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Abstract—The problem of multipath root tracing is being
addressed in this communication. The self-adaptive complex
root tracing algorithm, which was previously utilized for the
investigation of various propagation and radiation problems,
is analyzed here for the cases when the traced characteristic
bifurcates. A procedure of multiroute detection is proposed
and demonstrated on the coaxially loaded cylindrical waveguide
example.

Index Terms—Complex modes, complex root, iterative algo-
rithms, resonant structure, root tracing

I. INTRODUCTION

The problem of complex root calculation can be found in
many fields of science. In electromagnetic and RF engineering,
it is commonly related to the calculation of the propagation
coefficient of various waveguides [1]-[6], resonant frequencies
[7]-[9], antenna input impedances [10], or material charac-
terization [11] to name but a few. In modern physics in the
research of exotic particles [12], for solving of nonlinear
Schrodinger equation [13], spectroscopy [14], in acoustics
[15], in optics [16], [17], and in automatic stability analysis
[18].

When a single root is found, it is often of interest to
find its behaviour in a function of another parameter such
as frequency or structure dimension. Instead of utilizing the
root finding algorithm, which can be called several times
for each discretized value of the additional parameter, a root
tracing algorithm can be used. Recently, the authors developed
a self-adaptive complex root tracing algorithm which was
successfully utilized to the analysis of various electromagnetic
problems [19]. The algorithm was a modified and enhanced
version of the algorithm [20]. This approach creates a curve
in C x R space representing a path of the root as a function
of another parameter, and it is generally more efficient and
produces results in a fraction of the time the finding algorithm
takes to run. The only drawback of this solution is the
possibility of tracking a single root. In the case when the
traced characteristic splits or when two separate characteristics
are closely located or cross, the algorithm may loose the
correct path or mix the characteristics. Thus, the obtained
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Fig. 1. Regular tetrahedron in C X R space and chain of regular tetrahedrons
representing the searched curve.

characteristic (from this critical point) is the only one of the
possible solutions that we get as a result of the algorithm’s
operation and the user has no influence on the choice of the
specific solution in the current version of the algorithm.

In this communication, we show that the resultant traced
path, which is shaped by the existence of critical points (such
as splits or path crossing), depends on the parameters of the
tracing algorithm and their choice can be used to obtain all
possible solutions.

II. FORMULATION OF THE PROBLEM

In order to track a single root of the function F(z,t) = 0,
its initial value (for initial value of parameter t) needs to be
found. One can use several different root finding algorithms for
this task. Below, a brief summary of the utilized root tracing
algorithm [19] is presented.

When the initial root value is calculated, the root tracing
algorithm [19] establishes a triangle on the complex plane in
which the root is located. The size of this base triangle is
depended on the assumed accuracy. Next, taking into account
the assumed step of the parameter for which the root is
traced, three additional triangles are built, which form an
initial tetrahedron (see Fig. la). In each iterative step, a new
outgoing root value is searched on each new face of the
tetrahedron. A face, on which a new root value is found,
becomes the next base triangle and three new triangles are
built forming a new tetrahedron. The procedure is repeated
until the entire root characteristic is obtained in the assumed
range of the additional parameter producing the tetrahedron
chain (see Fig. 1b).
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Fig. 2. The orientation of the initial triangle on the complex plane.

The algorithm works very efficiently when the traced
characteristic has a single path form. However, when the
characteristic bifurcates, a second root appears in the area
surrounded by a tetrahedron, and the algorithm needs to be
modified to take account of this change. Multiple roots may
be localized on the same face or be on separate faces of the
tetrahedron.

In the original algorithm, Cauchy argument principle in-
volving the evaluated points at the edges is used. The function
values (at the edges) are iteratively evaluated until a single root
is detected and then the algorithm automatically advances to
the next tetrahedron. It is then possible to detect multiple roots
on any face of a tetrahedron. However, it is not obvious that
these roots can be found simultaneously from the evaluated
set of points. If multiple values of the root are found, the
algorithm can remember the detection, proceed with a single
root tracing, and return to the second root after completing
the first path. However, the algorithm is not suited to look
for multiple values of roots in a single tetrahedron due to the
lack of termination condition - a single outgoing root value in
the tetrahedron is guaranteed and the search of another would
require the addition of an infinitely large number of evaluated
points without the knowledge of its existence.

In this communication, we show that the introduction of
the additional algorithm parameter can influence the shape
of the root path. In the algorithm [19] the user defines the
starting point (zg,%p) and the length of the initial triangle
edge Ar as a single analysis parameter, which corresponds to
the accuracy of the obtained characteristic. The starting point
is surrounded by the initial triangle, which forms the basis
of the initial tetrahedron. The orientation of this triangle on
the complex plane was fixed (one of the edges was parallel
to the real axis for ¢ = tp). This assumption was justified
because any modification of the triangle orientation does not
change the shape of the obtained characteristic in the case
where no critical points are present — only the configuration
of the tetrahedrons inside the chain can be slightly different.
However, this orientation can be crucial when the critical
points appear along the path. In such a case, this may cause
the algorithm to take a different path after passing the critical

Fig. 3. Cross-section of coaxially loaded cylindrical waveguide.

point.

