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Abstract: Reactive blending is a promising approach for the sustainable development of bio-based
polymer blends and composites, which currently is gaining more and more attention. In this paper,
biodegradable blends based on poly(ε-caprolactone) (PCL) and poly(lactic acid) (PLA) were prepared
via reactive blending performed in an internal mixer. The PCL and PLA content varied in a ratio of
70/30 and 55/45. Reactive modification of PCL/PLA via liquid organic peroxides (OP) including
0.5 wt.% of tert-butyl cumyl peroxide (BU), 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (HX), and
tert-butyl peroxybenzoate (PB) is reported. The materials were characterized by rotational rheometer,
atomic force microscopy (AFM), thermogravimetry (TGA), differential scanning calorimetry (DSC),
tensile tests and biodegradability tests. It was found that the application of peroxides improves the
miscibility between PCL and PLA resulted in enhanced mechanical properties and more uniform
morphology. Moreover, it was observed that the biodegradation rate of PCL/PLA blends reactively
compatibilized was lower comparing to unmodified samples and strongly dependent on the blend
ratio and peroxide structure. The presented results confirmed that reactive blending supported by
organic peroxide is a promising approach for tailoring novel biodegradable polymeric systems with
controllable biodegradation rates.

Keywords: poly(ε-caprolactone); poly(lactic acid); reactive processing; peroxide initiators; viscoelas-
tic behaviors; thermo-mechanical properties

1. Introduction

Commercially developed biodegradable aliphatic polyesters, which are still a main
focus of academic and industrial research, include both petroleum-based thermoplastics
such as poly(ε-caprolactone) (PCL), poly(butyrate succinate) (PBS) and poly(glycolic acid)
(PGA), as well as polymers of renewable origins such as poly(lactic acid) (PLA) and
polyhydroxyalkanoates (PHA). These materials are continuously popular over the past
years due to their potentially hydrolyzable ester bonds, which makes them dominant in
the role of biodegradable plastics [1–4].

Poly(ε-caprolactone) (PCL) is a synthetic biodegradable aliphatic polyester obtained
via ring-opening polymerization of ε-caprolactone [5,6]. PCL can be characterized by
low melt temperature, usually between 58–60 ◦C, a low viscosity and its low difficulty
of processing [7–9]. Despite not being produced from renewable resources, PCL is fully
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biodegradable when composted [10,11]. The low melting point of PCL makes the material
compostable as a rendering medium due to the temperatures obtained during composting
routinely exceeding 60 ◦C [12–14].

Poly(lactic acid) (PLA) is a linear aliphatic polyester obtained by polycondensation
of naturally produced lactic acid or by catalytic ring-opening of a lactide group [15–18].
Lactic acid is made via starch fermentation as a by-product of wet corn milling [19,20]. The
ester bonds in PLA are sensitive to both chemical hydrolysis and enzymatic chain cleav-
age [21,22]. Both PCL and PLA are often mixed with starch to increase biodegradability
and reduce costs; however, the brittleness of these mixtures is a major disadvantage in
many applications [23–25].

Research on mixing different polymeric materials together is associated with two main
categories. The first is the modification of the properties of the base polymer. Typically,
this includes improving mechanical, thermal or processing properties [26,27]. The second
category focuses on the need to facilitate, accelerate or delay the biodegradation process.
For these reasons, the blending process with other biodegradable polymers appears to be a
simple way of modifying blends degradation parameters [28,29].

PCL and PLA are known to be thermodynamically immiscible, which causes their
blends to exhibit poor mechanical properties. A lot of research has been considered to
improve the miscibility between PCL and PLA [30–33]. Reactive blending is a well-thought-
out method of effective enhancement of miscibility and compatibility of bio-based polymer
blends and composites [34]. Dicumyl peroxide (DCP) is the most commonly described
and applied peroxide as a free radical producer in reactive compatibilization of bio-based
materials. For example, Ji et al. [35] studied the effects of dicumyl peroxide (DCP) on
the mechanical properties of PBS/PLA blends. The impact of DCP on the rheological
properties of PHB/PLA blends was observed by Dong et al. [36]. They found that the
storage modulus and complex viscosity of the blends were increased after the addition of
the DCP.

