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Abstract: Background: In the context of Warehouse Management Systems, knowledge related to
motion trajectory prediction methods utilizing machine learning techniques seems to be scattered
and fragmented. Objective: This study seeks to fill this research gap by using a systematic literature
review approach. Methods: Based on the data collected from Google Scholar, a systematic literature
review was performed, covering the period from 2016 to 2023. The review was driven by a protocol
that comprehends inclusion and exclusion criteria to identify relevant papers. Results: Considering
the Warehouse Management Systems, five categories of motion trajectory prediction methods have
been identified: Deep Learning methods, probabilistic methods, methods for solving the Travelling-
Salesman problem (TSP), algorithmic methods, and others. Specifically, the performed analysis also
provides the research community with an overview of the state-of-the-art methods, which can further
stimulate researchers and practitioners to enhance existing and develop new ones in this field.

Keywords: motion trajectory prediction; warehouse management system; systematic literature review

1. Introduction

In a broader sense, a Warehouse Management System (WMS) can be defined as
an activity that includes a series of measures including organisational, technical, and
economic operations related to the storage of stock [1]. In a narrow view, a Warehouse
Management System is a software solution that provides visibility into a company’s entire
inventory and manages supply chain fulfilment operations from the distribution centre to
the store shelf [2]. For the sake of clarity, in this paper, we will consider the latter notion to
be relevant as we continue to focus exclusively on software solutions.

A modern warehouse is managed by software systems, intended to organize the work
and control and administer a set of policies and processes. Nowadays, the most advanced
WMSs automate processes by delegating labour-intensive and manual or dangerous tasks
to robots, including goods inventory [3] and heavy cargo transfer and loads [4]. Economies
around the world have driven various sectors such as agriculture, construction, healthcare,
manufacturing, and retail to achieve highly efficient operations in order to increase output
and meet consumer demand [5]. To meet these growing demands, logistics companies
are constantly evolving to meet the challenges posed by fluctuating product markets and
shipping schedules [6].

In 2022, OPEX was the leading vendor in the global warehouse management software
market, with a market share of 29.38%, followed by SAP Warehouse Management (17.56%),
SAP Extended Warehouse Management (13.37%), Manhattan (7.07%), and Oracle (4.54%),
while the remaining share (28.08%) concerned other vendors [7]. Today’s WMS solutions
offer flexibility and scalability in both throughput and storage, making the most of vertical
space to increase throughput and overall efficiency. Due to the significant impact of
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COVID on warehouses on a global scale, organisations are moving to cloud-based solutions,
especially small and medium-sized enterprises [8].

Demand for warehouse management systems is expected to rise sharply as product
manufacturers change their supply chain models and consumer demand soars. In fact, the
global WMS market, valued at USD 3.1 billion in 2022, is expected to reach USD 4.1 billion
by 2024 [9], growing at a compound annual growth rate of 16.0% from 2020 to 2024 [10]. In
addition, as the WMS market continues to expand [11], with the growing trend towards
warehouse automation [12], driven by customer expectations for improved effectiveness
and efficiency [13], WMS vendors have offered new capabilities by adopting artificial
intelligence solutions, in most cases by adapting existing machine learning techniques [14].

One of the most significant behaviour modelling issues is concerned with motion
trajectory prediction [15,16]. The ability to accurately forecast the future positions of hu-
mans, objects, or agents in a dynamic environment is an essential component of numerous
advanced technologies such as autonomous vehicles [17], service robots [18], surveillance
systems [19], and wearable systems [20].

A particularly important application of motion trajectory prediction lies in ensuring
the safety and efficiency of the employees, who simultaneously cooperate with the au-
tonomous devices (e.g., self-driving robots) and dynamically share the common working
environments [21]. Among many business and industrial domains, these issues are related
to buildings (warehouses), used to store finished goods and raw materials, vital in the
supply chain [22].

To sum up, by adequately addressing the issue of Motion Trajectory Prediction (MTP),
warehouse operations can be optimized and potential hazards can be mitigated effectively.
However, to the best of our knowledge, the current body of literature related to MTP
methods seems to be scattered and fragmented. This study seeks to fill this research gap by
using the systematic literature review approach. To be more specific, we rigorously explore
the latest advancements, with a particular focus on the MTP methods, specifically designed
and implemented for WMS solutions.

The rest of the paper is structured as follows: Section 2 meticulously outlines the
research process for the literature review, covering aspects from the initial research objective
to data extraction methods. Section 3 provides a qualitative evaluation of the selected
studies. Our core analysis of object trajectory prediction methods is detailed in Section 4,
where methods are categorised into five groups. Section 5 provides an in-depth look at
each method, highlighting its intricacies and predominant themes. Following this, Section 6
reflects on the broader implications, contributions, and potential limitations of the research,
before concluding with future research directions. The paper concludes with an analysis of
the findings and insights in Section 7.

2. Methodology

This section will describe the strategy adopted to identify relevant sources for the
literature review. To this end, keywords will be defined, the search string will be presented,
and the inclusion and exclusion criteria and the quality criteria used in the literature review
process will be discussed.

2.1. Research Goal

The aim of this literature review is to identify the latest solutions in the field of
trajectory prediction. The methods presented in the review will be discussed in terms of
their effectiveness, computational complexity, and applications in the context of employees’
movement within the warehouse.

2.2. Research Question

The review was guided by the following research question:

• What are the state-of-the-art methods and algorithms utilized in the prediction of
object trajectories within the realm of robotics and automation?
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2.3. Keywords

In order to conduct an effective literature review, it is necessary to define the keywords
that will be used to search the databases. In this case, the following keywords were chosen:

• trajectory prediction OR indoor trajectory prediction;
• safety prediction;
• collision prediction;
• warehouse management system OR WMS;
• warehouse OR factory;
• intelligent danger sensing;
• warehouse safety;
• tsp with the dynamic environment with obstacles;
• real-time;
• order picking.

2.4. Search String

Developing an optimal search string is key to successfully identifying as many poten-
tially relevant sources as possible. Relevant keywords and other elements such as logical
operators and search tools are included in this step of the process to optimize the literature
review process. Specifically, the search string used includes the following keywords:

(Trajectory prediction OR Indoor trajectory prediction) AND
(Safety prediction OR Collision prediction OR
Intelligent hazard sensing OR Warehouse safety) AND
(Warehouse management system OR WMS OR Warehouse OR Factory) AND
(TSP with dynamic environment with obstacles OR Real-time) AND
(Order picking)

2.5. Literature Database

The Google Scholar database was used to identify literature sources. The choice
of this database was dictated primarily by its characteristics of unrestricted access to a
variety of publications. This allows searching a larger volume of materials than other, more
specialized databases.

2.6. Inclusion Criteria

Determining the inclusion criteria helps to determine the scope of the search and to
preliminarily exclude irrelevant sources. In this case, publications only in English were
considered, due to their greatest availability.

2.7. Exclusion Criteria

Exclusion criteria are used to reject sources that do not meet strict conditions in order
to narrow the search. We excluded publications that:

• had limited access to the content, or the publication was unavailable (EC1);
• were related to environmental safety, e.g., warehouse fires (EC2),
• were related to the method of data storage itself (EC3);
• predicted the location of workers in the context of stationary robots (EC4);
• were concerned with trajectory prediction in a context other than the warehouse (EC5);
• used mainly vision modules because of the cost and methods used (EC6).

2.8. Quality Criteria

Quality criteria allow a precise assessment of the level of evidence offered by the
selected sources. In this review, the main quality criterion was the existence of an imple-
mentation of the method, as the methods were to be tested on a real dataset of worker
locations. In addition, each method differed in how it validated its results, due to the
fact that not all of them used benchmark data. Some of them were in fact applications
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of artificial intelligence to an abstract problem, and then a simulation was created or the
researchers had a laboratory where they tested the quality of the methods. Nevertheless,
this was not a criterion that disqualified the publications on the grounds that it would
significantly limit the scope of the review.

2.9. Data Extraction

In order to accurately analyze the literature, it is necessary to determine what infor-
mation to extract from the selected sources. This subsection describes what data will be
extracted from each source. Specifically, the following information will be extracted from
each paper:

• information about the availability of open code;
• information about the validation of results used;
• information about the datasets used;
• information about the model architecture or method used;
• additional keywords and characteristics of the mode;
• brief description.

3. Quantitative Evaluation

The papers were evaluated based on inclusion, exclusion, and quality criteria, which
led to the selection of 39 publications out of the 75 found during the search process. The
systematic literature review process is illustrated in Figure 1. Initially, 75 articles were
identified from Google Scholar, with selections made based on the relevance of their titles
and abstracts. After the exclusion criteria were applied, 36 articles were removed, resulting
in 39 articles being retained for in-depth analysis.

Figure 1. A Systematic Literature Review work flow.

Table 1 provides an overview of the works that were rejected based on specific ex-
clusion criteria. Several papers were excluded outright due to restricted access (EC1).
Additionally, works focusing on fire or chemical safety in production environments were
deemed incompatible with the objectives of the research (EC2). Other works that were
rejected on the same basis are those related to predicting human movement and body part
trajectories within the context of stationary robots. Criterion EC3 addressed the issue of
combining the keywords “Trajectory Data” and “Warehouse”, which inadvertently referred
to a type of database known as a Data Warehouse. Although trajectory data falls within
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the scope of the research, publications that solely focused on the predetermined storage
method were consequently rejected. Furthermore, criterion EC4 pertained to predictions
of human trajectory and body part movement within the context of stationary robots.
This did not align with the research’s purpose and thus resulted in rejection. Criterion
EC5 was instrumental in the rejection process. It functioned to exclude papers that were
explicitly unrelated to warehouse settings. Examples of such unrelated topics included
predicting trajectories of ships or aircraft. Another example was the analysis of basketball
player movement. Finally, criterion EC6 played a role in removing certain publications.
These were publications where indoor localization systems primarily relied on visual mod-
ules. This approach conflicted with the research objectives, which were focused on using
UWB technology for localization. Alongside this, maintaining a cost-effective solution was
another key objective.

Table 1. Rejected papers with corresponding exclusion criteria.

