,
in the case of computationally intensive applications, is more
aggressive in allocating this resource to the application (RAM
utilization was similar for both cases).

B. AZURE SPRING CLOUD ENVIRONMENT
As Spring is a Java-specific framework, only the Java version
of the application was tested in the Azure Spring Cloud
environment. We tested each service under four different
CPU/RAM resource allocation variants. The highest through-
put in City service 5was achieved bymicroservice configured
on two instances of 2 CPU & 2 GB RAM machines; next
was the configuration of six instances of 1 CPU & 1 GB
RAM, whereas the worst performer was one microservice
instance configured with 1 CPU & 1 GB RAM. We can
notice that in the case of this lightweight application, we can
achieve throughput improvement when a higher number (six
in this case) of instances is used – throughput of MSx3
was comparable to the throughput of the monolithic variant.
We can also state that adding CPU and RAM to the mono-
lithic variant improves performance only to a specific limit –
compare 4 CPU & 6 GB RAM and 4 CPU & 6 GB RAM.
Finally, the best throughput is achieved in a configuration
scaled vertically and horizontally – MSx2 2 CPU & 2 GB
RAM.

Application daily cost vs. performance is shown in
Figure 6, where the pricing was calculated according to data
presented in Table 2. Here, and in subsequent similar cases,
we always use the obtained throughput’s median for a cost
comparison. On this and subsequent figures, Pareto domi-
nated configurations marked in red relate to cases where the
same or better performance can be achieved by a cheaper –
Pareto efficient – configuration. Comparing the costs, we can
conclude that in the Spring Cloud environment, horizontal
scaling of low-performance machines (1 CPU& 1 GB RAM)
always leads to Pareto dominated configurations.

7https://devblogs.microsoft.com/dotnet/performance-improvements-in-
net-core

8https://devblogs.microsoft.com/dotnet/try-the-new-system-text-json-
apis

9https://www.techempower.com/blog/2019/07/09/framework-
benchmarks-round-18

FIGURE 5. Throughput in the Azure spring cloud environment—city
application.

FIGURE 6. Throughput and cost in the Azure spring cloud
environment—city application.

The Route test gives different results – see Figure 7 –
the best performing configuration is that of six instances
of 1 CPU & 1 GB RAM machines, good throughput results
were also obtained by two instances of 2 CPU & 2 GB RAM
and the monolithic version. Comparing these results to the
previous ones, we can conclude that in the case of computa-
tionally intensive applications, positive results of horizontal
scaling are more apparent – throughput scales almost linearly
with the number of instances. Also, there is no substantial
performance difference betweenmonolithic andmicroservice
applications with the same CPU resources.
Route service daily cost to performance ratio is shown in

Figure 8. In this case, three microservice configurations were
Pareto dominated, whereas their resource-corresponding
monolith versions were Pareto efficient. It is worth noting
that MSx6 1 CPU & 1 GB RAM turned out to be the most
powerful configuration, but MSx2 2 CPU & 2 GB RAM and
monolithic version with 4 CPU & 6 GB RAM delivered only
slightly lower performance with substantially lower cost.

C. AZURE APP SERVICE ENVIRONMENT
Figure 9 illustrates throughput results for City service
under Azure App Service environment. As in the previous

VOLUME 10, 2022 20365

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 7. Throughput in the Azure spring cloud environment—route
service.

FIGURE 8. Throughput and cost in the Azure spring cloud
environment—route service.

section – monolith and MSx1, MSx2, . . . , MSx20 relate to
the number of microservice instances ranging from 1 to 20.
The results are grouped by virtual machine configuration
(i.e., number of CPUs and RAM size) shown as a label – see
table 4. This form of presentation lets us analyze the effects
of horizontal scaling.

The same information is presented in Figure 10 to analyze
the effects of vertical scaling, as a function of ascending
virtual machine computing power and grouped by the number
of microservice instances. The full dataset and box plots
figures of measured throughput under Azure App Service are
available at our GitHub repository.10

The top-performing configuration in the City test is
6 × S4:7 written in .NET. A very similar throughput was
obtained by 3× S4:7 also under .NET. The best configuration
for Java application was 6 × S4:7 – ranked fifth. Worst
performing were Java applications running on machines
B1:1.75 and S1:1.75. In most configurations, .NET appli-
cations performed better than their Java counterparts. This
is consistent with the results of local tests – here, also Java

10https://github.com/przybylek/Monolith-vs-Microservices

applications performed worst in low power configurations,
and similar or better than .NET in environments that were as
well vertically scaled as P4:14. This result is consistent with
the earlier observation that Java applications have notable
resource overhead and require more computing power.

A surprising result is that in the highest power configura-
tion – P4:14, both Java and .NET applications have shown
performance loss with respect to S4:7 even though P4:14
comes from the Premium v2 Service Plan, which provides
faster processors and SSD storage compared to VMs offered
in the Standard Service Plan. Our results suggest that CPU
types used in P4:14 configuration are less suited to servic-
ing a large number of short requests and heavy network
traffic.