Our previous research also focused on the reactive blending of PCL with PLA [37]
or PHB [38] in a weight ratio of 75/25 modified with commercially available and com-
monly applied organic peroxides, such as di-(2-tert-butyl-peroxyisopropyl)benzene (BIB)
or dicumyl peroxide (DCP), used as radical initiator.

This article describes the process of dynamic cross-linking of polymer blends based on
biodegradable aliphatic polyesters, including poly(ε-caprolactone) (PCL) and poly(lactic
acid) (PLA), which were used in two weight ratios: 70/30 and 55/45, respectively, in
the presence of three different types of organic peroxides. The obtained mixtures were
subjected to a detailed analysis of their properties in order to obtain new knowledge about
the applied method of polymer blend compatibility. The conducted research was carried
out to confirm the possibility of achieving compatibility of PCL/PLA blends by using
organic peroxides, including tert-butyl cumyl peroxide (BU), 2,5-dimethyl-2,5-di-(tert-
butylperoxy)-hexane (HX) and tert-butyl peroxybenzoate (PB). Moreover, the influence of
the type of used peroxides on the biodegradation, morphology and final properties, such as
mechanical, thermal and rheological properties, of the obtained materials was determined.

2. Materials and Methods
2.1. Materials

Poly(ε-caprolactone) (PCL) (Capa 6800) was kindly donated by Perstorp (Malmö,
Sweden), while poly(lactic acid) (PLA) grade 3251D was supplied by NatureWorks LLC,
(Minnetonka, Minnesota, United States). The characteristics of the used biodegradable
polymer are listed in Table 1. The free radical initiators tert-butyl cumyl peroxide (Peroxan
BU), 2,5-dimethyl-2,5-di-(tert-butylperoxy)-hexane (Peroxan HX) and tert-butyl peroxy-
benzoate (Peroxan PB) were supplied by Pergan GmbH (Bocholt, Germany). The chemical
structures of the organic peroxides is presented in Figure 1.
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Table 1. The characteristics of the used materials.

Parameter PCL 6800 PLA 3251D

Density, g/cm3 1.15 1.24
Melting point, ◦C 58–60 155–170
Glass transition (Tg), ◦C −60 55–60
Average molecular weight (Mw), g/mol 80,000 55,400
Melt flow index (MFI)190 ◦C/2.16kg, g/10 min 4.1 35.0
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Figure 1. The chemical structures of the organic peroxides.

2.2. Sample Preparation

PCL was blended by reactive mixing with 30 wt.% and 45 wt.% of PLA and further
loaded with 0.5 wt.% of various types of organic peroxides, including PB, BU and HX. The
samples were prepared in the Brabender® internal mixer (type GMF 106/2) at a screw
speed of 100 rpm for a total time of 8 min at 170 ◦C. First, the PCL and PLA polymers were
premixed in a mixing chamber for 4 min, then the reactive compounding with peroxide
followed and continued for the next 4 min. Then, the materials were compressed to a 2 mm
thickness by the compression molding under a pressure of 4.9 MPa at 170 ◦C for 1 min and
then at room temperature for 5 min. The blends are named PCLx/y, where x corresponds
to the percentage of PCL and y corresponds to the type of used organic peroxide. The
unmodified PCL/PLA blends were also prepared under the same processing conditions for
the properties comparison. The composition and the designation of the studied PCL/PLA
blends are described in Table 2.

Table 2. The composition and the designation of the studied PCL/PLA blends.

Sample Name
Polymers (wt. %) Organic Peroxides (wt. %)

PCL PLA BU HX BP

PCL70 70 30 - - -
PCL70/BU 70 30 0.5 - -
PCL70/HX 70 30 - 0.5 -
PCL70/PB 70 30 - - 0.5

PCL55 55 45 - - -
PCL55/BU 55 45 0.5 - -
PCL55/HX 55 45 - 0.5 -
PCL55/PB 55 45 - - 0.5

2.3. Methodology
2.3.1. Differential Scanning Calorimetry (DSC)

The thermal properties of the samples were measured by differential scanning calorime-
try (DSC) measurement was carried out on a DSC 204 F1 Phoenix apparatus from Netzsch

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 4205 4 of 14

Group (Selb, Germany). The melting point (Tm), crystallization temperature (Tc), enthalpy
of cold crystallization and enthalpy of melting of each sample were investigated in the
temperature range of −80–150 ◦C under N2 atmosphere at a heating rate of 15 ◦C/min.