Papers EC1 EC2 EC3 EC4 EC5 EC6

Fonseca-Galindo et al. [23] -
Alsahfi et al. [24] -
Garani and Adam [25] -
Bello et al. [26] -
Harwell and Gini [27] -
Nardini et al. [28] -
Papadias et al. [29] -
Popović et al. [30] -
Muhammad et al. [31] -
Felip et al. [32] -
Löcklin et al. [33] -
Alsahfi et al. [24] -
Wang et al. [34] -
Schimpf et al. [35] -
Ribeiro de Almeida et al. [36] -
Petković et al. [37] -
Oueslati et al. [38] -
Ivanovic et al. [39] -
Wang et al. [40] -
Wang et al. [41] -
Yao et al. [42] -
Trifan et al. [43] -
Li et al. [44] -
Garani et al. [45] -
Zhang et al. [18] -
Wu et al. [46] -
Lyu et al. [47] -
Liu et al. [48] -
Trab et al. [49] -
Zouinkhi et al. [50] -
Dobson et al. [51] -
Zhan et al. [52] -
Yan et al. [53] -
Dauod and Won [54] -
De Koster [55] -

Number of rejected papers 4 8 9 3 10 2

4. Methods Classification

The Methods Classification section provides a systematic categorization of the method-
ologies observed within the scope of object trajectory prediction in robotics and automation
contexts. This section is dedicated to dissecting the diverse array of methods employed,
ranging from foundational algorithms and framework systems to specialized probability
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driven approaches. The foundation of any method’s credibility often rests upon its valida-
tion mechanisms, which can span from empirical real-world tests to controlled laboratory
simulations. Through this section, we aim to delineate both the methodological catego-
rizations and their respective validation protocols, thereby offering a holistic view of the
prevailing research methodologies, standard benchmarks, and exceptional cases in the
contemporary research milieu.

Figure 2 showcases the categorization of accepted works based on their respective
categories. Analysis of the presented data reveals that the majority of works fall under the
categories of algorithms, framework systems, and deep methods, collectively accounting
for nearly 70% of the total. The remaining works are relatively evenly distributed across
the remaining 30% of categories, which include methods based on the Travelling Salesman
Problem, probability-based approaches, and other relevant literature.

Figure 2. Pie chart showing the breakdown of accepted works by category.

Figure 3 illustrates the classification of papers based on their type of validation. The
analysis reveals that a majority of papers (80%) have not undergone validation in real-world
applications. It is noteworthy that 20% of published papers have been subjected to such
validation, which constitutes a significant proportion. Notably, video datasets such as the
Stanford Drone Dataset (SDD) [56], ETH [57], and nuScenes [58] are commonly used as
benchmarks in the category of “Benchmark” validation.

Figure 3. Pie chart showing how to validate the solutions of accepted publications.

However, it is noteworthy that different synthetic datasets were employed in each
publication. Additionally, five papers were excluded from the validation analysis as they
referred to other literature that seemed to be relevant, specifically, smart warehouse use
cases at Alibaba. Nevertheless, it is worth mentioning that validation conducted in labora-
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tory settings can still be considered reasonably representative of real-world applications, as
some of the laboratories provided a close approximation of actual warehouse environments.

When quantifying scientific papers, information on the availability of source code
is also a crucial element. The ratio of publications making the source code available is
shown in Figure 4 in the form of a pie chart. Analysis of the graph indicates that most
accepted papers do not share the source code of their solutions. However, in the case
of algorithm-based approaches, pseudo-codes of solutions are often posted. Most of the
works that make their source code available are overwhelmingly those in the deep methods
category. The “Partial” category has been introduced when authors have given another
model as a base model and have made their own modifications to it, making it impossible
to classify their work as “unavailable”. In the final analysis, works in other categories were
considered to lack information about the availability of the implementation.

Figure 4. Pie chart showing the availability of implementation of accepted publications.

Following the analysis of the availability of source code in scientific papers, it becomes
imperative to delve deeper into the specifics of the methods and algorithms employed.
This leads us to our first research query.

RQ1. What Are the State-of-the-Art Methods and Algorithms Utilized in the Prediction of Object
Trajectories within the Realm of Robotics and Automation?

With the aim of answering the first research question, the set of 39 identified papers
was divided into five categories, namely:

• Deep Learning methods;
• Probabilistic methods;
• Methods for solving the Traveling-Salesman Problem;
• Algorithmic methods and framework systems;
• Others.

As demonstrated in Table 2, different methods have been employed in the field of
motion trajectory prediction in.

Currently, deep learning methods are considered state-of-the-art due to their effective-
ness in checking ADE and FDE metrics and the availability of implementations. Neverthe-
less, their main disadvantage is that they are black-box solutions, so it is not possible to
understand why a particular model chose a particular trajectory.

Probabilistic methods are able to solve this problem, allowing determination of the
probability of movement in different directions, but most of them do not have implementa-
tions, which hinders the possibility of their application.

Methods based on the TSP problem were included in the review because of already
existing systems that solve the problem of finding the optimal picking route in a warehouse,
which can be a valuable addition to research that considers a dynamic environment.
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Table 2. Categorization of articles by the method employed

Category References

Deep learning methods

Konishi et al. [59], Andersen et al. [60], Mangalam et al. [61],
Garg and Rameshan [62], Sethi et al. [63], Postnikov et al. [64],
Feng et al. [65], Violos et al. [66], Mangalam et al. [67],
Salzmann et al. [68], Yue et al. [69], Cheng et al. [70].

Probabilistic methods Petkovic et al. [71], Löcklin et al. [72], [73], [74], Zhan et al. [75].

Methods for solving
Traveling-Salesman Problem Theys et al. [76], Ratliff and Rosenthal [77], Zunic et al. [78].

Algorithmic methods
Löcklin et al. [79], Rybecký [80], Hino et al. [81], Cantini et al. [82],
Niu et al. [83], Kanai et al. [84], Lu et al. [85], Kim et al. [86],
Chen et al. [87].

Others

Halawa et al. [88], Jiang et al. [89], Tsymbal et al. [90],
Han et al. [91], Yoshitake et al. [92], Binos et al. [93], Ding [94],
Zhang et al. [95], Song et al. [96], Gils et al. [97],
Vanheusden et al. [98].

Algorithmic methods are good reference points, as they present how safety manage-
ment based on the location of objects in a warehouse has been handled in the literature, as
well as what solutions are not advisable or desirable to achieve the desired results.

Last but not least, the remaining body of literature, classified under the term others,
yields valuable conclusions that could prove beneficial in the practical implementation of
a location-based safety system in real-world settings.

5. Findings

This section discusses papers that have passed the entire search strategy. The section
is divided into five categories that were identified during the review. These are mainly
categories of proposed models, the division of which includes deep learning methods,
probabilistic methods, TSP-based methods, algorithmic methods, and others. The final
category encompasses additional works that offer significant insights within the domain
of interest.

5.1. Deep Learning Methods

This subsection presents models that can be considered deep in the context of machine
learning, using different types of neural networks, primarily recurrent networks.

Konishi et al. [59] proposed a new, efficient approach to the safe control of warehouse
robots. DRL algorithms allow the calculation of suboptimal solutions that may be unsafe.
The given solutions are then transformed into a standard supervisory control problem with
an automaton and a set of unsafe states. Using Supervisory Control Theory, also known
as the Ramadge–Wonham Framework, constraints on plant behaviour are automatically
created so that as many preset specifications as possible are met. The supervisor can stop
the plant from generating a subset of controllable events, but there is no way to force it to
generate an event. The solution provided was validated on simulation data. The innovative
aspect of this work lies in the application of mathematical apparatus, specifically the
Ramadge–Wonham Framework, to ensure safety in warehouse robot control. This approach
presents a novel way to address the issue of unsafe suboptimal solutions. However, the
mathematical complexity of this method could pose a barrier to its practical application,
particularly for individuals without a strong mathematical background. Future work could
focus on developing more accessible, user-friendly interfaces or tools that can leverage this
mathematical framework, thereby broadening its applicability.

Andersen et al. [60], in their paper, proposed a new “Dreaming Variational Autoen-
coder” model to speed up detection of potential threats. The authors cite that often
expert systems already exist in fully automated warehouses, but are not flexible enough
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to work in dynamic environments. The model works in three stages: (1) The predic-
tion model learns the dynamics of environmental changes (transitions between states).
(2) Reinforcement learning without models uses the prediction model to safely sample
the environment. (3) The model is implemented in the real world. This is an interesting
solution that is based on a graph of transitions. The result of this model is represented as
the number of erroneous positions in the storage map in the form of a 32 × 32 image,
and each erroneous transition is marked as an error with a value of 1. They validate the
solution on various Atari games. The innovative aspect of this work is the introduction
of the “Dreaming Variational Autoencoder” model, designed to expedite the detection of
potential threats in dynamic environments. This model, which operates in three distinct
stages and is based on a graph of transitions, offers a fresh perspective on addressing
challenges in fully automated warehouses. However, a limitation is evident in the deep
warehouse environment used for testing, which does not mirror real-world systems
perfectly. Additionally, while the DVAE-2 model showcases efficiency, model-free algo-
rithms, despite their potential for better performance with unlimited sampling, present
challenges in training. Looking ahead, there is a pressing need to ensure agents operate
within safety boundaries, especially when confronted with unforeseen events such as
fires or agent collisions. Another intriguing avenue for future exploration is the efficacy
of agents with non-stationary policies in multi-agent environments.

Another paper by Mangalam et al. [61] proposes a novel PECNet neural network
architecture. PECNet is a neural network architecture that uses both past history and
truthful endpoint to train a Variational Autoencoder (VAE) for multimodal endpoint
inference. The network consists of three main components: a social pooling module,
a predictor network, and a VAE. During training, real trajectory targets are used. The social
pooling module takes the past history and ground truth endpoint, along with endpoint
sampling, and encodes them into a latent representation. The social pooling module is
equipped with a block diagonal social mask, which encodes spatial–temporal relationships
between agents. The predictor network takes the latent representation from the social
linking module and generates a predicted trajectory for each agent. The predictor network
is conditioned on sampled endpoints and the social pooling module. VAE is used to infer
multimodal endpoints, allowing the network to predict multiple possible future trajectories
for each agent. The VAE is trained using both a truth endpoint and a sampled endpoint to
learn the underlying trajectory distribution. The model was validated on the ETH/UCY
and Stanford Drone (SDD) datasets. Overall, PECNet is a powerful network architecture
for multi-agent, multimodal trajectory forecasting that uses both past history and ground
truth endpoints to generate accurate and differentiated forecasts. The innovative aspect of
the article is the introduction of the PECNet neural network architecture, a sophisticated
design tailored for multi-agent, multimodal trajectory forecasting. The authors have also
introduced the innovative “truncation trick” for trajectory prediction, a method that adjusts
diversity for performance without the need for retraining. However, the model’s reliance
on real trajectory targets during training could pose challenges in scenarios where such data
are limited or unavailable.With its state-of-the-art performance across multiple datasets,
future endeavours could delve deeper into refining the model’s components and exploring
its applicability in even more diverse settings.