Therefore, the introduction of the additional algorithm pa-
rameter v (see Fig. 2)., which represents the rotation of the
initial triangle in the range from 0° to 120°, allows one to
obtain all possible root paths. However, the determination of
all possible paths requires multiple calls of the algorithm for
different values of angle 1. The number of required algorithm
calls for different values of 1) depends on the path complexity
and the range of the analysis. The conducted analyzes showed
that the bisection method may be useful in sequence selection
of ¢ angle: 0°, 60°, {30°, 90°}, {15°, 45°, 75°, 105°} etc.
In order to confirm the detection of all possible paths, the
additional root searching analysis [21] can be performed, for
a few cross-sections (for chosen values of ¢ = const).

III. RESULTS

The analyzed example considers tracing of the propagation
coefficient of a mode in a coaxially loaded cylindrical waveg-
uide. This example has already been discussed in [19] (see
Fig. 3). The inner rod relative permittivity is €, = 10 and
the structure dimensions: inner radius ¢ = 6.35 mm and outer
radius b = 10 mm. The structure is modeled analytically and
the mode matching technique is utilized to build the function
F(z,t) = 0, where z is the propagation coefficient and ¢
represents the frequency. The analysis was performed in the
frequency range from 1 to 7 GHz. The value of the initial root,
which corresponds to the propagation coefficient v = 2.172,
was calculated by the standard root finding algorithm [21]
at f = 7 GHz with accuracy § = 10712 (the region
Q={zeC:—-0.5<Re(z) <0.5A1.8 <Im(z) < 2.6} was
considered - see. Fig. 4a). The tracing routine was performed
with a resolution step Ar = 0.01 with frequency normalization
to 1 GHz.

By changing value of v of the initial triangle (see Fig. 4b),
we obtain four separate mode characteristics as presented
in Fig. 5a. The final combined characteristic presented in
Figs. 5b-d is a result of four separate tracing routines.

IV. CONCLUSIONS

The introduction of the additional algorithm parameter can
influence the shape of the traced root path. Its proper choice
allows for the evaluation of all possible characteristics, which
are the result of the presence of critical points. The proposed
modification extends the capabilities of the algorithm.
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Fig. 4. A phase portrait of the function is placed in the background to clarify

the idea of triangle arrangement depending on the initial angle.

(1]

(2]

(3]

(4]

(31

(6]

REFERENCES

F. Mesa, G. Valerio, R. Rodriguez-Berral and O. Quevedo-Teruel,
”Simulation-Assisted Efficient Computation of the Dispersion Diagram
of Periodic Structures: A comprehensive overview with applications
to filters, leaky-wave antennas and metasurfaces,” IEEE Antennas and
Propagation Magazine, vol. 63, no. 5, pp. 33-45, Oct. 2021.

F. Gasdia and R. A. Marshall, ”A New Longwave Mode Propagator for
the Earth—Ionosphere Waveguide,” IEEE Transactions on Antennas and
Propagation, vol. 69, no. 12, pp. 8675-8688, Dec. 2021.

M. Warecka, R. Lech and P. Kowalczyk, "Hybrid Method Analysis of
Unshielded Guiding Structures,” 2020 23rd International Microwave and
Radar Conference (MIKON), 2020, pp. 398-401.

F. Mesa, R. Rodriguez-Berral, F. Medina, ”On the Computation of
the Dispersion Diagram of Symmetric One-Dimensionally Periodic
Structures,” Symmetry, 2018, 10, 307.

M. Warecka, R. Lech and P. Kowalczyk, “Propagation in the Open
Cylindrical Guide of Arbitrary Cross Section With the Use of Field
Matching Method,” IEEE Transactions on Antennas and Propagation,
vol. 66, no. 6, pp. 3237-3240, June 2018.

E. L. Tan and D. Y. Heh, ”Application of Belevitch Theorem for
Pole-Zero Analysis of Microwave Filters With Transmission Lines
and Lumped Elements,” IEEE Transactions on Microwave Theory and
Techniques, vol. 66, no. 11, pp. 4669-4676, Nov. 2018

1,=120°

f(GHz)
<) N N B~ D [s:]
o
|
f(GHz)
o) N N ES (=] o]
o
t
\ I
>

10
0 0
8 10 3 10
(a3 (a9
3= 90" 4,=30°
8 8
8 6
I B
o o
T2 T2
2 2
0 . 0 S
s 20 0 10 s 2 0 10
£ £
(a3 (a9
8 u2=so“
7 Y, =120°
6 1, =30°
5 ty =90
N
I
Q4 N\
3 \
2 }\
1 \
2 -
0
_
2 5 10
3 0
3 10 5
(8]
c) d)
10
5 _
. /
1 [
|
s 0 S © 0 f
-1
5
2
-10 : : : ‘ : : ‘
2 4 6 8 2 4 6 8

f(GHz) f(GHz)

Fig. 5. Propagation coefficient characteristics of the analyzed example: a)
separate characteristic components, b) combined characteristic, ¢) real axis
projection and d) imaginary axis projection.
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