To illustrate the effect of scaling, we have prepared two
additional plots – Figure 11 shows how throughput’s median
changes in % relative to previous configuration – when
the number of instances increases – from 1 to 3, from
3 to 6, . . . , and finally from 15 to 20; respectively. Figure 12
shows how throughput’s median changes (also %-wise) when
a single virtual machine configuration is upgraded – from:
B/S1:1.75 to S2:3.5, from S2:3.5 to S4:7, and from S4:7
to P4:14. From Figure 11 we can conclude that horizontal
scaling of simple& short request applications is most benefi-
cial when the number of instances is moderately increased,
here: from 1 to 3 and from 3 to 6. A further increase of
the number of instances is not notably beneficial, and in
half of the cases, it resulted in performance decrease (.NET
S2:3.5, Java S2:3.5, .NET S4:7, Java S4:7, Java P4:14, Java
B/S1:1.75 with ten instances) – this is caused by communica-
tion overhead due to load balancing and the need of request
passing. The first obvious conclusion from Figure 12 relating
to vertical scaling is that the changes are more significant
when compared to horizontal scaling – compare the increase
of throughput by 24% in the case of Java Monolith and
MSx1 architecture up-scaled to S2:3.5 configuration with
relation to maximum increase by 9% in case of the same
architectures horizontally scaled from 1 to 3 instances. Also,
we do not observe a notable performance increase with fur-
ther configuration up-scaling. However, we should be care-
ful with the interpretation of these results – a significant
performance increase, especially for the Java architecture,
is caused by the effect of ‘‘right-scaling’’ – the basic con-
figuration B/S1:1.75 does not fully meet requirements of
the application, especially under the heavier Java run-time
environment. Finally, we should also mention the negative
impact of moving to the P4:14 configuration caused by the
previously discussed change of the CPU architecture in the
Premium v2 Service Plan.

Application daily cost vs. performance is shown in
Figure 13. As in previous cases, the pricing was calculated
according to data presented in Table 2 and the obtained
throughput median was used. Comparing the costs of running
the City service in different configurations, we can conclude
that Pareto efficient configuration variants for .NET were:
monolithic B1:1.75, S2:3.5, S4:7 and microservice-based:

20366 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 9. Throughput vs. horizontal scaling in the Azure app service environment—city service.

FIGURE 10. Throughput vs. vertical scaling in the Azure app service environment—city service.

B1:1.75, 1 x S2:3.5, 3 x S2:3.5, 3 x S4:7 and 6 x S4:7. In the
case of Java, an almost identical set of configurations with an
addition of 1 x S4:7 was Pareto efficient.

Now we will focus on tests of the Route service – refer
to Figure 14 which presents throughput median as a function
of the number of instances grouped by instance configuration
(horizontal scaling) and to Figure 15 which presents the same
data but grouped by the number of instances (vertical scaling).
Java is a better performer here – attaining better results in
all but one case. The effects of both horizontal and vertical
scaling are clearly visible – the more powerful the configu-
ration and the larger the number of microservice instances,
the better throughput. The best performance was registered
for 10 x P4:14 Java configuration. This result is consistent
with those obtained in the local configuration of the Route
where Java was also a better choice for this computationally
intensive service. We can also observe an interesting trend:
for low-power configuration, throughput is similar for .NET
and Java variants, but as the power of the virtual machine
is increased, Java variant shows large performance gain over

.NET – compare results for S4:7 and P4:14 on Figure 14. Java
also exhibits better vertical scaling – see results for P4:14 on
Figure 15.
Similar to the City service in the case of Route service,

we have also visualized the effect of scaling on two addi-
tional plots – Figure 16 shows how throughput’s median
changes in % relative to the previous value when the number
of instances increases; Figure 17 shows how throughput’s
median changes (also %-wise) when single virtual machine
configuration is upgraded. Values on the x-axis are identical,
as with the City service. The largest throughput increase
was measured when the number of instances was increased
from 1 to 3 and from 3 to 6 – this is consistent with the
previous results. The scale of the increase is much more
prominent with the Route service. In five cases (both .NET
and Java), performance increased by over 100% relative to
the previous configuration. The most significant observed
scaling gain was 148% (compared to maximum 9% gain in
the City service). Again, similarly to the previous service,
we also observe no or minimal gain when the number of

VOLUME 10, 2022 20367

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 11. Throughput’s median change as an effect of horizontal
scaling in the Azure app service environment—city service.

instances increases to 15, and throughput reduction with the
increase to 20 instances. The effects of vertical scaling are
also notably larger in the case of the Route service – we
have observed 200% performance gain with the change from
1 × B1.1:75 to 1 × S2:3.5 configuration in the case of Java
platform, and significant gains no smaller than 48% in case
of other horizontal configurations. Note that in the case of
City test, vertical up-scaling resulted in an actual performance
decrease in eleven cases. Here, only in one case, a minimal
performance reduction was measured. In general, vertical
up-scaling almost always proved beneficial in this test, and
its results were meaningful (at least 30% improvement) in all
but four cases.

Finally, in this section, we will analyze the costs of var-
ious configurations of the Route service – see Figure 18.
Comparing the costs for the Route service we can conclude
that Pareto efficient configuration variants were: monolithic
B1:1.75, S2:3.5, S4:7 and P4:14 as well as microservice-
based: 1 × S2:3.5 i 3 × S2:3.5, 3 × P4:14, 6 × P4:14,
10 × P4:14. In the case of Java: an almost identical set
of configurations with an addition of 1 × S4:7 - both
for .NET and Java. Additionally, 15 × P4:14 may be
selected for microservice .NET and 1 × P4:14 for microser-
vice Java. Almost all high-power configurations (except for
20 × P4:14) are Pareto efficient – this is in contrast to
the City test where high-power configurations were Pareto
dominated.