Nevertheless, the application of PECNet in real applications is problematic, as indi-
cated by Garg and Rameshan [62]. In this work, the authors improve the PECNet model,
which was originally highly overtrained to training data, by which it could not be applied
to a real-world application. They also reported that adding noise to the data completely
destroyed the PECNet learning process. That made it unable to be applied to problems
where the data contain noise, e.g., UWB sensors have an error of several centimetres.
The improvements that the authors made to PECNet as a separate SIREN model are as
follows: (1) They used a different method for optimization—used CMA-ES instead of
ADAM. (2) They implemented cyclic annealing to stabilize the variational training of the
autoencoder. (3) Another generative model has been added to produce a multimodal model
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output. This result was a confidence metric for better prediction and control, i.e., they
replaced the standard multilayer perceptrons (MLPs) on the sinusoidal representation net-
work (SIREN). The model was validated using six synthetic datasets: (1) pure Newtonian
trajectories; (2) noisy Newtonian trajectories; (3) trajectories that are looped, circled, and
used other geometric curves; (4) an interactive trajectory model using HMM; (5) a set based
on reinforcement learning—the agent environment and their movement; and (6) a synthetic
SDD. The innovative aspect of the this work lies in the enhancement of the PECNet model
through the introduction of the SIREN model. This new approach incorporates three pivotal
advancements: the adoption of CMA-ES for optimization, the implementation of cyclic
annealing for stable variational autoencoder training, and the integration of an additional
generative model to produce a multimodal output, resulting in a more reliable prediction
metric. Despite these advancements, the model still grapples with a significant limitation:
a growing disconnect between academic research and its practical applications, primarily
attributed to dataset over-fitting. For future endeavours, there should be an establishment
of a robustness and deployment fitness score, emphasizing comprehensive code reviews
and real-world simulation testing. What is more, using generative models such as robGAN
to assess a model’s readiness for deployment should be considered.

The deep learning network TrajNet++ by Sethi et al. [63] effectively simulates group
interactions within high-density settings, thereby facilitating social navigation for robots.
The model is able to learn a variety of social norms used by humans when walking in large
groups. The proposed metrics show that the TrajNet++ model outperforms traditional
domain knowledge-based methods for modelling group interactions in the ORCA synthetic
dataset [99]. The innovativeness of the TrajNet++ model is its excellence in simulating
group interactions in high-density settings, which enables robots to navigate socially. It
adeptly learns diverse human social norms, especially in large group dynamics. More-
over, it outperforms traditional methods, as evidenced by its performance on the ORCA
synthetic dataset. However, its reliance on this synthetic dataset raises questions about its
adaptability in real-world scenarios. For future exploration, there is potential in deploying
TrajNet++ in real-world applications such as intelligent transportation systems and refining
its capabilities to capture a broader range of social interactions.

In the study by Postnikov et al. [64], a model is introduced that includes two main parts:
a cross-attention module and a transformer block. This model is effective in predicting
human trajectories based on certain conditions, which is illustrated by its use of iterative
attention blocks. The cross-attention module maps a latent array and free-form input
information to a latent array, while the transformer block maps a latent array to a latent
array. These components are used alternately to process the input information. The model
uses multiple layers of cross-attention to iteratively extract information from the input
data. The encoder consists of a stack of N identical blocks, with each block having three
cross-attention modules and a latent transformer. The attention module is permutationally
invariant, which is not suitable for using temporal information. To preserve temporal
information, 1D positional encodings are concatenated with agent embedding. The latent
transform block uses the GPT-2 architecture, which is itself a decoder of the original
transform architecture. Cross-attention is an attention layer that decomposes attention into
multiple heads. The trajectory generation problem is divided into two stages: proposing the
position of the pedestrian target and constructing trajectories conditioned on the proposed
target position. The target decoder decodes the final endpoint position from the encoded
latent array using the multilayer perceptron, while the trajectory decoder decodes the
trajectory using targets true during training and targets predicted during inference. It is
worth noting that the architecture of the solution proposed by the authors is in the form
of an autoencoder. The method was validated on ETH/UCY datasets. The results of this
method are similar and slightly inferior to the rest of the state-of-the-art. The innovation of
this work lies in the introduction of a trajectory prediction model that seamlessly integrates
cross-attention modules and transformer blocks. This unique architecture, resembling
an autoencoder, is adept at predicting human trajectories in urban-like environments.
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However, a limitation is its attention module’s permutational invariance, which is not
ideal for temporal information, although this is addressed by concatenating 1D positional
encodings with agent embedding. Looking forward, the model’s simplified architecture
offers flexibility for further configurations or modifications, positioning it as a promising
foundation for future trajectory prediction endeavours.

In their comprehensive study, Feng et al. [65] propose a novel methodology to predict
human mobility, which is known as DeepMove. This approach holds significant potential
for various applications reliant on location data. The challenges these researchers faced
included the complex regularity of sequential transitions, multi-level periodicity, and the
heterogeneity and dispersion of trajectory data. To address these issues, they employed
a multi-modal embedded recurrent neural network alongside a historical attention model.
This model incorporated two specific mechanisms to effectively handle the complexities.
The authors evaluated their model on three real-world mobility datasets and showed that
DeepMove outperformed state-of-the-art models by more than 10%. Albeit this comparison
was not of high quality due to the fact that they used PMM, RNN, and the Markov Model,
which are fairly basic methods. Nevertheless, they showed that DeepMove provided clearer
explanations for its predictions compared to other neural network models. In summary,
the authors have achieved a novel approach that accurately predicts human mobility
and provides interpretable results to improve performance in location-based applications.
The study’s key innovation is the introduction of DeepMove, which is designed to predict
human mobility. DeepMove is addressing challenges such as complex sequential transitions,
multi-level periodicity, and the heterogeneity of trajectory data. However, a limitation in
their comparison arises from using these basic methods as benchmarks. For future work,
there should be an expansion of DeepMove to predict spatiotemporal points by considering
potential durations. Additionally, the semantic context, such as points of interest and user
tweets, should be incorporated. That would not only predict the location, but also the
underlying motivations behind user movements.

In a noteworthy contribution to the field, Violos et al. [66] present a distinctive model
for next position prediction utilizing LSTM neural networks. The paper holds a unique
position. It does not meet the EC5 condition, as it deals with trajectory prediction in the
context of ships’ geographical position. However, it also presents a method involving
LSTM. What adds to its uniqueness is that this LSTM method’s ready implementation can
be found in the authors’ repository. The authors present a simple method for predicting
the next position of ships, which includes three pipelines: training, transfer learning, and
inference. The training pipeline processes ship trajectories, converting geolocations into
normalized distance and bearing features, and then feeds them into a genetic algorithm.
It is worth mentioning here that the approach of normalizing the trajectory data could be
beneficial in the model prototype itself and could improve the quality of the said model.
This is the second reason why this work was included. The transfer learning pipeline uses
a knowledge base with stored trained DL models. In contrast, the inference pipeline uses
the output model from the transfer learning pipeline. Its purpose is to predict the next
position of the vessel based on its current position in real time. Validation was performed on
a dataset consisting of the location of vessels. These data most likely belong to the authors’
usecase, since they have not provided any other information otherwise. The innovation
lies in the model’s three-fold approach: training, transfer learning, and inference. The
training phase transforms ship trajectories into normalized features, optimized via a genetic
algorithm. The transfer learning taps into a repository of pre-trained models. A limitation
is the model’s reliance on a dataset possibly proprietary to the authors, without referencing
external sources. For future work, there is a potential in refining RNNs for trajectory
analysis. This suggests an exploration of various optimization techniques, RNN types such
as Gated Recurrent Units, and the integration of Attention mechanisms. A modular deep
learning structure that factors in diverse inputs, such as weather or nearby objects, should
be considered. This could enhance prediction accuracy.
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Another promising model was presented by Mangalam et al. [67]. The authors pro-
posed a new approach to the problem of human trajectory forecasting, called Y-net, which
is an inherently multimodal problem with various sources of uncertainty. They proposed
dividing uncertainty into epistemic and aleatoric sources and modelling them separately
using multimodality in long-term goals, landmarks, and paths. They also introduced a new
long-term trajectory forecasting setting with a prediction horizon of up to a minute, which
is an order of magnitude longer than in previous work. Finally, they presented a new tra-
jectory forecasting network called Y-net. Y-net operates using the proposed epistemic and
aleatoric structure to generate differentiated trajectory forecasts. Those forecasts are partic-
ularly relevant at long prediction horizons. Moreover Y-net maintains compatibility with
the scene. They showed that Y-net significantly outperforms state-of-the-art approaches for
both short and long prediction horizons on the Stanford Drone, ETH/UCY, and Intersection
Drone datasets. Accordingly, the authors achieved the development of a new approach to
improve the accuracy of human trajectory prediction, especially for long-term prediction
horizons. Innovation that authors introduced is their Y-net, which divides uncertainty
into epistemic and aleatoric sources, modelling them with multimodality in long-term
goals, landmarks, and paths. This distinction allows for more precise trajectory predictions,
especially over extended periods. The authors also pioneered a new long-term trajectory
forecasting setting, extending the prediction horizon to up to a minute, significantly longer
than prior models. However, the research does not delve into potential limitations or
challenges faced during the model’s development. For future endeavors, the significant
performance improvements suggest further exploration into refining Y-net’s components,
potentially integrating additional data sources or expanding its applicability to diverse
real-world scenarios.

In a significant contribution, Salzmann et al. [68] proposed a model known as Trajec-
tron++. This innovative model, characterized by its modular and recursive graph structure,
is designed to predict multi-agent trajectories. It does so by considering the dynamics of
the agents and incorporating heterogeneous data, including semantic maps. Trajectron++
is specifically designed to integrate with robot planning and control frameworks and
can produce predictions that are optionally conditioned on ego-agent motion plans. The
authors showcased the effectiveness of Trajectron++ using several real-world trajectory
prediction datasets. These datasets posed significant challenges. However, Trajectron++
outperformed various state-of-the-art deterministic and generative methods, underscoring
its effectiveness. The proposed model solves the important problem of trajectory prediction
by enforcing dynamic constraints and incorporating environmental information, which
is crucial for safe and socially aware robot navigation. The success of Trajectron++ in
a variety of real-world scenarios demonstrates its potential to enhance the performance
of interactive human–robot systems, particularly self-driving cars. The model has been
tested on ETH, UCY, and nuScenes datasets. The Trajectron++ model is distinctively crafted
to integrate effortlessly with robot planning and control frameworks, even offering the
capability to condition predictions based on ego-agent motion plans. While the authors
have not explicitly highlighted any limitations, it is worth noting that many deep models
often face challenges when applied to real-world scenarios. In the future, the potential
of Trajectron++ could be amplified by incorporating diverse data sources, enhancing its
alignment with robotic systems, and capitalizing on its ability to generate comprehensive
probability distributions for sophisticated robotic tasks.