The degree of crystallization of the PCL (XcPCL) and PLA (XcPLA) phase was calculated
according to Equation (1):

Xc(%) =
∆Hm − ∆Hcc

ω× ∆H0
× 100 (1)

where ∆Hm is the specific melting enthalpy, ∆Hcc is the enthalpies of cold crystallization,
∆H0 is the melting enthalpy of 100% crystalline virgin polymer (where the melting enthalpy
of 100% PCL is 136 J/g [39] and 93.7 J/g for PLA [40]), andω is the weight fraction of the
PCL or PLA phase in PCL/PLA blends.

2.3.2. Thermogravimetric Analysis (TGA)

Thermogravimetric analysis was utilized for detecting the thermal degradation pro-
cess, which is related to the mass loss of the specimen as a function of rising temperature.
The analysis of samples was performed using the TG 209F3 apparatus from Netzsch Group
(Selb, Germany). Weighted samples (approx. 10 mg) were placed in a corundum dish. The
study was carried out in an inert gas atmosphere-nitrogen with a flow rate of 100 mL/min
in the range from 25 to 750 ◦C with a temperature increase rate of 20 ◦C/min.

2.3.3. Dynamic Mechanical Analysis (DMA)

Dynamic mechanical properties were investigated using a dynamic mechanical an-
alyzer DMA Q800 from TA Instruments (New Castle, Delaware, United States). The
PCL/PLA blends in the form of strips (20 × 10 × 2 mm3) were measured in single can-
tilever mode at a constant frequency of 10 Hz as a function of temperature from −100 ◦C
to 80 ◦C a heating rate of under nitrogen flow.

2.3.4. Mechanical Tests

Static mechanical properties of the PCL/PLA blends, including ultimate tensile
strength and elongation at break, were measured in accordance with ISO 527 at room
temperature using a Zwick Z020 tensile tester machine provided by ZwickRoell Group
(Ulm, Germany) equipped with a 20 kN load cell and a cross-head speed of 10 mm/min.
The number of individual samples used in this research was 5 for every tested material.

2.3.5. Rheological Properties

Rheological properties of the PCL/PLA blends were tested using a rotational rheome-
ter Anton Paar MCR 301 (Graz, Austria) equipped with a parallel-plate fixture (25 mm
diameter) in oscillation shearing mode at a temperature of 170 ◦C. During dynamic os-
cillatory measurements, for all the samples’ strain amplitude sweep experiments were
performed at 170 ◦C with a constant angular frequency of 10 Hz in the varying strain
window 0.01%–100%. Based on the amplitude sweep tests, the 2% strain was selected for
frequency sweep experiments. For all considered materials selected value is in the range of
linear viscoelastic region (LVE). The frequency sweep measurements were realized in the
0.05–100 rad/s angular frequency (ω) range.

2.3.6. Atomic Forace Microscopy (AFM)

Atomic Force Microscopy images were obtained with a Nanoscope V scanning probe
microscope Multimode 8 Digital Instruments from Bruker (Billerica, Massachusetts, United
States) under ambient conditions. Tapping Mode (TM) was employed in the air using an
integrated tip/cantilever (125 µm in length with ca. 300 kHz resonant frequency). Typical
scan rates during recording were 0.7 to 1 line/s using a scan head with the maximum range
of 50 µm.
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2.3.7. Biodegradability Tests