FIGURE 12. Throughput’s median change as an effect of vertical scaling
in the Azure app service environment—city service.

VI. DISCUSSION
This section discusses the results of our study – we address
research questions stated in the introduction regarding per-
formance differences between monolithic and microservice
applications, scaling approaches, and implementation tech-
nologies. Here, we generalize the naming of our benchmark
services: City is referred to as a simple service and Route as
a complex service.

A. (RQ1) WHAT IS THE PERFORMANCE DIFFERENCE
BETWEEN A MONOLITHIC APPLICATION VERSUS A
MICROSERVICE APPLICATION?
On a single machine, the monolith performs better than the
microservices (see Figure 4) because of the additional over-
head of request passing between microservice components.
Note that this difference is not noticeable in our cloud bench-
marks because the application gateway was deployed on a
separate virtual machine, which relieved the primarymachine
that hosted microservices.

Thereby, as for both cloud experiments, rather than com-
paring the performance of both architectures running on
the same VM type, we must compare the performance of
the architectures hosted on configurations that have similar
infrastructure costs.

When such comparisons are made, the monolith outper-
forms the microservices (see Figures 6, 8, 13, and 18), even
though the latter was still privileged, because when testing
the performance, only one service was running (for details
see Section IV-D).

20368 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 13. Throughput and cost in the Azure app service environment—city service.

FIGURE 14. Throughput vs. horizontal scaling in the Azure app service environment—route service.

B. (RQ2) WHICH OF THE TWO ARCHITECTURES AND
SCALING APPROACHES SHOULD BE CHOSEN TO BEST
BENEFIT AN APPLICATION FROM SCALING?
The monolith scaled vertically was Pareto efficient in ser-
vicing both simple and complex requests on all hardware
configurations except P4:14 regardless of the implementation

technology. Also note, that all experimental runs executed on
P4:14 turned out to be Pareto dominated.

Likewise, scaling up the microservice-based application
performed well and was more cost-efficient than horizontal
scaling. Nevertheless, vertical scaling was limited by the
most powerful VM available; therefore the best performance

VOLUME 10, 2022 20369

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 15. Throughput vs. vertical scaling in the Azure app service environment—route service.

FIGURE 16. Throughput’s median change as an effect of horizontal
scaling in the Azure app service environment—route service.

was achieved by the microservice architecture that was both
vertically and horizontally scaled.

Our experiments have also shown that the best cost-to-
performance ratio was achieved with three instances of the
most powerful platform. Moreover, both horizontal and ver-
tical scaling exhibit significant throughput gain in the case of
complex services than in simple ones.

Furthermore, with microservice architecture, horizontal
scaling effects differed significantly in the case of simple and

FIGURE 17. Throughput’s median change as an effect of vertical scaling
in the Azure app service environment—route service.

complex services. Concerning the number of instances, in the
case of the simple service, top performancewas achievedwith
a smaller number of virtual machines than in the complex
service. There is a visible cap on horizontal scaling for both
service types, where the further increase of the number of
instances does not improve and may even degrade perfor-
mance. This effect of over-scaling manifests itself when CPU
overhead resulting from load distribution exceeds the benefits
of increasing the total processing power.

20370 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

FIGURE 18. Throughput and cost in the Azure app service environment—route service.

Finally, the implementation technology (Java vs.
C# .NET) did not have a noticeable impact on the scalability
performance.

C. (RQ3) IN WHAT CIRCUMSTANCES THE
IMPLEMENTATION TECHNOLOGIES (Java VS. C# .NET)
HAVE ANY PERFORMANCE ADVANTAGES OR
DISADVANTAGES?
In the selection of the technology platform, characteristics
of network load vs. CPU load should be taken into account
– for intensive network services with a low CPU load .NET
is a better choice than Java; on the other hand, Java consis-
tently proved to utilize CPU better in computation-intensive
services..NET also better utilizes cheap hardware with lower
computational capacity as long as the computation is not
intensive (see the first plot on Figure 10). On the other hand,
The Java platform makes better use of powerful machines in
the case of computation-intensive services (see the last plot
on Figure 15).

D. OTHER FINDINGS
Java implementations deployed in the Azure Spring Cloud
performed better (especially in the case of the simple ser-
vice) with respect to their counterparts deployed on similar

machines under the Azure App Service environment. Also,
the cost of running the application under a given hardware
configuration in Azure Spring Cloud is lower than in Azure
App Service.

VII. THREATS TO VALIDITY
In this section, we report on the threats to the validity of
our study. We distinguish between three types of threat to
validity [2], [69]:
• construct validity – the extent to which the independent
and dependent variables accurately measure the con-
cepts they purport to measure;

• internal validity – the extent to which the observed
effects are caused only by the experimental treatment
conditions;

• external validity – the extent to which the findings of
the study can be generalized outside the experimental
setting.

A. CONSTRUCT VALIDITY
We narrowed the performance assessment to measuring the
throughput. Although throughput is the predominant perfor-
mance metric, other metrics, such as response time (latency)
and CPU utilization, have also been used in prior studies

VOLUME 10, 2022 20371

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

[4], [14], [17], [18], [42], [70]. Our motivation was that
throughput had also been commonly used as the scalability
measure [18], while in this study, we were also interested in
comparing the scalability of both architectural styles. Nev-
ertheless, we are aware that throughput does not capture all
aspects of the performance, and future work should investi-
gate other performance metrics.