In their paper, Yue et al. [69] proposed an NSP-SFM model. This solution combines
model-based and model-free approaches using a new Neural Differential Equation model.
The NSP-SFM is a deep neural network which employs an explicit physics model featuring
learnable parameters. This setup provides a potent inductive bias in the modelling of
pedestrian behaviour. Simultaneously, the remaining parts of the network exhibit a strong
capability in matching data, estimating system parameters, and modelling the stochasticity
of dynamics. The authors compared NSP with 15 state-of-the-art deep learning methods on
six datasets and improved state-of-the-art performance by 5.56–70%. They also showed that
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NSP has better generalization in predicting reliable trajectories in high-density scenarios.
In addition, the authors showed that the physics model in NSP can provide reliable expla-
nations for pedestrian behaviour, unlike black-box deep learning models. Validation of this
solution was performed on ETH/UCY and SDD datasets. The NSP-SFM model introduces
a novel blend of model-based and model-free techniques through a Neural Differential
Equation framework. This innovation effectively models pedestrian behaviour by merging
an explicit, learnable physics model with a deep neural network’s data-fitting prowess.
It outperforms 15 other deep learning methods and offers better generalizability in high-
density scenarios. However its limitation lies in oversimplifying humans as 2D particles,
neglecting the complexities of real-world human dynamics. Future enhancements may
delve into more intricate human behavior models, adapt to high-density crowd scenarios,
and incorporate learning-based collision detection techniques.

A notable work fulfilling the review condition and offering a profound approach
was provided by Cheng et al. [70]. This research introduced a framework that aims to
predict human plans and trajectories, a capability deemed highly valuable for effective
human–robot collaboration. The authors of the paper emphasize that human plan and
trajectory prediction are closely related, which is in line with the observations of other
researchers (e.g., Ynet, NSP). The focus of the research paper is mainly on desktop assembly;
however, the solution can be successfully applied in other fields where there is a need to
coordinate the work of humans and machines. The framework system has been tested on
actual industrial machines, which guarantees its effectiveness and practical application.
The components of the framework system are algorithms for plan detection, trajectory
prediction, and a robot behaviour planner. The plan detection algorithm is based on four
components: trajectory prediction using LSTM neural networks, user target classification,
user action classification using the Bayes algorithm, and correction of actual posteriori
actions. All of these elements together form an effective and accurate system to predict
human plans and trajectories and ensure their effective coordination with the robot. The
work was validated using collected data on a real warehouse. The innovations of this paper
include a robust plan recognition algorithm that combines neural networks with Bayesian
inference, ensuring efficient and safe HRC. This framework not only predicts human
trajectories but also recognizes high-level plans, enhancing the adaptability of robots to
human actions. However, potential limitations arise from its reliance on motion labels
via neural networks, which might pose accuracy challenges. Despite its primary focus
on desktop assembly, the framework’s broader applicability remains an area of interest.
Future endeavours should encompass comprehensive comparative studies and integration
with diverse human–robot collaboration frameworks to further validate and expand upon
the model’s advantages.

Table 3 categorizes the methods based on their evaluation approach, whether through
simulation, benchmark datasets, synthetic datasets, or real-world case studies. From the
presented papers, it is evident that benchmark datasets, particularly ETH/UCY and SDD,
are the preferred choice for validation. Utilizing these datasets facilitates easy comparison
of the methods in focus with existing state-of-the-art techniques. While real-world case
studies are less common, they are crucial in ensuring that the proposed methods are not
only theoretically robust but also practically applicable. The employment of simulation
and synthetic datasets underscores the researchers’ intention to rigorously test their models
in controlled settings before applying them to real-world contexts. Such approaches grant
a deeper insight into the model’s behaviour under specific conditions.

Table 4 showcases a comparative analysis of models evaluated on the ETH/UCY and
SDD datasets. The table delineates the performance of each model using two metrics:
Average Displacement Error (ADE) and Final Displacement Error (FDE).
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Table 3. Summary of evaluation methods used in the papers on deep learning methods.

Evaluation Method Papers

Simulation Konishi et al. [59], Andersen et al. [60]

Benchmark Mangalam et al. [61], Postnikov et al. [64], Feng et al. [65],
Mangalam et al. [67], Salzmann et al. [68], Yue et al. [69]

Synthetic datasets Garg and Rameshan [62], Sethi et al. [63]

Real-world case Violos et al. [66], Cheng et al. [70]

Table 4. Comparison of quantitative results of models evaluated on ETH/UCY or SSD datasets.

Dataset
Paper

[61] [64] [67] [68] [69]

ETH
ADE (m) 0.54 0.62 0.28 0.71 0.25

FDE (m) 0.87 1.13 0.33 1.66 0.24

ETH/UCY Average
ADE (m) 0.29 0.52 0.18 0.37 0.17

FDE (m) 0.48 0.75 0.27 0.91 0.24

SSD (k = 20)
ADE (px) 9.96 - 7.85 - 6.52

FDE (px) 15.88 - 11.85 - 10.61

SSD (k = 5)
ADE (px) 12.79 - 11.49 - -

FDE (px) 29.58 - 20.23 - -

For the ETH dataset, ref. [67] stands out with the lowest ADE and FDE values. On
the combined ETH/UCY average, ref. [69] exhibits the best performance in both ADE
and FDE. In the SDD dataset, under different parameter settings, ref. [69] is notable for its
performance in the k = 20 setting. The parameter ’k’ refers to the number of samples used
for evaluating multi-modal predictions.

5.2. Probabilistic Methods

In this section, a series of articles were provided. These articles shed light on the
model’s non-deterministic prediction of human trajectory and underscore its distinction
from a neural network.

In their research dedicated to human trajectory prediction, Petkovic et al. [71] propose
the implementation of a Hidden Markov Model (HMM), utilizing the Viterbi algorithm.
The warehouse on which the algorithm would operate uses collecting robots that are
supposed to stop moving when they detect a possible collision with a human. The ADE
error they validated their solution with is the largest in the last step by far. As a baseline
for ADE, they cite path interpolation, which firstly is not correct due to impossible paths,
and also achieves worse ADE results. Hence, they were able to determine that the model
performs better than interpolation. The innovations that researchers introduced is the
utilization of a Hidden Markov Model combined with the Viterbi algorithm. This enables
estimation of worker intentions by analysing both observed and hypothesized motions.
This offers a more nuanced understanding of worker behaviour. However, the research
had its limitations. The baseline path interpolation method used for average displacement
error (ADE) validation was flawed, producing impossible paths. Moreover, the ADE error
was notably large in the final prediction step, highlighting potential issues in long-term
forecasting. For future endeavours, refining the model for better long-term predictions, real-
world testing, and expanding the framework to handle more intricate warehouse scenarios
are logical next steps to enhance prediction accuracy and overall system efficiency.

The article by Löcklin et al. [72] discusses the challenges of predicting human move-
ment trajectories in manufacturing. Furthermore, the authors present a schedule-based
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approach that uses real-time schedule data obtained from Manufacturing Execution Sys-
tems (MES). The application of scheduling in human motion trajectory prediction enhances
semantic mapping approaches. This approach effectively reduces the number of possi-
ble destinations by considering the subsequent process steps for the goods currently in
production. By reducing the set of destinations, the performance of future trajectory pre-
diction can be improved. For evaluation, a commercial MES system is used together with
an Ultra Wideband (UWB)-based real-time localization system to obtain human position
data. Based on this data, a naive Bayes classifier uses the MES schedule and real-time
position data to predict human movement intentions. The abstract activity modelling
ensures that only a few training datasets are required for implementation, making the
approach suitable for rapidly changing manufacturing environments, such as in flexible
manufacturing. The model was also validated in a special laboratory. Said laboratory
consisted of several workstations, a door to another workstation, a cafeteria, and a door
that marked the end of a job. The key innovation lies in the introduction of a schedule-based
approach for human trajectory prediction in manufacturing, leveraging real-time data from
Manufacturing Execution Systems (MES). This method optimizes trajectory predictions by
narrowing potential destinations based on current production steps. However, the model’s
primary limitation is its oversimplified view of human behaviour, assuming movements
are task-driven. Additionally, its dependency on MES and real-time locating systems may
restrict its broader applicability. For future endeavours, an integration of more contextual
information should be made, especially for reasons of deviations from planned schedules
and for exploring the potential of the human–digital twin domain and context middleware.

Another publication by Wang et al. [73] proposes a sequential similarity-based pre-
diction approach that combines spatial and semantic contexts into a unified framework.
The proposed method is evaluated using a real-world dataset from a large shopping mall
that the authors hand-collected. The results show that it outperforms baseline methods
and is suitable for real-world scenarios. The primary innovation is the introduction of
a sequential similarity-based prediction approach that seamlessly integrates both spatial
and semantic contexts within a single framework. This method is specifically tailored
for indoor environments, which are rich in spatial-semantic information but also present
unique constraints. However, a potential limitation is the model’s reliance on a specific
dataset from a large shopping mall, which might not generalize to all indoor environments.
For future work, it would be beneficial to test the model in diverse indoor settings and
explore refinements based on different spatial-semantic configurations.

In their comprehensive study, Gilles et al. [74] present a unified framework, known
as THOMAS, for the prediction of multi-agent trajectories. This innovative framework is
aimed at providing efficient and consistent multi-mode predictions for multiple agents’
trajectories. A unified model architecture for simultaneous estimation of future agent
heatmaps is presented, using hierarchical and sparse image generation to enable fast and
memory-efficient inference. A trajectory recombination model is proposed that takes a set
of predicted trajectories for each agent as input and produces a reordered recombination
that is consistent. The recombination module ensures that initially independent modalities
are realigned to avoid collisions and maintain consistency. The results were presented
for the Interaction multi-agent prediction challenge (Interaction 1.2 dataset [75]), showing
that the proposed framework reached first place on the online test leaderboard. The pri-
mary innovation lies in the introduction of THOMAS. This framework uniquely combines
a unified model architecture for simultaneous estimation of future agent heatmaps with
hierarchical and sparse image generation, ensuring rapid and memory-efficient inference.
Furthermore, THOMAS introduces a novel trajectory recombination model. This model, by
taking sets of predicted trajectories for each agent, produces a reordered recombination
that ensures trajectories are consistent and collision-free. It would be essential to consider
the framework’s generalizability across different datasets and scenarios. For future work,
given the significant performance increase observed with the THOMAS module, it would
be beneficial to explore its integration with other trajectory prediction models. Additionally,
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further refinement of the recombination module to handle more complex scenarios and
diverse agent behaviours could be a promising avenue.