The biodegradability of the PCL/PLA blend was assessed with a standard method
(OECD 301 F) involving the measurement of oxygen consumption by microorganisms
using the OxiTop-IDS A 12 equipment from WTW (Wrocław, Poland). Activated sludge,
mainly municipal with 30 mg/L dry mass, from sewage treatment plant (Saur Neptun
Gdansk S.A., Gdansk, Poland) was used as the inoculum. The standard sample volume was
164 mL. This enabled the determination of BOD values up to 400 mg/L in the water phase.
The solids are weighed directly into the reactors in the amount of approx. 16.4 mg/bottle,
after prior mechanical milling of the PCL/PLA samples using laboratory mill FW 135
from ChemLand (Stargard, Poland). Then, sludge suspension and 3 drops of nitrification
inhibitor NT600 were poured into each bottle, where a magnetic stir bar was immersed.
A rubber carrier with a carbon dioxide absorber (0.4 g NaOH) was then placed in each
bottle. Finally, OxiTop measuring heads were fixed, sealed bottles were placed on a stirring
platform and put into a thermostatic cabinet. The incubation was conducted for 28 days at
37 ± 1 ◦C, during which the OxiTop Controller collected the measured values every 24 h.
Three measurements of the biodegradability of the obtained blends were taken. In each
test series, blank and reference tests (sodium benzoate with a concentration of 100 mg/L)
were performed in parallel.

3. Results and Discussion
3.1. DSC of Organic Peroxides and Their Influence on PCL/PLA Blends Thermal Properties

The organic peroxides can have low overall hydrogen abstraction ability, which
causes less cross-linking due to their lower free radical efficiency. This is related to the
hydrogen abstraction ability of derived radicals formed during peroxide decomposition.
The decomposition of the organic peroxides gives primary radicals that can be a source
for secondary alkyl or aryl, which are formed by β-scission of primary radicals. Example
decomposition mechanism of PB peroxide is shown in Figure 2, where PB gives rise to
benzoyloxy and t-butoxy radicals.
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Figure 2. A scheme of the thermal decomposition mechanism of PB.

DSC curves of three types of peroxides are shown in Figure 3. The decomposition
temperature (Tdecomp.) was determined at the first heating scan. The main parameter
Tdecomp. was equal to 174.9 ◦C for BU, and for HX, it was similar, equaling 171.3 ◦C. In
the case of PB peroxide, the temperature parameter was significantly lower at 153.5 ◦C,
respectively. The results of DSC analysis allowed defining temperature of processing
during the blending of PCL/PLA system modified via free radical reaction initiated of
organic peroxide.
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Figure 3. Heat flow vs. temperature for the thermal decomposition of BU, HX and PB peroxides.

Figure 4 shows the results of the DSC analysis that was carried out to understand the
crystallization and melting behavior of PCL/PLA blends. The detailed data of thermal
parameters are listed in Table 3, including the melting temperature (Tm PCL), melting
enthalpy (∆Hm PCL), crystallization temperature (Tc PCL), crystallization enthalpy (∆Hc PCL)
and the degree of crystallinity (Xc PCL) of PCL, as well as melting temperature (Tm PLA),
melting enthalpy (∆Hm PLA) and cold crystallization temperature (Tcc PLA) of PLA. These
temperatures are also indicated on the X-axis of Figure 4. The Tm, Tc and Xc of unmodified
PCL/PLA blends were 57.8 ◦C, 32.7 ◦C and 40.7%, respectively, for the 70/30 ratio. The Tm,
Tc and Xc of unmodified PCL/PLA blends were 57.1 ◦C, 29.9 ◦C and 39.3%, respectively, for
the 55/45 ratio. These mentioned parameters have not changed significantly for PCL/PLA
blends modified by organic peroxides. Furthermore, the melting point of PCL is overlapped
with a glass transition of PLA, and it is not visible. The Tm of PLA shifted towards a
lower temperature for the PCL/PLA blends modified by peroxides, as was observed. The
aforementioned parameter of decomposition temperature of organic peroxides was ranging
between approximately 150 ◦C and 175 ◦C. Therefore, it cannot be visible on the DSC curves
of the studied blends, which confirms that the peroxides decomposition process, which
occurs during the reactive blending, simultaneously causes the cross-linking of PCL, PLA
and both phases.
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Table 3. DSC parameters (2nd heating) of PCL/PLA blends and PCL/PLA modified by OP.