B. INTERNAL VALIDITY
Readers need to keep in mind that experiments in a public
cloud cannot be fully controlled [67]. Indeed, in a pilot study,
we observed that the performance results varied considerably
between different runs of the experiment. For instance, some
test runs showed worse measured throughput for a higher-end
virtual machine than for a low-end machine. The reason for
this phenomenon is unknown. We may suspect both variabil-
ity between VM instances or random network disturbances.
On the other hand, variability within a single test series was
very stable. To eliminate the influence of such random bias,
we have employed test repetitions and median of medians
selection method described in Section IV-D.

Another factor that might have influenced the experiment’s
result is the random selection of route points in the Route
benchmark. We have verified in the local environment that
repeating a series of identical queries leads to better through-
put results. However, such a coincidence is very improbable,
given that 2000 queries are sent a single test series.

C. EXTERNAL VALIDITY
The most important threat to the external validity of our
study concerns the representativeness of the experimental
object. As it consists of only two independent services, our
application is far away from being a realistic benchmark. In a
real application, dozens (if not hundreds) of microservices
need to keep communicating by protocols such as HTTP. This
communication may result in overhead due to inter-service
communication when compared with method calls performed
locally in the monolith [13], [71], [72]. However, our inten-
tion was to solely isolate the scalability and eliminate
factors that could affect the dependent variables. Accord-
ingly, we traded some external validity for more internal
validity.

Our analysis of the impact of vertical and horizontal scaling
on application performance is based to a large extent on
test results conducted under the Azure App Service cloud.
Because of this, our conclusions concerning scaling are appli-
cable to applications deployed in a similar environment and
on virtual machines of comparable characteristics. However,
our cost analysis is strictly tied to the pricing models of the
Azure platform. Accordingly, before generalizing our results
to other public clouds, the reader should carefully compare
their pricing models. On the other hand, our conclusions
concerning the impact of chosen technology (Java vs. C#
.NET) on application performances can be generalized to
other cloud environments and application types.

VIII. CONCLUSION AND FUTURE WORK
Although microservices are gaining more and more momen-
tum in the IT industry, empirical studies evaluating their
performance and scalability are still rare, while hands-on
experiences come only from global IT giants with mil-
lions of concurrent users. Accordingly, shifting towards
microservices by small companies is often based on intuition
rather than solid information. To support software archi-
tects in rational decision-making about migrating systems
to microservices, or developing an entire application from
scratch under this architectural style, we carried out a series of
controlled experiments in three different deployment environ-
ments (local, Azure Spring Cloud, and Azure App Service).
We extensively investigated the effects of architectural style
(monolithic vs. microservice) and implementation technol-
ogy (Java vs. C# .NET) on the application performance and
scalability. Our key lessons learned are as follows:
• on a single machine, a monolith performs better than its
microservice-based counterpart;

• Java platform makes better use of powerful machines
in case of computation-intensive services when com-
pared to .NET; the platform effect is reversed if
non-computationally intensive services are run on hard-
ware with low computational capacity;

• vertical scaling is more cost-effective than horizontal
scaling in the Azure cloud;

• scaling out beyond a certain number of instances
degrades the application performance;

• the implementation technology does not have a notice-
able impact on the scalability performance.

In conclusion, a microservice architecture is not the best
suited for every context. A monolithic architecture seems to
be a better choice for simple, small-sized systems that do not
have to support a large number of concurrent users. We hope
that our findings will help companies avoid jumping into
microservices simply because they are trendy, especially if
better results can be obtained by scaling up their monoliths.

We also believe that both researchers and practitioners can
benefit from our reference benchmarking application,11 and
use it as a starting point for further experimentation.

In future work, we intend to make our benchmarking appli-
cation more complex so that it will closely resemble real-life
systems used by companies. The first extension will be to
develop more microservices, of which some will communi-
cate with each other. The reality of the application will also
benefit from having a database. Another interesting future
direction is to provide new implementation alternatives for
other programming languages recommended for developing
microservices, e.g., Golang, Python, and Node.js. Moreover,
we plan to deploy and benchmark our application on other
cloud platforms, including Amazon Web Services, Google
Cloud Platform, and Alibaba Cloud. It would be also interest-
ing to adopt more performance assessment metrics, includ-
ing response time (latency) and CPU utilization. Finally,

11https://github.com/annaojdowska/monolith-vs-microservices

20372 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

to address performance fluctuation issues due to a shared
environment, in a follow-up study, we consider running VMs
in a private environment (e.g. Azure App Service Environ-
ment) dedicated exclusively to a single customer.

ACKNOWLEDGMENT
The authors would like to thank Szymon Okrój, who devel-
oped Java implementations of their benchmark application as
a part of his master’s thesis project [61].

REFERENCES
[1] A. Przybyłek, ‘‘Where the truth lies: AOP and its impact on soft-

ware modularity,’’ in Fundamental Approaches to Software Engineering,
D. Giannakopoulou and F. Orejas, Eds. Berlin, Germany: Springer, 2011,
pp. 447–461.