The articles reviewed provide a comprehensive overview of various approaches to
trajectory prediction. However, as highlighted in Table 5, the methods employed for evalu-
ation differ across the studies. This diversity in evaluation techniques, poses a challenge
when attempting to directly compare the efficacy and applicability of the proposed models.

Table 5. Summary of evaluation methods used in the papers on probabilistic methods.

Evaluation Method Papers

Simulation Petkovic et al. [71]

Laboratory testing Löcklin et al. [72]

Real-world case Wang et al. [73]

Benchmark Gilles et al. [74]

5.3. TSP-Based Methods

In this subsection, publications will be presented, that treat the problem of trajectory
prediction in a warehouse as a travelling salesman problem (TSP) in order picking scenario.

A work that breaks out a bit from the array of methods about trajectory prediction is
presented by Theys et al. [76]. The paper accomplished several goals related to the problem
of sequencing and routing order pickers in warehouse systems. First, they evaluated the
use of reformulating and solving the problem as a classical TSP, which resulted in up
to 47% average savings in routing distance using the LKH TSP heuristic. Second, they
examined the potential usefulness of combining problem-specific solution concepts from
dedicated heuristics with high-quality local search features. Finally, they investigated
whether a subset of features can be used to generate high-quality solutions for routing
warehouse order pickers, or whether it is necessary to use “state-of-the-art” local search
heuristics. They explored an innovative approach of reformulating the problem as a classical
Travelling Salesman Problem (TSP). Utilizing the Lin Kernighan Helsgaun (LKH) TSP
heuristic, the team achieved impressive savings in routing distance. However, the has
limitations in solely relying on construction heuristics. While the method can harness
the unique aspects of the Steiner TSP, their singular search methods, like aisle by aisle,
can limit the exploration of the full solution space. Local search operators like the 2 opt,
however, could effectively expand the searched solution area, leading to superior solutions
without significant computational time increases. Future work could delve into fine-tuning
these hybrid heuristic methods and exploring their application to other logistics and
routing challenges.

An article that also presents a solution to the order picking problem as a TSP problem
is presented by Ratliff and Rosenthal [77]. In the paper, the authors mathematically try
to prove that the construction of minimal subgraphs of the transition to collect products
is able to be solved on a microcomputer in a minute. However, this solution was not
tested for scalability and the warehouse was very small and simple because a mathematical
simulation was used to validate the method. Innovation that has been introduced was an
algorithm that is capable of solving the order picking problem using minimal subgraphs.
However, limitations in the study arose due to its scope. The research was based on a simple
and small warehouse, and the mathematical simulation used for validation didn’t test the
solution’s scalability. Furthermore, while the method proved efficient for warehouses
with crossovers only at the ends of aisles, the inclusion of additional crossovers within
aisles introduced complications. These complexities increased the number of equivalence
classes to consider, making the method potentially impractical for warehouses with more
than two or three internal aisle crossovers. Looking ahead, future research could explore
optimizing this algorithm for warehouses with multiple internal aisle crossovers and testing
its practicality and scalability in more diverse and larger warehouse configurations.
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The research conducted by Zunic et al. [78] serves as a sanity check for the design of
warehouse order picking optimization systems. Their work focuses on developing a system
that enhances the efficiency of order picking processes for warehouse workers, with the
basis rooted in a practical, real-world challenge. In the study, it came out that the layout
of the warehouse had little effect on the paths of the workers. By using the algorithm,
they increased productivity by as much as 41% compared to before using the algorithm.
They tested the method on data from a real warehouse. The system’s adaptability stands
out, with its capacity to operate optimally across various warehouse layouts, bolstered
by the introduction of fictive locations. However, there are tangible limitations: real-
world factors such as item weight and fragility were somewhat sidelined, and while the
algorithm’s efficacy was proven in the study’s context, its absolute generalizability across
all warehouse layouts is yet to be established. Future endeavours by the research team are
inclined towards further minimizing the distance covered by workers during their daily
routines. By strategically positioning frequently picked items near exits and clustering
commonly ordered items together, the team anticipates achieving greater efficiency in
warehouse operations.

The TSP-based methods for trajectory prediction in warehouses, as discussed in the
presented studies, address the optimization of order picking scenarios. Referring to Table 6,
it is evident that the primary evaluation method is simulation, as highlighted by the works
of Theys et al. [76] and Ratliff and Rosenthal [77]. While simulation-based evaluations
give an understanding of the models’ potential, they may not fully represent real-world
complexities. Conversely, Zunic et al. [78] employed an empirical approach, testing their
method with data from an actual warehouse. This real-world evaluation provides a direct
assessment of the method’s practical applicability.

Table 6. Summary of evaluation methods used in the papers on TSP-based methods.

Evaluation Method Papers

Simulation Theys et al. [76], Ratliff and Rosenthal [77]

Real-world case Zunic et al. [78]

5.4. Algorithm-Based Methods

This sub-section will present papers in which the authors propose solutions to the
problem of predicting human trajectory in the context of security, not necessarily involving
predicting that trajectory. In addition, this subsection will be assigned papers in which the
authors present framework systems to support warehouse security.

In their comprehensive study, Löcklin et al. [79] delve into the potential of predict-
ing warehouse workers’ trajectories based on historical movement data. This is achieved
through the employment of a momentum algorithm, offering valuable insights for applica-
tions within factory and warehouse environments. Although the authors do not provide
implementation details, they prove the effectiveness of their solution by adding noise of
+/− 10 cm and +/− 50 cm to the data. They note, however, that using too long motion
history can lead to larger prediction errors. Authors validated their solution on simula-
tion data. The authors’ innovation was shown by exploration of predicting warehouse
workers’ movements using a momentum-based approach combined with ultra-wideband-
based Real-Time Locating Systems (RTLS), aiming to enhance human–robot collaboration
in production settings. Their methodology displayed strengths, particularly in collision
prevention for Automated Guided Vehicles (AGVs). However, there are inherent limi-
tations: over-reliance on extensive motion history can inflate prediction errors, and the
study used simulation data without diving into granular implementation specifics. The
momentum-based method’s predictive scope remains confined, making it chiefly useful
for short-horizon predictions. Looking ahead, there is a promising avenue in integrat-
ing worker destination predictions and considering floor plans to refine the trajectory
predictions further.
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The master’s thesis by Rybecký [80] deals with the problem of organizing an au-
tonomous warehouse. The author proposes a solution based on units moving autonomously,
called Context-Aware Route Planning (CARP), which are controlled in an organized man-
ner to achieve optimal routes. The CARP algorithm is based on A* and is used to solve the
Multi-Agent Path Finding (MAPF) task. It finds a starting window for each agent to deploy
them in the graph at a given time, and then performs an A* search with a cost function that
considers the time at which vertices are visited. The algorithm optimizes for the makespan,
or the time taken to complete the task, and uses heuristics to estimate the cost to the goal.
It expands vertices by considering neighbouring vertices and their time windows to deter-
mine reachable windows for each agent. If the goal vertex is reached and is free forever,
the algorithm finishes and reconstructs the found path. The work has been validated both
on simulation and in a professional laboratory setting, where multiple robots have been
deployed. The innovation presented in this work is the organization of an autonomous
warehouse through the Context-Aware Route Planning (CARP) algorithm. It innovatively
addresses the Multi-Agent Path Finding (MAPF) challenge by determining optimal starting
windows and employing a unique cost function. However, certain heuristic assumptions,
such as the precise estimate to the goal, did not outperform standard measures such as
the Euclidean distance. Future research avenues include evaluating heuristic properties,
enhancing memory utilization in MAPF solving, and possibly adapting existing algorithms
such as D*Lite for the MAPF context.

In their insightful study, Hino et al. [81] tackle the challenge of overseeing the operation
of autonomous stacker cranes within a warehouse environment. Their research presents
a careful consideration of the dynamics involved in the collision avoidance of these cranes.
The authors proposed a simple algorithm for the movement of multiple stacker cranes.
In short, an algorithm is used for collision avoidance in a crane movement system. It
first chooses a trajectory from several candidates in “Γ” (a table containing trajectory
information). If no trajectory can be chosen without collision, it attempts to adjust the
trajectories to avoid collision. If collision still cannot be avoided, the crane transitions to
a waiting state. If a deadlock situation occurs where two cranes have the same goal position
and are both in the waiting state, the algorithm generates a trajectory to escape from the
deadlock. The crane then moves according to the selected trajectory in “Γ”. The algorithm
aims to optimize travel time by delaying movement or making detours when necessary,
but in experiments they verified, using simulations, the movement of two. Their method
relied on the fact that in addition to avoiding collisions, the algorithm checked deadlocks
and allowed stacker cranes to slow down and stop. In experiments, it transpired that
the basic collision avoidance method was as good as their proposed method. Validation
was performed on simulation data. The innovation of the aforementioned study stems
from the introduction of an algorithm that, beyond merely avoiding collisions, factored
in crane dynamics and checked for potential deadlock scenarios. Despite its innovative
approach, the study found that the basic collision avoidance method performed on par
with their intricate algorithm in simulated experiments. The findings also revealed that
the proposed approach improved efficiency by 11% compared to simpler methods, with
computation times remaining practical. Future endeavours might delve deeper into refining
the algorithm or expanding its applications in diverse warehousing scenarios.

In their innovative study, Cantini et al. [82] explore the use of GPS-enabled employee
smartphones as a means of determining the location of forklifts within a warehouse. This
approach contributes to enhancing safety measures within the warehouse environment.
The trajectories were analyzed using what is known as a “spaghetti chart”, a technique for
drawing consecutive trajectories overlapping each other. However, this was only a simple
preliminary analysis that did not yield interesting results. Nevertheless, this method was
another that was tested in a real-world scenario. The authors introduced a pioneering
technique by employing the “smart spaghetti” chart to depict consecutive overlapping
trajectories, a methodology distinctively unique within the current literature. However, this
approach is not without its limitations. It functions as a retrospective, offline qualitative
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analysis, devoid of real time monitoring and quantitative evaluations of reliability. While
it is adept at pinpointing safety issues, the verification of suggested solutions remains
challenging; it often requires supplementary methods such as logistic simulation. Looking
ahead, there is potential to extend its use to varied warehouse sectors. Additionally, refining
the model to forecast near misses in real-time based on worker movements is a promising
avenue. Harmonizing the findings with predictive techniques or hands-on validation could
further enhance its utility.