Sample
Code

Tm PCL
(◦C)

∆Hm PCL
(J/g)

Tc PCL
(◦C)

∆Hc PCL
(J/g)

Tm PLA
(◦C)

∆Hm PLA
(J/g)

Tcc PLA
(◦C)

∆Hcc PLA
(J/g)

Xc PCL
(%)

Xc PLA
(%)

PCL70 57.8 38.7 32.7 42.9 169.5 15.3 105.6 9.6 40.7 20.3
PCL70/BU 57.6 36.4 32.8 42.9 168.3 13.9 102.0 8.6 38.2 18.9
PCL70/HX 57.5 36.7 32.9 42.7 168.1 14.0 102.5 8.7 38.4 18.9
PCL70/PB 58.1 37.7 34.4 40.9 168.3 14.1 98.5 7.2 39.6 24.5

PCL55 57.1 29.4 32.9 34.0 169.2 19.8 104.4 13.4 39.3 15.2
PCL55/BU 57.2 29.8 32.0 32.8 168.1 22.4 101.2 13.8 39.8 20.4
PCL55/HX 57.0 27.6 32.7 32.9 168.2 24.6 101.2 14.9 36.9 23.0
PCL55/PB 57.7 27.9 33.6 31.5 168.6 19.6 104.7 13.3 37.3 14.9

3.2. Thermal Stability of PCL/PLA Blends

The thermal stability of the PCL/PLA blends was investigated by thermogravimetric
analysis (TGA) and derivative thermogravimetry (DTG). The obtained results are presented
in Figure 5. DTG curves showed that the thermal degradation of blends occurs in two
zones. The first step is related to PLA decomposition, and the second one is associated
with the PCL degradation. It is obvious that the higher the content of PLA in the blends,
the thermal stability decreases, which can be related to the lower degradation temperature
of PLA in comparison to PCL [41]. The temperatures corresponding to the −2%, −5%,
−10% and −50% mass loss for PCL/PLA blends are essential for evaluating their thermal
stability and are summarized in Table 4, which show that the apparent thermal stability
of the PCL/PLA blend does not change significantly after modification by the organic
peroxides. Major differences are visible for the T-2% parameter and char residue, which can
be related to the efficiency of cross-linking for each peroxide and formulation of volatile
by-products during peroxide decomposition (see Figure 2). However, the results of TGA
do not indicate which of the samples is most thermally stable because for each composition
of PCL/PLA blends, the changes are minimal.
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3.3. Dynamic Mechanical Analysis

Dynamic mechanical analysis (DMA) results for the blends with various PLA contents
are presented in Figure 6, which shows the temperature dependence of storage and loss
modulus curves of PCL/PLA blends at various compositions. Based on the DMA results, it
can be noticed that blending PCL with PLA at a proportion of 55/45 caused an interruption
in PLA crystallization, which is observed in the storage modulus decreasing, as compared
to unmodified PCL/PLA in the weight ratio of 70/30. The same conclusion can be made
from the DSC analysis (XPLA) described in Section 3.1. The PCL/PLA blends exhibited
two peaks at −42 ◦C and 70 ◦C that were attributed to the glass transition temperature
(Tg) of PCL and PLA, respectively. The Tg (70 ◦C) of PLA in unmodified PCL/PLA blend
was slightly higher than the Tg (65 ◦C) of PLA in the PLA/PCL blends modified by PB,
indicating that there was some better molecular interaction between the two components
due to the cross-linking or branching reaction.
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3.4. Mechanical Tests

The results of the ultimate tensile strength and elongation at break of studied PCL/PLA
blends are shown in Figure 7. It was found that after modification by organic peroxides,
the ultimate tensile strength and elongation at break for PCL/PLA blends in almost every
weight ratio in the presence of peroxides obviously increased. In this case, when the weight
ratio equals 55/45, only the addition of PB positively affects the elongation at break of
the PCL/PLA blends, while the peroxides, such as BU or HX, decreased the elongation
at break. It confirms that the free radicals enhance the interaction between PCL and PLA.
The blends with more content of PLA provide higher tensile strength but have a lower
elongation at break. It is associated with PLA properties, which are brittle and have a low
elongation at break. The elongation at break value of PCL/PLA in the weight ratio of 70/30
modified with all peroxides shows significant improvement, which can be advance during
polymeric film formulation. This is especially visible for BU peroxide, suggesting that this
peroxide caused the occurrence of the PCL–PLA copolymer and therefore the improvement
of compatibilization and miscibility of this blend. The addition of PB, however, yields
different results, which indicate that cross-linking is occurring. These conclusions are also
confirmed by the biodegradability test in the following section.