[2] A. Przybyłek, ‘‘An empirical study on the impact of AspectJ on software
evolvability,’’ Empirical Softw. Eng., vol. 23, no. 4, pp. 2018–2050, 2018.

[3] M. Fowler. Microservice Premium. Accessed: May 30, 2020. [Online].
Available: https://Martinfowler.com/bliki/MicroservicePremium.html

[4] N. Bjørndal, A. Bucchiarone, M. Mazzara, N. Dragoni, S. Dustdar,
F. B. Kessler, and T. Wien, ‘‘Migration from monolith to microservices:
Benchmarking a case study,’’ Tech. Rep., 2020. [Online]. Available:
https://www.researchgate.net/profile/Manuel-Mazzara/publication/
339749917_Migration_from_Monolith_to_Microservices_Benchmarking
_a_Case_Study/links/5e6359034585153fb3c8515f/Migration-from-
Monolith-to-Microservices-Benchmarking-a-Case-Study.pdf

[5] B. Terzić, V. Dimitrieski, S. Kordić, G. Milosavljević, and I. Luković,
‘‘Development and evaluation of microbuilder: A model-driven tool for
the specification of rest microservice software architectures,’’ Enterprise
Inf. Syst., vol. 12, nos. 8–9, pp. 1034–1057, 2018.

[6] J. Lewis and M. Fowler. (Mar. 2014). Microservices:
A Definition of This New Architectural Term. [Online]. Available:
https://www.Martinfowler.com/articles/microservices.html

[7] C. Posta, Microservices for Java Developers: A Hands-on Introduction to
Frameworks Containers. Newton, MA, USA: O’Reilly Media, 2016.

[8] R. Rajesh, Spring Microservices. London, U.K.: Packt, 2016.
[9] A. Cockroft. (Aug. 2004).Migrating toMicroservices. [Online]. Available:

https://youtu.be/1wiMLkXz26M
[10] P. Z. Y. N. Doro ski, A. Brzeski, J. Cychnerski, and T. Dziubich, ‘‘Towards

healthcare cloud computing,’’ in Proc. 36th Int. Conf. Inf. Syst. Archit.
Technol., J. Świątek, L. Borzemski, A. Grzech, and Z. Wilimowska, Eds.
Cham, Switzerland: Springer, 2016, pp. 87–97.

[11] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel, ‘‘The pains and
gains of microservices: A systematic grey literature review,’’ J. Syst. Softw.,
vol. 146, pp. 215–232, Dec. 2018.

[12] H. Vural, M. Koyuncu, and S. Misra, ‘‘A case study on measuring the
size of microservices,’’ in Computer Science Application, O. Gervasi,
B. Murgante, S. Misra, E. Stankova, C. M. Torre, A. M. A. Rocha,
D. Taniar, B. O. Apduhan, E. Tarantino, and Y. Ryu, Eds. Cham,
Switzerland: Springer, 2018, pp. 454–463.

[13] L. Carvalho, A. Garcia, W. K. G. Assunç ao, R. de Mello, and
M. J. de Lima, ‘‘Analysis of the criteria adopted in industry to extract
microservices,’’ in Proc. Joint 7th Int. Workshop Conducting Empirical
Stud. Ind., 2019, pp. 22–29.

[14] A. Kwan, J. Wong, H.-A. Jacobsen, and V. Muthusamy, ‘‘Hyscale: Hybrid
and network scaling of dockerized microservices in cloud data centres,’’
in Proc. IEEE 39th Int. Conf. Distrib. Comput. Syst. (ICDCS), Dec. 2019,
pp. 80–90.

[15] P. Di Francesco, P. Lago, and I. Malavolta, ‘‘Architecting with microser-
vices: A systematic mapping study,’’ J. Syst. Softw., vol. 150, pp. 77–97,
Apr. 2019.

[16] J. Jaworski, W. Karwowski, and M. Rusek, ‘‘Microservice-based cloud
application ported to unikernels: Performance comparison of different
technologies,’’ in Proc. 40th Anniversary Int. Conf. Inf. Syst. Archit.
Technol., L. Borzemski, J. Świątek, and Z. Wilimowska, Eds. Cham,
Switzerland: Springer, 2019, pp. 255–264.

[17] M. Jayasinghe, J. Chathurangani, G. Kuruppu, P. Tennage, and S. Perera,
‘‘An analysis of throughput and latency behaviours under microservice
decomposition,’’ in Web Engineering, M. Bielikova, T. Mikkonen, and
C. Pautasso, Eds. Cham, Switzerland: Springer, 2020, pp. 53–69.

[18] F. Auer, V. Lenarduzzi, M. Felderer, and D. Taibi, ‘‘From monolithic
systems to microservices: An assessment framework,’’ Inf. Softw. Technol.,
vol. 137, Dec. 2021, Art. no. 106600.

[19] M. Viggiato, R. Terra, H. Rocha, M. Tulio Valente, and E. Figueiredo,
‘‘Microservices in practice: A survey study,’’ 2018, arXiv:1808.04836.

[20] M. Jagiełło, M. Rusek, and W. Karwowski, ‘‘Performance and resilience
to failures of an cloud-based application: Monolithic and microservices-
based architectures compared,’’ in Computer Information Systems and
Industrial Management, K. Saeed, R. Chaki, and V. Janev, Eds. Cham,
Switzerland: Springer, 2019, pp. 445–456.