The study conducted by Niu et al. [83] presents an innovative MPC-based algorithm
designed for Autonomous Unmanned Vehicles (UAVs). This algorithm is intended to pre-
dict the trajectories of neighbouring UAVs in situations where inter-UAV communication
is not possible. The proposed algorithm is then integrated with the DMPC framework to
realize trajectory planning of multiple UAVs in an environment with static obstacles. In the
simulation of two scenes, they showed that the proposed method is feasible and effective.
Moreover, this approach can attain performance similar to DMPC with communication,
known as communication-free MPC. It can achieve this with only a minor increase in
computation time. This performance is significantly better than the DMPC algorithm,
which considers neighbours as fixed-speed units. In this paper, the proposed method
is implemented in sequential form. This algorithm uniquely predicts the trajectories of
neighbouring UAVs, even in scenarios where there is an absence of inter-UAV communica-
tion. Such a feat allows UAVs to effectively navigate around static obstacles without the
standard communication protocols, challenging the traditional norms of UAV navigation.
The current model of this innovative algorithm operates in a sequential form. While it has
showcased efficacy in simulations, its real-world applicability remains to be tested. As
a next step, the method should evolve into a distributed form. The method should also be
accompanied by real-world UAV testing, opening avenues for more extensive applications
and refinements.

Subsequently, Kanai et al. [84] introduce a predictive control methodology aimed
at generating cooperative movement among heterogeneous agents working within con-
strained spaces, such as warehouses. The proposed method formulates a goal function and
a dynamic model. This model amalgamates the state and inputs of all agents. Simultane-
ously, it incorporates constraints rooted in each agent’s specifications, including aspects
such as the size and limitations of the actuators. Collision avoidance is also achieved
using an occupancy grid map to account for obstacles of any shape in the target area.
The effectiveness of the proposed method was demonstrated in a numerical simulation of
heterogeneous mobile robots operating in a warehouse model. The authors introduce an in-
novative approach characterized by the integration of a goal function and a dynamic model.
This model seamlessly integrates the states and inputs of all involved agents, meticulously
factoring in constraints associated with each agent’s specific characteristics, such as size
and actuator capabilities. A notable highlight is the adoption of an occupancy grid map,
ensuring robust collision avoidance not only between agents but also with obstacles of vary-
ing shapes within the designated area. However, the method’s efficacy has been validated
solely through simulations; hence, testing in real-world scenarios is an imperative next
step. Future work might explore refining this model for different confined environments or
incorporating sophisticated sensing mechanisms to enhance agent collaboration.

In another significant contribution to the field, Lu et al. [85] present an algorithm
designed for dynamic order picking in warehouse operations. This method, known as the
Interventionist Routing Algorithm (IRA), is geared towards devising optimal routes for
order pickers. The algorithm was modified to allow an operator to start an order-picking
route from inside an aisle. This change required the development of new initiation pro-
cedures and the identification of new arc configurations to allow the forklift to leave the
aisle. A new type of travel zone was introduced to increase the flexibility of the algorithm.
The algorithm now uses two types of travel areas, One-Way (OW) and Round-Trip (RT),
which are defined based on the relative locations of the picker, magazine, and all other
retrieved items. The Round-Trip area was previously studied by Ratliff and Rosenthal
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in 1983. In addition, seven new PRS equivalence classes were added in addition to the
six PRS equivalence classes previously proposed for the Round-Trip area. Six of these
were proposed for the newly introduced One-Way area, while a seventh was added to the
Round-Trip area. Finally, to adapt to the new One-Way areas and PRS equivalency classes,
five additional tables were developed for route construction procedures. Moreover, two
tables from Ratliff and Rosenthal’s work were altered by the addition of one row each.
Moreover, based on the performed simulations, the algorithm scalability was confirmed.
The authors have introduced the Interventionist Routing Algorithm (IRA), marking a sig-
nificant innovation in warehousing strategies. A standout attribute of the IRA is its unique
ability to start order-picking directly from within an aisle, necessitating the development
of novel initiation procedures and arc configurations to accommodate forklift operations.
While simulations underscore its potential, real-world validation remains pending. Future
research could delve into its adaptability in diverse warehousing scenarios or compare it
with emerging order-picking methodologies.

The publication by [86] proposed an intelligent agent-based model for solving the
order picking problem in an industrial warehouse with multiple storage locations. The
authors combined elements of hierarchical and heterarchical frameworks in the modelling
framework, resulting in a hybrid model. To overcome the rigidity and inflexibility of the
hierarchical model, the authors used a real-time task assignment negotiation mechanism.
Lower-level agents negotiate within the boundaries set by higher-level agents, resulting
in both horizontal and vertical negotiation. Optimization algorithms, learning, databases,
and knowledge bases were used by the agents to make better decisions. The authors
used the proposed framework to solve the problem of allocating orders to picking zones
through intelligent agents. Results using real system data showed that the proposed
framework provided better throughput than the hierarchical model. This demonstrated
flexibility, robustness, and fault tolerance to unforeseen events such as machine failure.
Overall, this publication presents a novel approach to solving complex order picking
problems in industrial warehouses using intelligent agent-based models. The authors
have introduced a groundbreaking model tailored to address the order picking problem in
industrial warehouses with multiple storage locations. This novel approach employs a real-
time task assignment negotiation mechanism to surmount the inherent structural rigidity of
traditional hierarchical models. While the proposed framework has been validated with real
system data and exhibits superior throughput compared to the standard hierarchical model,
the study’s results are still limited to simulations and specific datasets. It remains to be
seen how this model responds across varied warehouse configurations or in environments
with different unpredictabilities beyond machine breakdowns. Future avenues could delve
into a broader validation across varied warehouse layouts, incorporate cutting-edge AI and
machine learning for enriched agent decision-making, and probe the model’s synergy with
burgeoning technologies such as IoT and robotics.

In their valuable research, Chen et al. [87] put forth a real-time routing methodology
for warehouses with multiple order pickers. The approach is based on an online Ant
Colony Optimization (ACO) algorithm, which demonstrates its potential in managing
congestion within the warehouse environment. The method aims to optimize picking
routes for multiple pickers, taking into account congestion and unstable picking times. For
each picker, a default route is generated by ACO and then coordinated to avoid congestion
during the picking service. The proposed method improves the overall service time and
throughput of the order picking process. A simulation was conducted to evaluate the
effectiveness of A-MOP-NPT, which showed promising results in dealing with congestion
and increasing system throughput. However, it should be noted that the current study
assumes a pick-by-order policy and no capacity limit for pickers, which may not reflect
real-world scenarios. The researchers innovatively employed the Ant Colony Optimization
(ACO) algorithm to manage warehouse congestion. They generated a default route for
each picker, minimizing congestion. However, the approach assumes a pick-by-order
policy and overlooks picker capacity limits, limiting real-world applicability. Future work
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should address these limitations, test the model in varied warehouse setups, and consider
integrating IoT and other smart technologies for enhanced decision-making.

The algorithm-based methods for trajectory prediction, as outlined in the discussed
studies, provide a diverse range of solutions tailored to warehouse security and efficiency.
Referring to Table 7, it is evident that a significant portion of the research relies on simu-
lations for validation. The diverse evaluation methods used in these studies, especially
the inconsistencies arising from comparing results obtained in controlled simulations,
underscore the challenges of directly comparing their outcomes and effectiveness.

Table 7. Summary of evaluation methods used in the papers on algorithm-based methods.

Evaluation Method Papers

Simulation Löcklin et al. [79], Hino et al. [81], Niu et al. [83], Kanai et al. [84],
Lu et al. [85]

Laboratory testing Rybecký [80]

Real-world case Cantini et al. [82], Kim et al. [86], Chen et al. [87]

5.5. Miscellaneous

The final subsection of this review encompasses relevant works whose findings and
insights are applicable to the subject matter at hand.

The research conducted by Halawa et al. [88] introduces an approach reliant on loca-
tion data derived from Ultra Wideband (UWB) technology. This methodology is proposed
as a means to enhance safety measures and operational efficiency within warehouse en-
vironments. The study’s authors point to the benefits of indicating to an employee the
specific location of where to perform an operation, leading to reduced errors and increased
efficiency. Unlike Automated Storage and Retrieval Systems (ASRS), the authors of the
study focus on solving the problem of the movement of all forklifts. The paper proposes
a three-step framework, which consists of: (1) Selecting location calculation technology
(UWB). (2) Integrating UWB with WMS and FFMS systems. (3) Conducting analysis and
making appropriate changes. The authors focused on metrics such as brake severity, con-
gestion identification, route policy involvement, driver behaviour at intersections, speed
in zones, forklift accidents, and forklift errors. In a comparison of location accuracy, the
authors found that cameras are the most accurate, but also the most expensive. UWBs are
the second most accurate solution, and also one of the cheaper positioning methods. This
work aligns well with the broader context of improving warehouse safety and operational
efficiency. Furthermore, the authors’ implementation of the proposed solution in a real-
world warehouse setting enhances the relevance and applicability of their findings. The
innovation that has been introduced was a novel three-phase framework. Unique insights
are offered through heat maps and a data-refining algorithm, enriching warehouse decision-
making processes. However, the research faces limitations, including noise interference
from RTLS affecting precise location determination and the lack of real-time data analysis.
Moreover, synchronization inconsistencies between different warehouse systems were
identified. Moving forward, refining RTLS noise handling, focusing on real-time data inter-
pretation, incorporating broader supply chain considerations, and aiming for an automated
Industry 4.0-aligned decision support system are potential areas for future exploration.