3.5. Rheological Study

The rheological parameters measured at 170 ◦C, including storage modulus (G′),
loss modulus (G”) and complex viscosity (η*), were very sensitive to the morphology
development of the PLA/PCL immiscible mixture and various types of organic peroxide
modified blends. The presence of morphological changes in the PCL/PLA blends can
also be revealed unequivocally with Cole–Cole plots (Figure 8), which are based on a
presentation of imaginary (η”) and real (η′) viscosity parts of a complex viscosity. This
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plot is commonly applied to describe the viscoelastic properties of materials that have a
high relaxation time distribution, highlighting the phase separation changes. As shown
in Figure 8, an apparition of a second semi-circular arc is present only for the unmodified
PCL/PLA composition, highlighting the immiscibility of the blends at blending ratios.
The addition of 0.5 wt % of OP in the PCL/PLA blends highlights a completely different
behavior. The OP makes a huge impact on the homogeneity of the blends, as only one
relaxation is obtained on the full range of ratios, which can be observed in the plots. This
clearly indicates long-chain branching, cross-linking, and grafting of PCL and PLA, caused
by free radicals from peroxides, which act as compatibilizers. While the overall thermo-
rheological miscibility of PCL-PLA blends is still limited, the incorporation of OP allows
to partially reduce the phase separation of the polymers in a molten state. It should be
mentioned that only for the 55/45 blend modified by PB, the significant upward inflection
of the η”(η′) curve was observed. This phenomenon is usually related to yield behavior [42],
which, in the presented case, may result from cross-linking of the blend structure. All
of these important observations are an indication of the improvement of the miscibility
between PCL and PLA due to the reactive modification. OP plays a major role in giving
remarkable rheological property improvement due to grafting.

Materials 2021, 14, x FOR PEER REVIEW 9 of 14 
 

 

3.4. Mechanical Tests 
The results of the ultimate tensile strength and elongation at break of studied 

PCL/PLA blends are shown in Figure 7. It was found that after modification by organic 
peroxides, the ultimate tensile strength and elongation at break for PCL/PLA blends in 
almost every weight ratio in the presence of peroxides obviously increased. In this case, 
when the weight ratio equals 55/45, only the addition of PB positively affects the elonga-
tion at break of the PCL/PLA blends, while the peroxides, such as BU or HX, decreased 
the elongation at break. It confirms that the free radicals enhance the interaction between 
PCL and PLA. The blends with more content of PLA provide higher tensile strength but 
have a lower elongation at break. It is associated with PLA properties, which are brittle 
and have a low elongation at break. The elongation at break value of PCL/PLA in the 
weight ratio of 70/30 modified with all peroxides shows significant improvement, which 
can be advance during polymeric film formulation. This is especially visible for BU per-
oxide, suggesting that this peroxide caused the occurrence of the PCL–PLA copolymer 
and therefore the improvement of compatibilization and miscibility of this blend. The ad-
dition of PB, however, yields different results, which indicate that cross-linking is occur-
ring. These conclusions are also confirmed by the biodegradability test in the following 
section. 

 
Figure 7. Ultimate tensile strength and elongation at break of PCL/PLA blends modified by OP. Graphs show the differ-
ences in mechanical properties as function th PCL content in the blends. 