[21] J. Fritzsch, J. Bogner, S. Wagner, and A. Zimmermann, ‘‘Microser-
vices migration in industry: Intentions, strategies, and challenges,’’ in
Proc. IEEE Int. Conf. Softw. Maintenance Evol. (ICSME), Dec. 2019,
pp. 481–490.

[22] A. Poniszewska-Marańda and E. Czechowska, ‘‘Kubernetes cluster for
automating software production environment,’’ Sensors, vol. 21, no. 5,
p. 1901, 2021.

[23] C. M. Aderaldo, N. C. Mendonca, C. Pahl, and P. Jamshidi, ‘‘Benchmark
requirements for microservices architecture research,’’ inProc. IEEE/ACM
1st Int. Workshop Establishing Community-Wide Infrastruct. Archit.-Based
Softw. Eng. (ECASE), May 2017, pp. 8–13.

[24] A. Poth, H. Urban, and A. Riel, Make Product Service Requirements
Shippable—From Cloud Service Vision to a Continuous Value Stream
Which Satisfies Current Future User Needs. Cham, Switzerland: Springer,
2021.

[25] Y.Wang, H. Kadiyala, and J. Rubin, ‘‘Promises and challenges ofmicroser-
vices: An exploratory study,’’ Empirical Softw. Eng., vol. 26, no. 4,
pp. 1–44, Jul. 2021.

[26] D. Taibi, V. Lenarduzzi, and C. Pahl, ‘‘Processes, motivations, and issues
for migrating to microservices architectures: An empirical investigation,’’
IEEE Cloud Comput., vol. 4, no. 5, pp. 22–32, Sep. 2017.

[27] J. Ghofrani and D. Lübke, ‘‘Challenges of microservices architecture:
A survey on the state of the practice,’’ in Proc. ZEUS, 2018, pp. 1–8.

[28] S. Butt, S. Abbas, and M. Ahsan, ‘‘Software development life cycle &
software quality measuring types,’’ Asian J. Math. Comput. Res., vol. 11,
no. 2, pp. 112–122, 2016.

[29] A. Jarzębowicz and P. Marciniak, ‘‘A survey on identifying and address-
ing business analysis problems,’’ Found. Comput. Decis. Sci., vol. 42,
pp. 315–337, Dec. 2017.

[30] S. Li, H. Zhang, Z. Jia, Z. Li, C. Zhang, J. Li, Q. Gao, J. Ge, and Z. Shan,
‘‘A dataflow-driven approach to identifyingmicroservices frommonolithic
applications,’’ J. Syst. Softw., vol. 157, Nov. 2019, Art. no. 110380.

[31] H. Stranner, S. Strobl, M. Bernhart, and T. Grechenig, ‘‘Microservice
decompositon: A case study of a large industrial software migration in
the automotive industry,’’ in Proc. 15th Int. Conf. Eval. Novel Approaches
Softw. Eng., 2020, pp. 498–505.

[32] M. Bruce and P. A. Pereira,Microservices in Action. New York, NY, USA:
Simon and Schuster, 2018.

[33] A. Banijamali, P. Kuvaja, M. Oivo, and P. Jamshidi, ‘‘Kuksa: Self-adaptive
microservices in automotive systems,’’ in Product-Focused Software Pro-
cess Improvemen, M. Morisio, M. Torchiano, and A. Jedlitschka, Eds.
Cham, Switzerland: Springer, 2020, pp. 367–384.

[34] M.Kalske, N.Mäkitalo, and T.Mikkonen, ‘‘Challenges whenmoving from
monolith to microservice architecture,’’ in Current Trends in Web Engi-
neering (Lecture Notes in Computer Science), vol. 10544, I. Garrigós and
M. Wimmer, Eds. Cham, Switzerland: Springer, 2018, doi: 10.1007/978-
3-319-74433-9_3.

[35] W. Karwowski, M. Rusek, G. Dwornicki, and A. Orłowski, ‘‘Swarm
based system for management of containerized microservices in a cloud
consisting of heterogeneous servers,’’ in Proc. 38th Int. Conf. Inf. Syst.
Archit. Technol., L. Borzemski, J. Świątek, and Z. Wilimowska, Eds.
Cham, Switzerland: Springer, 2018, pp. 262–271.

[36] B. Terzic and V. Dimitrieski, ‘‘A model-driven approach to microservice
software architecture establishment,’’ in Proc. Ann. Comput. Sci. Inf. Syst.,
Sep. 2018, p. 73.

[37] M. Štefanko, O. Chaloupka, and B. Rossi, ‘‘The saga pattern in a reactive
microservices environment,’’ inProc. 14th Int. Conf. Softw. Technol., 2019,
pp. 483–490.

[38] C. Rajasekharaiah, Case Study: Energence. Berkeley, CA, USA: Apress,
2021, pp. 1–12.

[39] A. Poniszewska-Marańda, P. Vesely, O. Urikova, and I. Ivanochko, ‘‘Build-
ing microservices architecture for smart banking,’’ in Advances in Intelli-
gent Networking and Collaborative Systems, L. Barolli, H. Nishino, and
H. Miwa, Eds. Cham, Switzerland: Springer, 2020, pp. 534–543.

[40] J. Ghofrani and A. Bozorgmehr, ‘‘Migration to microservices: Barriers and
solutions,’’ in Applied Informatics, H. Florez, M. Leon, J. M. Diaz-Nafria,
and S. Belli, Eds. Cham, Switzerland: Springer, 2019, pp. 269–281.