In their research, Jiang et al. [89] propose an advanced logistics monitoring system.
This system, designed to enhance the efficiency and intelligence of logistics management,
incorporates RFID sensor networks and leverages big data technologies. The framework
system is built on a wireless sensor network platform and combines inbound and outbound
logistics operations, warehouse positioning, and distribution monitoring management.
The article tests the monitoring system in a real warehouse and shows that it has prac-
tical application value. Furthermore, the use of such a system can improve the level of
informatization and intelligence of logistics management. The innovation introduced
an innovative logistics monitoring system. Specifically, this system, rooted in a wireless
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sensor network platform, streamlines both inbound and outbound logistics operations,
warehouse positioning, and distribution monitoring. When tested in real-world conditions,
the system exhibited significant practical application potential and demonstrated its ca-
pability to elevate the informatization and intelligence quotient of logistics management.
However, a significant limitation surfaced during the study: the system, while efficient
and user-friendly, overlooks essential security considerations. For future enhancements,
a comprehensive security review and implementation are crucial to ensure the integrity
and safety of the logistics data being managed.

Next, Tsymbal et al. [90] present a proposal for analysing the use of mobile robots
to transport and manipulate goods within a manufacturing workspace. The level of
intelligence required for these tasks is determined by their complexity, adaptability, and
ability to respond to dynamic interactions. The proposed system is based on a logical
decision-making model and is implemented using a robotic warehouse model. Validation
of this solution was based on miniature autonomous unmanned vehicles in the laboratory.
The innovation presented in their work is a novel system for analysing the use of mobile
robots in manufacturing workspaces to transport and manipulate goods. Their system
is unique in that it is grounded in a logical decision-making model and is implemented
using a robotic warehouse model. The study’s distinctiveness is further underscored by
its validation method, which employed miniature autonomous unmanned vehicles in
a laboratory environment. However, the study highlighted several limitations. One of
the primary concerns is the noise interference in the Real-Time Location System (RTLS),
causing discrepancies in the exact positioning of forklifts—a critical issue given the precision
required in narrow aisles of warehouses. Although they designed an algorithm to mitigate
this, complete resolution of the RTLS noise remains a challenge and necessitates further
refinement, potentially involving improved hardware technology. Another limitation was
the absence of real-time data analysis, an essential component for Industry 4.0. For future
work, there is a need for advancing RTLS technology to address noise and signal strength.
The frameworks should be developed to synchronize warehouse data, creating real-time
analysis systems equipped with cutting-edge machine learning methods, integrating RTLS
for both items and forklifts tracking, and devising an automated decision support system
embedded within an Industry 4.0 platform.

In a related study, Han et al. [91] propose a novel method for order picking within
a logistics setting. This method employs a combination of an HC strategy and a k-opt-
based algorithm, demonstrating its potential within a multi-UAV system in an intelligent
warehouse. They showed that their method outperformed other strategies and algorithms
in terms of convergence time and lead time, even with an increase in order arrival rate.
The proposed approach is suitable for logistics environments that use a lot of UAVs and
require fast work. However, the authors acknowledged that some assumptions were made
and further research is needed to account for UAV-to-UAV communication and different
situations such as order removal and change. The approach was validated on a warehouse
simulator. In conclusion, the authors’ work provides a novel approach to improving
order picking performance in logistics environments. The novelty of this research is based
on the introduction of a new method. This dynamic path planning approach allows for
immediate assignment of orders, offering a notable improvement in convergence time and
lead time, particularly with rising order arrival rates. Despite its notable advancements,
the study does have its constraints. The research assumes a fixed starting and ending
point at a depot and does not account for potential UAV collisions. Furthermore, the
centralized nature of the logistics allocation means there has to be a robust connection
between all UAVs and the central network, which could pose challenges in practical
applications. For future work, there are several avenues for enhancement and further
exploration. Future studies will delve into facilitating order batching through inter-UAV
communication to decentralize control. There is a recognized need to consider real-world
scenarios beyond just adding new items, such as order removals and changes. Lastly,
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to ensure the method’s real-world applicability, future validation should extend beyond
simulations to real warehouse environments.

In their innovative study, Yoshitake et al. [92] propose a new system for inventory
picking and shelf sorting, known as the ShelfMigrant AGV system. This system employs
a real-time holonic scheduling method, aimed at minimizing the waiting time of pickers
within a warehouse setting. They evaluated the proposed system using a simulator and
found that it improved picking productivity by reducing the waiting time of pickers
compared to the conventional system. The proposed system is suitable for large warehouses
with orders with higher variation and lower volume. In future work, the authors plan
to reduce the computational cost of the system and test it in actual warehouses. Overall,
the authors’ work provides a new approach to improving picking productivity in large
warehouses with mixed and smaller order volumes using the ShelfMigrant AGV picking
system. The approach was validated using a warehouse simulator. The primary innovation
lies in its use of AGVs to transport both inventory and sorting shelves directly to pickers.
Unlike conventional systems where sorting shelves are stationary or moved only after
sorting tasks are complete, the ShelfMigrant AGV system can transport a sorting shelf
even in the midst of its sorting, optimizing productivity. The research, while promising,
is currently validated only through simulation. This means the results, while indicative,
are yet to be proven in real-world conditions. There is also a recognition of computational
costs associated with the proposed system, suggesting potential scalability or efficiency
challenges. Future endeavours by the authors should focus on reducing the computational
cost of the ShelfMigrant AGV system, making it more efficient for real-world application.
Furthermore, the system needs to be tested in actual warehouse environments to validate
its practical effectiveness beyond simulation.

In the publication by Binos et al. [93], an intelligent agent-based framework is in-
troduced to enhance warehouse management systems (WMS) in dynamic demand en-
vironments. The authors provide a novel framework that offers a triple contribution,
encompassing innovative design principles and approaches for efficient WMS implementa-
tion. First, it provides the benefit of detecting warehouse exceptions in real time before they
escalate to disruptions. Unexpected events can have a significant impact on productivity
and efficiency, despite adherence to warehouse processes that dictate a smooth flow of
product. Second, research offers new algorithms and optimization processes to improve
the efficiency of warehouse processes, but these are not easily incorporated into existing
WMS systems. Constructing service agents in this model can facilitate the addition of new
features in an environment where they can be applied as required. This application is based
on real-time environmental constraints, and the features can be evaluated both in real-time
and historically through data analysis. Third, the decision support aids warehouse decision
makers by addressing cognitive, memory, and time constraints. It does this by providing
exception information packages and potential solution scenarios, which facilitates faster
resolution of warehouse exceptions that require human involvement. The framework has
been tested on a warehouse simulation. The authors have innovatively developed an agent-
based Warehouse Management System (WMS) framework, meticulously tailored to address
the complexities of dynamic e-commerce landscapes. This framework encapsulates fea-
tures such as real-time warehouse exception detection, a modularized mechanism for facile
integration of contemporary optimization algorithms via service agents, and an intricate
decision support infrastructure designed for expeditious human intervention. However,
the framework’s real-world efficacy remains untested, as its validation is primarily through
simulation. Subsequent research trajectories should contemplate the integration of di-
verse artificial intelligence methodologies to amplify operational robustness and employ
performance indices such as stock out rate and shipping accuracy for a more granular
evaluative framework.

The study conducted by Ding [94] investigates the implementation of a Smart Ware-
house Management System (SWMS) based on the Internet of Things (IoT). The authors
emphasize the advantages and benefits of incorporating sensors within the warehouse
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environment. The main benefits they point out are: control over the entry and exit of goods,
increases warehouse efficiency, reduces the possibility of errors, decrease in labour and
thus costs. The innovation introduced in this work is three-fold. The authors introduced
a Smart Warehouse Management System, which is a significant deviation from traditional
warehouse management models. They also integrated advanced sensor technology into
their system. Finally, the system not only gathers data but also intelligently processes and
controls the in/out of storage and cargo handling processes by leveraging internet and
cloud computing technologies. This is a significant step forward in ensuring real-time
data processing and decision-making in warehouses. However, the study lacks a detailed
comparison with other modern systems and empirical validation of its advantages. Fu-
ture research should delve into comparative analyses, explore integration with evolving
technologies, and assess adoption barriers among enterprises.

In a compelling case study exploring the utilization of Artificial Intelligence (AI) in
e-commerce fulfilment, Zhang et al. [95] present their research on resource orchestration at
Alibaba’s Smart Warehouse. This paper offers valuable insights into the practical implemen-
tation and benefits of AI within a real-world warehouse setting, specifically focusing on
Alibaba’s operations. The conclusions reached by the authors are: (1) Data, AI algorithms,
and robots are significant resources in developing AI capabilities. (2) Orchestration of
AI resources and other related resources leads to the development of strong AI capabil-
ities. (3) AI capabilities interact and co-evolve with human capabilities to create value.
(4) Interactions and co-evolution involving AI and human workers depend on the type of
task. (5) AI applications create business value in terms of efficiency (e.g., space optimization,
labour productivity) and effectiveness (e.g., error reduction) by automating, extending,
and transforming key business processes. The innovation of the research stands out for its
resource orchestration perspective, pinpointing that for AI to truly shine, resources such as
data, algorithms, and robots need to be orchestrated with other organizational elements.
Notably, the study underscores the mutual co-evolution of AI capabilities with human
skills, emphasizing their combined potential in enhancing business processes. However,
the research is not without limitations. Its case-study nature confines it to specific context
and thus may not be statistically generalizable across different industries or settings. The
research exclusively zeroes in on certain business processes, omitting others such as goods
receiving and outbound logistics. Additionally, its internal focus omits possible external
influences on AI integration. Future research avenues are apparent from these limitations:
a broader, multi-industry examination to attain statistical generalizability, exploration of
AI in other warehousing processes, and a more expansive investigation that takes into
account external macrolevel influences such as government policies or societal beliefs. This
will pave the way for a holistic understanding of AI’s integration across varying contexts
and conditions.

A paper presented by Song et al. [96], which is also a literature review, but mainly deals
with the application of IOT in smart logistics, also includes a section on smart warehouses.
They mainly mention environment sensing in the context of security, warehouse layout
optimization, and warehouse management in general. As difficulties of the field, they
mention (1) data security, (2) data privacy, and (3) managing the range of different solutions
and their integration with each other. In an innovative manner, their paper does not merely
compile existing knowledge but critically examines the deployment of IoT across various
logistics functionalities, from transportation to warehousing and distribution. The paper’s
explicit focus on environment sensing, especially in the context of security, warehouse
layout optimization, and comprehensive warehouse management, gives it a nuanced depth.
Moreover, by delving into predominant challenges in the sector, such as data security,
privacy, and the integration of diverse solutions, they offer practical insights in their review.
However, the paper’s overarching nature is a limitation. As a literature review, it may
lack empirical evidence, hands-on experiments, or practical case studies to complement
the theoretical discussion. For future work, several research challenges within the IoT-
based smart logistics arena await tackling. Given the rapidly expanding field, empirical
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studies addressing these challenges, such as data security and integration issues, represent
a promising avenue.