3.5. Rheological Study 
The rheological parameters measured at 170 °C, including storage modulus (G′), loss 

modulus (G″) and complex viscosity (η*), were very sensitive to the morphology devel-
opment of the PLA/PCL immiscible mixture and various types of organic peroxide mod-
ified blends. The presence of morphological changes in the PCL/PLA blends can also be 
revealed unequivocally with Cole–Cole plots (Figure 8), which are based on a presentation 
of imaginary (η″) and real (η′) viscosity parts of a complex viscosity. This plot is commonly 
applied to describe the viscoelastic properties of materials that have a high relaxation time 
distribution, highlighting the phase separation changes. As shown in Figure 8, an appari-
tion of a second semi-circular arc is present only for the unmodified PCL/PLA composi-
tion, highlighting the immiscibility of the blends at blending ratios. The addition of 0.5 wt 
% of OP in the PCL/PLA blends highlights a completely different behavior. The OP makes 
a huge impact on the homogeneity of the blends, as only one relaxation is obtained on the 
full range of ratios, which can be observed in the plots. This clearly indicates long-chain 
branching, cross-linking, and grafting of PCL and PLA, caused by free radicals from per-
oxides, which act as compatibilizers. While the overall thermo-rheological miscibility of 
PCL-PLA blends is still limited, the incorporation of OP allows to partially reduce the 
phase separation of the polymers in a molten state. It should be mentioned that only for 

Figure 7. Ultimate tensile strength and elongation at break of PCL/PLA blends modified by OP. Graphs show the differences
in mechanical properties as function th PCL content in the blends.

Materials 2021, 14, x FOR PEER REVIEW 10 of 14 
 

 

the 55/45 blend modified by PB, the significant upward inflection of the η″(η′) curve was 
observed. This phenomenon is usually related to yield behavior [42], which, in the pre-
sented case, may result from cross-linking of the blend structure. All of these important 
observations are an indication of the improvement of the miscibility between PCL and 
PLA due to the reactive modification. OP plays a major role in giving remarkable rheo-
logical property improvement due to grafting. 

 
Figure 8. Cole–Cole plots for PCL/PLA blends at various weight ratios ((70/30) and (55/45)) and modified by OP. 

To provide more information regarding the interactions between immiscible poly-
mers, angular frequency tests were performed on all samples, both unmodified and mod-
ified by OP. The logarithm of the dynamic modulus and the complex viscosity as a func-
tion of the logarithm of angular frequencies was measured at 170 °C and is shown for 
PCL/PLA blends with the weight ratios of 70/30 and 55/45 in Figures 9 and 10, respec-
tively. An overall observation is that the dynamic storage modulus and loss modulus of 
all the blends increases as the frequency increases, which is characteristic of a viscoelastic 
liquid. For all of the PCL/PLA blends modified by BU, HX and PB, although the enhance-
ment in loss modulus is insignificant, there is a great increase in the storage modulus. The 
complex viscosity versus frequency results showed that PCL exhibited typical Newtonian 
fluid behavior with the invariant of the complex viscosity in a wide range of frequencies. 
The complex viscosity of the modified PCL/PLA (55/45) was significantly higher, espe-
cially for PCL55/PB, than the unmodified PCL/PLA (55/45) at low frequencies; some re-
searchers attributed this phenomenon to a formation of network-like structures [42]. 
Moreover, the creation of physical or chemical 3D structures is often observed in the case 
of thermoplastics as a limited dependency of G’ by ω at the low-frequency range [43,44], 
which is considered case is also noted only for 55/45/PB series. 

 

Figure 8. Cole–Cole plots for PCL/PLA blends at various weight ratios ((70/30) and (55/45)) and modified by OP.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Materials 2021, 14, 4205 10 of 14

To provide more information regarding the interactions between immiscible polymers,
angular frequency tests were performed on all samples, both unmodified and modified
by OP. The logarithm of the dynamic modulus and the complex viscosity as a function of
the logarithm of angular frequencies was measured at 170 ◦C and is shown for PCL/PLA
blends with the weight ratios of 70/30 and 55/45 in Figures 9 and 10, respectively. An
overall observation is that the dynamic storage modulus and loss modulus of all the blends
increases as the frequency increases, which is characteristic of a viscoelastic liquid. For all
of the PCL/PLA blends modified by BU, HX and PB, although the enhancement in loss
modulus is insignificant, there is a great increase in the storage modulus. The complex
viscosity versus frequency results showed that PCL exhibited typical Newtonian fluid
behavior with the invariant of the complex viscosity in a wide range of frequencies. The
complex viscosity of the modified PCL/PLA (55/45) was significantly higher, especially for
PCL55/PB, than the unmodified PCL/PLA (55/45) at low frequencies; some researchers
attributed this phenomenon to a formation of network-like structures [42]. Moreover, the
creation of physical or chemical 3D structures is often observed in the case of thermoplastics
as a limited dependency of G′ byω at the low-frequency range [43,44], which is considered
case is also noted only for 55/45/PB series.
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3.6. Morphology