VOLUME 10, 2022 20373

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://dx.doi.org/10.1007/978-3-319-74433-9_3
http://dx.doi.org/10.1007/978-3-319-74433-9_3
http://mostwiedzy.pl


G. Blinowski et al.: Monolithic vs. Microservice Architecture: Performance and Scalability Evaluation

[41] O. Al-Debagy and P. Martinek, ‘‘A comparative review of microservices
and monolithic architectures,’’ in Proc. IEEE 18th Int. Symp. Comput.
Intell. Informat. (CINTI), Nov. 2018, pp. 149–154.

[42] A. de Camargo, I. Salvadori, R. D. S. Mello, and F. Siqueira, ‘‘An archi-
tecture to automate performance tests on microservices,’’ in Proc. 18th Int.
Conf. Inf. Integr. Web-Based Appl. Services, Nov. 2016, pp. 422–429.

[43] V. Lenarduzzi, F. Lomio, N. Saarimäki, and D. Taibi, ‘‘Does migrating a
monolithic system to microservices decrease the technical debt?’’ J. Syst.
Softw., vol. 169, Nov. 2020, Art. no. 110710.

[44] V. Lenarduzzi and O. Sievi-Korte, ‘‘On the negative impact of team
independence in microservices software development,’’ in Proc. 19th Int.
Conf. Agile Softw. Develop., Companion, New York, NY, USA, May 2018,
pp. 1–4.

[45] F. Ramin, C. Matthies, and R. Teusner, ‘‘More than code: Contributions in
scrum software engineering teams,’’ in Proc. IEEE/ACM 42nd Int. Conf.
Softw. Eng. Workshops, New York, NY, USA, Jun. 2020, pp. 137–140.

[46] B. Marcinkowski and B. Gawin, ‘‘A study on the adaptive approach to
technology-driven enhancement of multi-scenario business processes,’’
Inf. Technol. People, vol. 32, no. 1, pp. 118–146, Feb. 2019.

[47] M. Kalenda, P. Hyna, and B. Rossi, ‘‘Scaling agile in large organizations:
Practices, challenges, and success factors,’’ J. Softw., Evol. Process, vol. 30,
no. 10, p. e1954, Oct. 2018.

[48] P. Diebold, A. Schmitt, and S. Theobald, ‘‘Scaling agile: How to select
the most appropriate framework,’’ in Proc. 19th Int. Conf. Agile Softw.
Develop., Companion, New York, NY, USA, May 2018, pp. 1–4.

[49] S. Theobald, A. Schmitt, and P. Diebold, ‘‘Comparing scaling agile frame-
works based on underlying practices,’’ in Agile Processes in Software
Engineering and Extreme Programming, R. Hoda, Ed. Cham, Switzerland:
Springer, 2019, pp. 88–96.

[50] A. Poth, M. Kottke, and A. Riel, ‘‘Scaling agile—A large enterprise view
on delivering and ensuring sustainable transitions,’’ in Agile Processes
in Software Engineering and Extreme Programming, A. Przybyłek and
M. E. Morales-Trujillo, Eds. Cham, Switzerland: Springer, 2020, pp. 1–18.

[51] A. Khalid, S. A. Butt, T. Jamal, and S. Gochhait, ‘‘Agile scrum issues at
large-scale distributed projects: Scrum project development at large,’’ Int.
J. Softw. Innov. (IJSI), vol. 8, no. 2, pp. 85–94, 2020.

[52] M. Kowalczyk, B. Marcinkowski, and A. Przybyłek, ‘‘Scaled agile frame-
work: Dealing with software process-related challenges of a financial
group with the action research approach,’’ J. Softw., Evol. Process, 2022.

[53] M. Kösling and A. Poth, ‘‘Agile development offers the chance to establish
automated quality procedures,’’ in Systems, Software and Services Process
Improvement, J. Stolfa, S. Stolfa, R. V. O’Connor, and R. Messnarz, Eds.
Cham, Switzerland: Springer, 2017, pp. 495–503.

[54] V. Heorhiadi, S. Rajagopalan, H. Jamjoom, M. K. Reiter, and V. Sekar,
‘‘Gremlin: Systematic resilience testing of microservices,’’ in Proc. IEEE
36th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2016, pp. 57–66.

[55] A. B. Bondi, ‘‘Characteristics of scalability and their impact on perfor-
mance,’’ in Proc. 2nd Int. Workshop Softw. Perform., New York, NY, USA,
2000, pp. 195–203.

[56] B. Wilder, Cloud Architecture Patterns: Using Microsoft Azure. Newton,
MA, USA: O’Reilly Media, 2012.

[57] L. Lu, X. Zhu, R. Griffith, P. Padala, A. Parikh, P. Shah, and E. Smirni,
‘‘Application-driven dynamic vertical scaling of virtual machines in
resource pools,’’ in Proc. IEEE Netw. Oper. Manage. Symp. (NOMS),
May 2014, pp. 1–9.

[58] S. Spinner, N. Herbst, S. Kounev, X. Zhu, L. Lu, M. Uysal, and R. Griffith,
‘‘Proactive memory scaling of virtualized applications,’’ in Proc. IEEE 8th
Int. Conf. Cloud Comput., Jun. 2015, pp. 277–284.