In their article, Gils et al. [97] highlight the significance of integrating order picking
planning problems. The authors provide an in-depth examination and review of the current
state-of-the-art classification in this domain, emphasizing the importance of considering
multiple planning problems to design efficient order-picking systems. In particular, the
review demonstrates the following: (1) Problem interaction analysis that evaluates combi-
nations of problems with different planning horizons. (2) Effective solution of integrated
operational problems using metaheuristics. (3) Underexplored relevant research oppor-
tunities in order picking optimization. The innovativeness of the research lies in their
comprehensive review and classification, which underscores the interplay between various
planning problems, and the subsequent guidelines offer practical solutions for warehouse
managers. Yet, the study recognizes its limitations, notably the small sample size for
many problem combinations and the dearth of in-depth investigations on many of these
combinations. Future research opportunities emerge in developing integrated models for
specific planning combinations, refining heuristic algorithms tailored for real-world scenar-
ios and amplifying the scope of literature-reviewed or empirically studied underexplored
problem combinations.

The paper by Vanheusden et al. [98] sheds light on the gap between academic research
and practical implementation in the context of order-picking planning. The authors argue
that while academic research yields valuable insights, there is often a lack of effective
translation into practical warehouse management policies. The paper provides a compre-
hensive classification and review of the current state-of-the-art, aiming to bridge the divide
between theoretical advancements and practical considerations in order-picking planning.
According to the authors, simplistic approaches favoured by warehouse managers can lead
to suboptimal results. They suggest that future research should prioritize practical factors
and practitioner insights into order-picking operations. Specifically, research should focus
on identifying bottleneck drivers, examining warehouse safety, analyzing the impact of
similar products on picking times, and developing decision-making tools for balancing
workload. In addition, research efforts should evolve toward integrated solution algorithms
that take into account various practical factors and interdependencies among planning
problems. Access to real-world data is key to building realistic models, and this research can
support future research on practical considerations in automated systems. The innovation
introduced by the paper is bridging the divide between academic insights and practical
needs in order-picking planning. By identifying often-neglected practical factors and their
implications, the study uniquely reorients the focus from purely theoretical models to more
actionable insights for warehouse managers. While its strength lies in a comprehensive
review and classification, the paper primarily uses existing literature and may lack new
empirical findings. Future endeavours can prioritize empirical validations of these practical
factors, develop real-world informed algorithms, and foster stronger academic–practitioner
collaborations, especially as automated systems become more prevalent.

6. Discussion

This chapter discusses the major contributions, theoretical and practical implications,
and limitations of this study. It seeks to expound on the results obtained, as well as to anal-
yse the potential ramifications of the conclusions and explore future research opportunities
in the field.

6.1. Insights

Regarding the use of object trajectory prediction methods in a warehouse environ-
ments, it is necessary to evaluate their feasibility and effectiveness with regard to human
safety. Usually, manual implementation is required to test these methods; however, it is pos-
sible to use publicly available source code for some of them. Thus, testing and evaluating
these two properties emerges as the first avenue of research.
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In this line of thinking, it should be noted here that one of the more valuable findings
was presented in a paper by Halawa et al. [88], which explores the implementation of UWB
location sensors to enhance warehouse safety and operational efficiency. The study con-
cludes that the metrics outlined in the paper can be used to evaluate employee performance
and safety. Additionally, the authors propose a framework system that can be considered
for implementation in similar projects.

During the initial stage of the research, the LSTM model proposed by Violos et al. [66]
was identified as a promising approach for next position prediction. However, the NSP-
SFM model [69], despite being considered state-of-the-art, was found to be impractical due
to its large size and tendency to overfit the training data. This issue was discussed in the
paper analysing the robustness of PECNet by Garg and Rameshan [62]. They emphasized
the suboptimal suitability of such complex models for real-world applications.

Furthermore, the literature review revealed a paucity of accurate worker trajectory
prediction methods in real warehouse environments. Many existing models were deemed
unrealistic for manufacturing applications, as underscored in the aforementioned PECNet
paper. In this context, the authors evaluated the performance of PECNet across different
datasets, comparing it to the established benchmark. They noted its limited capacity to
learn effectively from subtle noise, which presents a significant challenge considering the
localization error of up to 40 cm in UWB sensors.

Nevertheless, an improved version of PECNet may offer a promising starting point for
the real-world application of trajectory prediction in a warehouse environment. To sum up,
exploring the performance of this method in the different settings will confirm its validity.
Thus, the need of more replication studies emerges as the second avenue of research.

6.2. Contributions

This study’s primary contribution is a systematic and comprehensive review of the
state-of-the-art methods and algorithms used in predicting object trajectories within the
realm of robotics and automation. This review is specifically focused on applications within
warehouse management systems. Through the detailed analysis of 39 identified research
papers, this study has drawn attention to the following major categories: deep learning
methods, probabilistic methods, methods for solving the Travelling Salesman Problem,
algorithmic methods, and framework systems.

An additional significant contribution of the study is the classification and evaluation
of these methods regarding their applicability in production-warehouse systems. This study
offers crucial insights that benefit both practitioners and researchers, acting as a consolidated
source of knowledge. Furthermore, it serves as a stepping stone for future investigations
into trajectory prediction methods in warehouse management and automation systems.

6.3. Theoretical Implications

From a theoretical perspective, this study provides an in-depth analysis of the different
trajectory prediction methods, assessing their strengths and weaknesses. It uncovers the
inherent trade-off between the transparency of a method and its predictive power, such as
the “black-box” nature of deep learning methods versus the interpretability of probabilistic
methods. Furthermore, the findings highlight the potential of LSTM models and newer
variants such as NSP-SFM, though the practicality of such complex models is questioned.

The study also underlines the need for further research in this area. Despite the strides
made in trajectory prediction, it becomes evident that achieving accurate worker trajectory
predictions in real warehouse environments remains an ongoing challenge. This research
highlights the need for methods that are not only efficient but also robust to real-world
dynamics such as noise in the data.

6.4. Practical Implications

The transformative potential of trajectory prediction in Warehouse Management Sys-
tems (WMS) is undeniable, with the promise of enhanced efficiency and safety. However,

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Appl. Sci. 2023, 13, 9780 27 of 32

its practical realization is tethered to a series of essential considerations. A primary concern
in the field is the lack of a standardized dataset for trajectory prediction. While the SDD
and ETH/UCY datasets offer in-depth information, their vast size makes them challenging
for less powerful machines. This lack of uniformity in dataset usage often impedes the
consistent evaluation of different methods, stressing the need for a move towards a more
standardized approach.

Moreover, many trajectory prediction methods, while showcasing stellar performances
in controlled benchmarks, falter in real-world settings. For instance, the PECNet’s excel-
lence on standard benchmarks is compromised when introduced to even slight noise in
real-world scenarios. This divergence between controlled tests and real-world applicability
underscores the need to rigorously test these methods in genuine environments.

Open-source practices have the potential to revolutionize the domain. Especially
within deep learning trajectory prediction methods, the increasing trend of providing
access to code repositories is a step in the right direction. Such transparency not only
ensures method reproducibility but also alleviates the need for manual implementations.
This openness can significantly expedite the evaluation and comparison of various methods,
fostering collaboration and innovation.

In the bustling arena of WMS, the inclination leans towards simpler, more efficient
models over complex ones. The rationale is grounded in real-world demands. Simpler
models typically provide faster inference, which is crucial for on-the-spot decision-making
in warehouse settings. Moreover, with the rise of IoT devices in modern WMS, data intake
has exponentially increased. In the face of this data deluge, complex models might be
overwhelmed, potentially delaying real-time responses.

An enlightening revelation from the study of trajectory predictions is the significance
of human target positions. By incorporating an understanding of a person’s intended
destination, prediction algorithms can vastly improve their precision. Especially in struc-
tured settings such as warehouses, human movement is often driven by a clear end goal.
Recognizing and integrating this intent can greatly simplify and enhance the trajectory
prediction process.

In essence, for trajectory prediction in WMS to transition from theoretical propositions
to pragmatic, actionable tools, these considerations need to be at the forefront of research
and implementation endeavours.

6.5. Limitations

Despite its contributions, the study has several limitations. First, the review is based
on a finite number of papers, and thus, potentially important methods or studies might
not have been included. The selection of papers was based on specific search strings and
databases, which might have resulted in some bias in the identified methods.

Second, the practicality and applicability of the methods have been evaluated mostly
based on the availability of the source code and the possibility of their application in the
given context, not on actual testing or implementation in a real-world warehouse system.

Third, the study has focused on methods for predicting object trajectories within
warehouse systems. Therefore, the results may not necessarily apply to other domains
or applications.

In light of these limitations, future work could aim to conduct more extensive liter-
ature reviews, perform practical tests of the discussed methods in real-world warehouse
environments, and expand the scope to other relevant applications or domains.

6.6. Future Research Directions

In light of the findings from the present study, several avenues for future exploration
become apparent. One crucial direction involves the conduct of more exhaustive literature
reviews. While our study has encompassed numerous papers, an even broader sweep,
incorporating a wider range of databases and publications, may unveil overlooked, yet
pertinent works. Additionally, the practical implementation of the highlighted trajectory
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prediction methods in real-world warehouse settings is paramount. Such hands-on testing
would pave the way for an empirical comparison of their efficacy and feasibility.

Moreover, with models such as NSP-SFM showcasing potential yet facing challenges
such as overfitting, there is an evident need for research into the adaptation or combination
of these models, potentially birthing hybrid solutions that harness both the prowess of deep
learning and the clarity of probabilistic methods. Lastly, given the inherent data anomalies
and localization errors, especially with tools such as UWB sensors, the development or
refinement of noise-resilient trajectory prediction models stands out as a vital research
endeavour. Pursuing these directions will not only deepen our understanding of trajectory
prediction but also bolster the safety and efficiency of warehouse operations.

7. Conclusions

This literature review focuses on state-of-the-art motion prediction methods, specifi-
cally in the context of their incorporation into warehouse management systems to enhance
safety in increasingly automated warehouse environments. By design, our qualitative
analysis is aimed at evaluating the quality of the state-of-the-arts methods, specifically de-
signed and implemented for Warehouse Management Systems. In this extent, five different
categories of the methods are distinguished, namely: Deep Learning methods, probabilistic
methods, methods for solving the Travelling-Salesman problem (TSP), algorithmic methods,
and others. We believe that the presented review represents a significant contribution to
knowledge, as it might provide a fundamental underpinning of modern research devoted
to motion trajectory prediction.
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