Conventional AFM topography imaging in tapping mode was conducted on the
PCL/PLA blends in the weight ratio of 55/45 with resulting topographic and phase
images. The 50 µm × 50 µm 3D image in Figure 11 reveals a PCL matrix containing PLA
domains for unmodified PCL/PLA blend. The PLA domains can be distinguished by their
slightly rougher surface and greater height (dark contrast) in the topographic image. The
application of low molecular weight additives, such as organic peroxides, leads to a smooth
surface, especially for PCL/PLA (55/45) modified by PB. Moreover, the morphology of
PCL/PLA (55/45) blends modified by BU or HX suggests its co-continuity.
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3.7. Biodegradability

In order to investigate biodegradation efficiency of PCL/PLA blends the OxiTop
technique was applied. It is well known that oxygen consumption is strongly correlated
with the respiratory activity of microorganisms. During the analysis, the air pressure is
measured after trapping the produced carbon dioxide into a strong base solutions monitor-
ing. This technique started to be popular because it allows to observe the transformation of
organic matter in a particular environment [45]. However, literature data indicate that so
far not many studies have been conducted on the biodegradation of biodegradable poly-
mers (e.g., PLA) under aquatic conditions compared to the widely investigated terrestrial
systems [46–48]. The results of biodegradation of PCL/PLA blends are presented in the
Table 5. Results shown that whatever the PCL/PLA blend used, there is a consumption of
O2, thus confirming the multiplication and growth of aerobic bacteria and their ability to
assimilate prepared PCL/PLA blends as only carbon source.

Table 5. The results of the biodegradation of PCL/PLA blends.

Sample Codes
Biodegradability [% TOD] After

7 Days 14 Days 28 Days

PCL70 1.87 ± 0.10 7.24 ± 0.26 21.04 ± 0.52
PCL70/BU 0.70 ± 0.04 4.18 ± 0.10 7.23 ± 0.16
PCL70/HX 0.23 ± 0.01 1.79 ± 0.04 4.04 ± 0.12
PCL70/PB 0.31 ± 0.01 2.03 ± 0.05 4.04 ± 0.09

PCL55 1.22 ± 0.04 4.73 ± 0.12 15.93 ± 0.16
PCL55/BU 0.39 ± 0.02 2.13 ± 0.09 9.37 ± 0.19
PCL55/HX 0.10 ± 0.01 1.05 ± 0.05 3.77 ± 0.20
PCL55/PB 0.16 ± 0.02 1.76 ± 0.07 6.78 ± 0.15
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4. Conclusions

Poly(ε-caprolactone)/poly(lactic acid) (PCL/PLA) blends are promising materials
with biodegradable properties and adjustable performance for many applications. Accord-
ing to the results obtained, blending PCL with higher content of PLA caused a decrease
in thermal properties of the blend with little to no impact on the mechanical properties.
However, the addition of organic peroxides, while it did not impact the thermal properties,
positively influenced the mechanical properties. On the basis of the data obtained, selected
peroxides are able to improve the miscibility between PCL and PLA, which is indicated
by the results of rheological and morphology analyses, as well as the enhancement of
the mechanical properties. For all the tested samples, the proportion of biodegradable
material increased with the duration of the test. The use of peroxides during the reactive
extrusion process significantly reduced the biodegradation of materials, which results from
their cross-linking. This limitation was the result of the mass ratio of PCL and PLA in the
composite, the type of peroxide used and its concentration in the mixture. Although the ad-
dition of peroxides slowed down the biodegradation process, it did not stop it completely,
which makes them advantageous and promising additives for achieving cross-linking
and/or compatibilization of PCL and PLA.
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