[59] T. Ueda, T. Nakaike, and M. Ohara, ‘‘Workload characterization for
microservices,’’ in Proc. IEEE Int. Symp. Workload Characterization
(IISWC), Sep. 2016, pp. 1–10.

[60] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino,
and A. Di Salle, ‘‘Towards recovering the software architecture of
microservice-based systems,’’ inProc. IEEE Int. Conf. Softw. Archit. Work-
shops (ICSAW), Apr. 2017, pp. 46–53.

[61] S. Okrój, ‘‘A comparative analysis of the performance of monolithic and
microservice architecture,’’ M.S. thesis, Gdansk Univ. Technol., Gdańsk,
Poland, 2018.

[62] M. Villamizar, O. Garces, and L. Ochoa, ‘‘Infrastructure cost comparison
of running web applications in the cloud using aws lambda and monolithic
and microservice architectures,’’ in Proc. 16th IEEE/ACM Int. Symp. Clus-
ter, Cloud Grid Comput. (CCGrid), 2016, pp. 179–182.

[63] J. Shaughnessy, E. Zechmeister, and J. Zechmeister, Research Methods
Psychology. Surrey, BC, Canada: Kwantlen Polytechnic Univ., 2019.

[64] B. Vermeer. (2020). JVMEcosystemReport 2020. Accessed: Oct. 22, 2021.
[Online]. Available: https://snyk.io/wp-content/uploads/jvm_2020.pdf

[65] B. Vermeer. (2021) JVM Ecosystem Report 2021. Accessed: Oct. 22, 2021.
[Online]. Available: https://res.cloudinary.com/snyk/image/upload/v162
3860216/reports/jvm-ecosystem-report-2021.pdf

[66] A. Derezinska and K. Kwaánik, ‘‘Performance-based refactoring of web
application: A case of public transport,’’ inProc. 15th Int. Conf. Eval. Novel
Approaches to Softw. Eng., 2020, pp. 611–618.

[67] C. Laaber, J. Scheuner, and P. Leitner, ‘‘Software microbenchmarking in
the cloud. How bad is it really?’’ Empirical Softw. Eng., vol. 24, no. 4,
pp. 2469–2508, Aug. 2019.

[68] M. R. López and J. Spillner, ‘‘Towards quantifiable boundaries for elastic
horizontal scaling of microservices,’’ in Proc. 10th Int. Conf. Utility Cloud
Comput., New York, NY, USA, 2017, pp. 35–40.

[69] Y. Y. Ng and A. Przybyłek, ‘‘Instructor presence in video lectures: Pre-
liminary findings from an online experiment,’’ IEEE Access, vol. 9,
pp. 36485–36499, 2021.

[70] T. Salah, M. J. Zemerly, C. Y. Yeun, M. Al-Qutayri, and Y. Al-Hammadi,
‘‘Performance comparison between container-based and VM-based ser-
vices,’’ in Proc. 20th Conf. Innov. Clouds, Internet Netw. (ICIN), 2017,
pp. 185–190.

[71] D. Namiot and M. Sneps-Sneppe, ‘‘On micro-services architecture,’’ Int.
J. Open Inf. Technol., vol. 2, pp. 24–27, Oct. 2014.

[72] H. Knoche, ‘‘Sustaining runtime performance while incrementally mod-
ernizing transactional monolithic software towards microservices,’’ in
Proc. 7th ACM/SPEC Int. Conf. Perform. Eng., New York, NY, USA,
Mar. 2016, pp. 121–124.

GRZEGORZ BLINOWSKI (Member, IEEE) was
born inWarsaw, Poland. He received theM.Sc. and
Ph.D. degrees in computer science from the Fac-
ulty of Electronics and Information Technology,
Institute of Computer Science, Warsaw University
of Technology, Poland, in 1993 and 2001, respec-
tively. He has held a Certified Information Systems
Security Professional (CISSP) Certificate, since
2014. Since 2001, he has been an Assistant Pro-
fessor at the Parallel and Distributed Computing

Research Group, Institute of Computer Science. He is the author of two
books. His research and scientific interests include: distributed memory
systems, software engineering, internet technology, and networks and sys-
tems security, especially in context of WSN and the IoT and recently VLC
systems. He has received the Warsaw University of Technology Rector’s
Award for Academic Achievements twice.

ANNA OJDOWSKA received the M.Sc. degree
in computer science from the Gdańsk University
of Technology, in 2020. She has been working as
a Software Engineer with IHS Markit, since June
2018. She specializes in .NET technology. Her
main professional interests include software archi-
tecture, functional programming and its practical
applications, and impact on software engineering.

ADAM PRZYBYŁEK received the master’s degree
in management information systems and the Ph.D.
degree in software engineering, in 2002 and 2011,
respectively. Between 2002 and 2011, he was a
Network Consultant and an Instructor at the Cisco
Networking Academy. He has been working as
an Assistant Professor with the Gdańsk University
of Technology, Poland, since October 2012. His
main research interests include empirical software
engineering with a focus on software modularity,

post object-oriented paradigms, and agile methods. He is the Founder of
the International Conference on Lean and Agile Software Development
(https://lasd.pl). He has also served on the program committees of ENASE
and ACM SAC, since 2015, and MADEISD@ADBIS since its origin,
in 2019.

20374 VOLUME 10, 2022

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl

