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Abstract: Basic elastic constants (Young’s modulus, Poisson’s ratio, shear modulus) were
determined for several monocrystalline, metallic (Ni, Cu, Pt, Au) nanorods using molecular
dynamics with the Sutton-Chen force field. Stress-strain curves were also calculated and
discussed.
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1. Introduction

The experimental techniques available today do not allow detailed insights
into the structure and properties of individual nanostructures. An additional prob-
lem in experimental studies is the fact that it is very difficult to obtain a specific
nanostructure of a predetermined size and configuration of atoms in a reproducible
manner, which hinders an unambiguous interpretation of repeatable measurement
results. As a result of the above, computer simulations constitute an extremely
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98 M. Białoskórski and J. Rybicki

useful research tool. While results obtained with ab initio approaches, at least
in principle, reproduce reality most closely, their poor scaling properties mean
they quickly become impractical with increasing number of atoms. The need
for a computationally-efficient and correct prediction of the properties of vari-
ous nanostructures is the reason why fast simulations employing empirical force
fields are a particularly convenient tool, especially for the calculation of mechan-
ical properties, where the accurate knowledge of the electronic structure is not
essential.

The mechanical properties of nanorods are determined from the normal
modes of the rod [1] or from the deflection of a rod fixed at one or both sides [2, 3].
Current methods for manufacturing nanorods do not allow obtaining nanorods
with preset parameters [1, 2, 4, 5]. These difficulties are the reason why research
is predominantly done by means of numerical experiments [6–10]. The above-
mentioned works deal with specific, single systems.

This paper presents the results of systematic molecular dynamics (MD) sim-
ulations of mechanical properties of selected metallic (Cu, Ni, Au, Pt) nanorods.
The calculations of elastic properties were performed for small strains and homo-
geneous stresses. Such states can be achieved only in two cases – during uniaxial
stretching of a cylindrical rod along the axis, and under pure shear. The mechan-
ical properties of crystalline systems with regular structure (sc, fcc, bcc) are fully
described by three independent material constants, such as, for instance, Young’s
modulus, shear modulus and Poisson’s ratio. The plastic properties were stud-
ied across the entire range: from the yield point to the fracture of the sample.
Instantaneous values of relevant physical quantities were densely sampled in the
course of a molecular dynamics simulation, and the quoted macroscopic mechan-
ical properties were obtained by appropriate temporal and spatial averaging.

The paper is structured as follows. The employed simulation method,
including estimates of the uncertainty of the numerical results will be described in
Section 2. Results will be described and discussed in Section 3. A brief Section 4
contains conclusions.

2. Simulation method and its accuracy

2.1. General characteristics of simulations

All the numerical experiments were performed at a temperature of 300K
(a Nose-Hoover thermostat [11, 12] was employed), using the Sutton-Chen poten-
tial [13]:
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developed for densely packed (fcc) metals. In (1) c is a dimensionless parameter,
ε is a parameter with dimension of energy, a is the lattice constant, and m and n
are positive integers with n >m. Two methods to determine the parameters of
the potential are in use. The first of these consists in adjusting the parameters in
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such a manner that the selected properties of the modelled material should match
experimentally obtained values. This method is limited by the small number of
properties that can be accurately determined from experiment. Moreover, it is
difficult to determine the properties under extreme conditions. A more convenient
method to use, which moreover yields better results, consists in determining the
parameters of the potential by fitting to the properties of the material determined
from quantum-mechanical calculations. By employing quantum-based calculations
it becomes possible to determine the parameters for a larger number of cases. The
parameters used in the present simulations are summarized in Table 1. These are
the parameters calculated in part by comparing the characteristics of crystals with
the calculations carried out by quantum-mechanical methods [14].

Table 1. Parameters of the SC potential for the species under study

element ε [eV] a [Å] n m c

Ni 7.3767·10−3 3.5157 10 5 58.693
Cu 5.7921·10−3 3.6030 10 5 84.843
Au 7.8052·10−3 4.0651 11 8 53.581
Pt 9.7894·10−3 3.9163 11 7 96.524

The nanorods subjected to numerical experiments were straight and free
of defects. In most cases their length was much larger than the diameter. One
simulation run comprised the following steps:

– selecting the parameters of the potential of interatomic interactions corre-
sponding to the crystal structure and the element;
– building the initial atomic configuration;
– application of external load;
– sampling (the method and frequency of recording specific observables).

The subsequent steps in the creation of the selected initial atomic structure
included the following:

– generating a geometrically ideal (theoretical) crystal structure;
– relaxing the unconstrained system (i.e. in the absence of fixing);
– reading the new lattice constants;
– creating an ideal geometric structure with the new lattice constants;
– relaxing the system with the ends immobilized.

Relaxation was conducted until the system energy stabilized at a constant
level. The course of an example relaxation of the system is shown in Figure 1.
The samples prepared in this fashion were free of any structural defects, and any
stress resulting from the changes in the interatomic distances (compared to the
bulk crystal) was relaxed.

The loading of the samples was realized by the application of a constant
velocity (parallel to the axis of the rod, z) to the sample ends. This corresponds to
a constant strain rate, which in turn is equivalent to a constant rate of increase of
the force. By loading the sample in such a way, shock load which could otherwise
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100 M. Białoskórski and J. Rybicki

Figure 1. The course of an example nanorod relaxation (rod Au-111-10)

lead to undesirable effects such as vibrations or cracking is eliminated. The details
of how the sample was fixed and loaded are discussed in the next chapter.

Saint-Venant’s principle states that if a given system of forces acting on
a small region of an elastic body (which is in the state of equilibrium) is replaced by
another statically equivalent system acting directly on this region, the differences
in stress, deformations and displacements at a certain distance from the point of
application of the forces, originating from both load cases are arbitrarily small
(i.e. the impact of the acting forces is averaged).

In the strength of materials it is assumed for rod stretching that it is only at
a distance comparable to the rod diameter that the stress field becomes uniform,
regardless of how the force is applied to the ends of the rod. In order to remove the
possible ways of immobilizing the nanorod ends and the various possible ways to
apply the forces and the corresponding nonuniformities of the stress field related
thereto from the analysis, rather than fixing the ends in the common sense of
the word, we set the relative positions of the last several layers of atoms in the
nanorod and applied a constant velocity to the entire nanorod ends. The thickness
of the region where the above approach was employed extended over 2–3a.

The external force applied to the end of the rod should be smaller than the
sum of the forces binding the end with the rod, i.e. the component parallel to the
external force being the sum of the interatomic forces responsible for fixing the
nanorod. The fact that the magnitude of the thermal motions of atoms exceeds
that of the linear motion of the ends makes the vibration amplitude of the whole
end larger than the linear step. This is a substantial hurdle in the analysis of data.
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All the simulations of nanorods also included the range of plastic strains.
The processes occurring in the plastic strain range were carefully analysed by
tracking the displacements of atoms with respect to their initial position in the
crystal lattice and to the neighbouring atoms. Thus, it was possible to observe
the onset and development of slips in stretched and compressed nanorods.

The properties of a nanorod are affected by the cross-sectional shape, size,
the arrangement of crystallographic planes with respect to the surface and the
cross-section, the details of the surface, porosity, and any deviation from the ideal
crystal lattice, and, finally, the element of which the nanorod is built. A large
number of factors affecting the variability of mechanical properties renders it
necessary to determine the conditions when the variability of the properties is
negligible, when all the calculations have a simple form with one variable.

The values obtained by simulation of the plastic range are presented in
three ways:

– limit strain (yield point) as a function of the nanorod radius; the adopted
parameters were the crystallographic plane and the direction of strain
(Figure 2);
– limit stress (yield point) as a function of radius for each element and
each crystallographic plane, the adopted parameter was the nanorod radius
(Figure 3);
– stress as a function of strain (stretch graphs); the assumed parameter was
the crystallographic plane (Figure 4).

2.2. Determination of elastic constants

2.2.1. Determination of Young’s modulus

The basic measure characterising the mechanical properties of a material
undergoing elastic strain is Young’s modulus, Y , indicating the susceptibility of
the material to the change of interatomic distances under the applied load.

Young’s modulus (and the yield point) were determined from the course of
stretching and compression of relaxed samples. The simplest form of the stress-
strain relation is Hooke’s law for a uniform, uniaxial stress field:

σ(ε)=Y ε (2)

where σ – stress, ε – strain. The simulations were carried out until the fracture
of the material occurred. A detailed analysis of the results was carried out until
dislocations appeared and the corresponding decrease of the internal energy of
the sample was observed.

For the range wherein the phenomenon is linear, in order to make a com-
parison with the macroscopic equivalents of Young’s modulus, a straight line must
be fitted to the results of the numerical experiment, as shown in Figure 5. Young’s
modulus for the case of compression (Y−) and stretching (Y+) was determined in
this way.
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Figure 2. Limit strain (yield point) of the nanorods depending on the radius
and the crystallographic orientation of the cross section
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Figure 2 – continued. Limit strain (yield point) of the nanorods depending on the radius
and the crystallographic orientation of the cross section
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Figure 3. Limit stress (yield point) of the nanorods depending on the radius
and the crystallographic orientation of the cross section
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Figure 3 – continued. Limit stress (yield point) of the nanorods depending on the radius
and the crystallographic orientation of the cross section
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Figure 4. Effect of the crystallographic orientation of the nanorods D=14a in diameter
on the course of deformation
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Figure 4 – continued. Effect of the crystallographic orientation of the nanorods D=14a
in diameter on the course of deformation
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Figure 5. Determination of Young’s modulus from the relation σ(ε)

2.2.2. Determination of Poisson’s ratio

Poisson’s ratio characterizes the transverse strain, and for anisotropic
systems it depends on the crystallographic directions [15–18]. In fcc crystals,
where the stretching occurs in the [110] direction, εx 6= εy. In this case the
determined value is the averaged Poisson’s ratio.

In all cases the transverse strain was calculated from the change in the
averaged radius of the rod, R, relative to the initial radius R0:

ν= εr/εz (3)

where:
εr = ln

(

(R−R0)/R0
)

(4)

Poisson’s ratio was determined directly from the definition, from the dependence
of the transverse strain on the longitudinal strain. When the strains are linearly
related, Poisson’s ratio is equal to the slope. The value of Poisson’s ratio deter-
mined in this way depends on the linearity range of εt(εr) (cf. Figure 6).

2.2.3. Determination of shear modulus

Shear occurs during the torsion of the rod, in the absence of bending and
tensile stresses. The shear modulus, G, also called Kirchhoff’s modulus, is used to
determine the degree to which the material resists such strain. The shear modulus
for anisotropic systems is measured for a particular plane along which the shear
takes place and for a direction of the applied force or torque.

According to the Cauchy-Born hypothesis, the strain of the entire crystal
can be mapped to the edges of unit cells, while the displacement of atoms
associated with the face centres is due to the strain of the entire face as a result
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Figure 6. Determination of Poisson’s ratio from the relation εt(εr)

of the motion of the edges. Under laboratory conditions the shear modulus for
massive bodies is determined from the torsion of the rod in a static test in which
it is possible to achieve a high accuracy of the measurement.

A different method to determine the shear modulus – from the frequency of
torsional vibrations of the rod – was employed during the numerical simulations.
After twisting the rod, one of its ends was released and the frequency of the
generated torsional vibrations was examined. The shear modulus was calculated
using the formula for the fundamental frequency of torsional normal modes of the
rod:

f =
1
4L

√

G

ρ
(5)

from which the expression for the shear modulus was obtained:

G=16L2f2ρ (6)

The experiment consisted in twisting the sample by an angle for which an increase
in the internal energy was visible, whereupon one of the ends was released. The
frequency of torsional vibrations was determined from the period of the oscillations
of the internal energy (see Figure 7).

2.2.4. Propagation velocity of mechanical waves

In order to determine the propagation velocity of mechanical waves, the
nanorod was stretched by 4%. The release of one of the ends allowed a stepwise
decrease the applied force to zero. The moment when the force dropped to zero at
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the other, fixed end of the rod was assumed as the moment when this information
reached the other end. A plot of the magnitude of the force at the fixed end of
the rod is shown in Figure 8.

Figure 7. Internal energy of the system during torsional vibration. Example for rod Au-001-7

Figure 8. Magnitude of the force acting at the fixed end following the release of the second
end, an example for a gold nanorod 208Å long
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The propagation velocity for a mechanical wave travelling in the rod is found
from the length of the rod and the propagation time. Table 2 shows the velocities
obtained for the rods under study. The propagation velocities obtained in this
way were the basis for the validation and possible adjustment of the adopted
computational parameters, such as the time step or rate of load increase.

Table 2. Velocity of sound for various nanorods

orientation of diameter of length of soundlabel
the cross-section the sample [Å] the sample [Å] velocity [m/s]

Au-001-10 (001) 80.2 208.7 1807
Au-011-10 (011) 80.2 208.7 1939
Au-111-4 (111) 31.2 209.3 2490
Au-111-7 (111) 57.6 209.3 2543

Cu-001-10 (001) 71 185.8 2813
Cu-011-10 (011) 71.2 185.8 3205
Cu-111-10 (111) 71 181.4 4258
Cu-111-4 (111) 27.8 186.4 4020
Cu-111-7 (111) 49.2 186.4 4127

Ni-001-10 (001) 69.2 177.0 3342
Ni-011-10 (011) 69.4 176.0 4285
Ni-111-10 (111) 69.2 182.0 5029

Pt-111-4 (111) 30.2 202 3338
Pt-111-10 (111) 77.2 202 3394

2.3. Accuracy of calculations

The determination and quantification of the reliability of computer simula-
tions is known as verification and validation (V&V). Validation is determining the
accuracy with which a mathematical model describes the modelled phenomenon.
Verification is determining the accuracy with which the computational model
represents the mathematical model. Validation ensures the correct equations are
solved, while verification ensures these equations are solved correctly [19].

The V&V process can be divided into sections relating to the model
and those referring to the data. Validation of the model is the evaluation
of the assumptions and methods of representing the problem and testing the
model in operation, while verification is the examination of the correctness of
implementation. Validation of data is aimed at ensuring that the data used in the
model are correct.

In the case of nanostructures it is not possible to conduct V&V to the
full extent as the experimental data are subject to considerable uncertainty, in
the order of 50%. Comparison against the results of other calculations, which are
equally not physically verified, constitutes neither validation nor verification.

The extent of the uncertainty of the results obtained from computer
simulations is affected by such factors as:

– the constructed physical model;
– the employed mathematical model;
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– the accuracy of the employed numerical methods;
– statistical error;
– repeatability of the simulation.

The employed integration step allowed obtaining stable solutions, and the
applied potentials describe the interatomic forces sufficiently well. The statistical
error of the obtained results is due to:

– the uncertainty of the geometry measurement;
– the thermal vibrations of the structure.

The thermal vibrations of the structure are a natural phenomenon involving
the fluctuations of the measured magnitudes of forces, velocities and positions
of atoms. The uncertainty of a calculated value is due to the statistical error
committed when averaging the measured parameters of the system or when fitting
a functional form to the observed variation of these parameters.

The maximum statistical error, U , observed when determining Young’s
modulus, resulting from the fitting of a linear relationship to the calculated
variation of energy in the function of strain was:

UY =10% (7)

and the corresponding value for Poisson’s ratio:

Uν =6% (8)

In addition to the thermal vibrations, the uncertainty in the measurement of the
geometry is also affected by the deviation of the sample shape – a cylinder in
the case of the samples under study – from the nominal shape. While the length
of the structure can be measured accurately, since it is measured as the distance
between the ends that are not subject to any thermal vibration, the diameter
of the structure’s cross-section is not the same in every direction as is seen in
Figure 9. The maximum measurement error of the cross section radius was:

∆R/R=2% (9)

Due to the fact that the measured properties also depend on the radius,
the effect of this uncertainty should also be taken into account:

∆Y/Y =2∆R/R+UY =14% (10)

∆ν/ν=∆R/|R−R0|+∆R0/R0+Uν (11)

The uncertainty in the measurement of ν is inversely proportional to the difference
R−R0, which results in a substantial uncertainty in ν at small strains. For
instance, for a strain εt=0.02 ∆ν/ν|εt=0.02=20%.

The measurement uncertainty of the shear modulus G is related to the
accuracy of determining the torsional vibration period and the sample density.
The torsional vibration period was determined from 8 periods with an accuracy
of up to 1/4 of a period. This gives a relative error in the vibration period of 1/32,

tq116l-g/112 3I2013 BOP s.c., http://www.bop.com.pl

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Nanomechanical Properties of Metallic fcc Nanorods . . . 113

Figure 9. Cross-sections of the nanorods for diameters of 5a, 8a, 14a, 20a. The cross-sections
lie in the (001), (011) and (111) planes, respectively

i.e. ∼ 3%, which, following the inclusion of the 4% uncertainty in the density
associated with the uncertainty of determining the sample diameter, leads to:

∆G/G=7% (12)

The repeatability of the obtained results was verified by comparing the results
of several selected simulations with different initial velocities of atoms. The
differences in the values of the determined mechanical properties were below
the margin of error. The only values exceeding the statistical error of a single
measurement were the limit stress σcr and the limit strain εcr of the nanostructure.
The range of the obtained results was 20%:

U(εcr)= 20% (13)

which was caused by the dependence of onset of the slip on the thermal fluctua-
tions of atoms.
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Table 3. Uncertainties in the determined values describing mechanical properties

parameter uncertainity

Y 16%
ν 20%
εcr 20%
G 7%

Table 3 shows the upper estimate of the uncertainty in the determined
mechanical properties of the nanostructures.

3. Results and discussion

The numerical experiments were conducted on nanorods with an fcc struc-
ture that were free of dislocations. The highest possible degree of packing (74%) is
the reason why under load it did not reconstruct into other, more densely packed
structures.

The tested nanorods were circular in section, made of nickel, copper, plat-
inum and gold. The numerical experiments were performed for crystallographic
planes related to the directions of easiest slip, 〈011〉 and 〈111〉, and for the basal
directions 〈001〉.

The cross-section of the nanorods under study was chosen to be circular
in order to reduce the effect of the planes forming the surface on the results of
the experiments. The surface for such a cross-section is formed by many different
crystallographic planes parallel to the nanorod axis.

In this way, different nanorods could be compared with no need for separate
analysis of the effect of the crystallographic directions on the surface of the side
walls [20]. The choice of a circular cross-section was also dictated by the fact
that all the nanorods also have circular cross-sections [21]. Finally, the minimum
surface energy condition [22] also favours a circular cross section.

The geometric characteristics and the obtained results for nanorods sub-
jected to numerical experiments are summarized in Tables 4 to 7. The diameter
of a nanorod resulted from the shape, size and number of lattice constants mea-
sured in the plane perpendicular to the axis. The number of lattice constants
was selected so that the cross-section would maximally fill a circle circumscribed
on a given number of cells. The linear dimensions of the samples in the above-
mentioned tables were taken as a multiple of the lattice constant in order to
facilitate comparison between results obtained for nanorods composed of differ-
ent elements and for different crystallographic directions. All the samples were
50 lattice constants long, and the diameter of the rods was taken as 3-, 5-, 8-,
14- and 20-multiple of the lattice constant. The experiments were carried out on
samples prepared in such a way that the nanorod cross-section coincided with one
of the selected crystallographic planes: (001), (011) or (111). All this information
is contained in the label, which was constructed as follows: X-(hkl)-R, where: X
denotes the element (Au, Ni, Cu, Pt), (hkl) denotes the crystallographic plane
perpendicular to the nanorod longitudinal axis, and R is the nanorod radius.
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3.1. Young’s modulus

Young’s modulus was studied for nanorods 3a, 5a, 8a, 14a and 20a in
diameter. Figure 10 shows the results obtained using the nanoMD program.

The values of Young’s modulus for compression and stretching as a function
of the radius of the sample for each of the elements under study and for each of
the analysed crystallographic planes are shown in Figure 10.

The calculations were performed according to the formula:

Y =
1
V0

∂2E

∂ε2
(14)

whereby a parabola was fitted to the measured cohesive energy, Ep(ε), in the
range of −0.03<ε< 0.03.

The dependence of Young’s modulus on the sample diameter is noticeable
for samples smaller than 10a in diameter. This is due to the surface tension effect.

Further discussion of the results will concern rods 14a in diameter. Starting
from this diameter there is no significant effect of the surface tension on the
properties of the tested material. Samples 20a in diameter will be excluded from
further analysis because of the possible effect of the fastenings on the mechanical
properties, as the D/L ratio was as high as 0.4, irrespective of the fact that
such effect was not observed. The obtained values, denoted by Y , are shown in
Figure 11.

Irrespective of the building material, and the direction of the load, Young’s
modulus had the greatest value for the [111] direction and the smallest value for
the [001] direction:

Y (001)<Y (011)<Y (111) (15)

A deviation from this behaviour was observed in the case of gold nanorod
stretching where Y (011) was smaller than Y (001). Nonetheless, due to the accuracy
of determining this value being 6%, this is exception is within the margin of error.

The following relations were observed for all nanorods during compression:

Y
(001)
− ≈ 0.5Y (011)− ≈ 0.4Y (111)− (16)

while the relations during stretching were:

Y
(001)
+ ≈Y

(011)
+ ≈ 0.5Y (111)+ (17)

This demonstrates the variability of loading in the [011] direction depending on
whether stretching or compression was performed. Furthermore, by analysing
the ratio of Young’s modulus for compression to that of stretching in the same
direction:

Y
(001)
− /Y

(001)
+ ≈ 0.8

Y
(011)
− /Y

(011)
+ ≈ 1.5

Y
(111)
− /Y

(111)
+ ≈ 1.0

(18)

we observe a symmetry of Young’s modulus for the [111] direction and the
largest disproportion for the [011] direction. This is related to the number of
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Figure 10. Dependence of Young’s modulus on the radius and on the crystallographic
orientation of nanorods
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Figure 10 – continued. Dependence of Young’s modulus on the radius
and on the crystallographic orientation of nanorods
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(a)

(b)

Figure 11. Values of Young’s modulus for rods with a diameter D=14a:
(a) during compression, (b) during stretching
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nearest neighbours in the plane perpendicular to the direction of loading, as the
mechanical properties are affected by the local arrangement of atoms, that is,
inter alia, the distance to the nearest neighbours.

If the strain of the sample does not result in changes in all distances to the
nearest neighbours, and the varying distances change in an identical way, then the
sample will be characterised by a symmetrical load curve σ(ε), and the mechanical
properties of the sample will be independent of whether the load corresponded
to compression or stretching. The [111] direction behaves in this way, while the
(011) plane has only two nearest neighbours, and the distances to other neighbours
change unevenly during straining. The load curves σ(ε) are shown in Figure 4.

Due to the variability of the slope of the curves σ= f(ε), which can be seen
in Figures 4, Young’s modulus is a material constant:

– for stretching in the [001] direction;
– for compression in the [011] direction;

while for

– compression in the [001] direction;
– compression and stretching in the [011] direction;
– stretching in the [111] direction

it is not possible to speak about Young’s modulus as a material constant, since
Y =Y (ε), dσ/dε 6=const.

Table 8 summarizes the values of Young’s modulus obtained in the numer-
ical simulations carried out on rods 14a in diameter for each of the investigated
directions and the values calculated according to the formulas:

– for the directions 〈001〉:

Y (001)=
1
s11

(19)

– for the directions 〈011〉:

Y (011)=
4

2s11+2s12+s44
(20)

– for the directions 〈111〉:

Y (111)=
3

s11+2s12+s44
(21)

for the elastic constants contained in Table 9.
For each of the elements it is possible to determine the parameters of the

polynomial functions describing the relation σ(ε). In the strain range of −0.01<
ε< 0.01 a first-order polynomial describes the σ(ε) curve with an error below 10%,
similarly for a second-order polynomial in the range of 0.08εcr−<ε< 0.08εcr+ and
for a cubic in the entire range of elastic strain εcr−<ε<εcr+.

3.2. Poisson’s ratio

We will use the following notation: εt – the strain along the nanorod
(longitudinal strain) parallel to the applied load, εr – the transverse (radial)
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strain, perpendicular to the direction of the applied load. The values of Poisson’s
ratio, νt, νr, ν− and ν+ referring to compression and stretching of the sample,
respectively, were determined in a similar way.

Table 10 shows Poisson’s ratio obtained from calculations using the nanoMD
program for rods 14a in diameter (“simulation result” column) compared with
the calculations performed using the elastic constants from Table 9.

Poisson’s ratio was determined from the changes in the nanorod radius for
strains of −0.02<ε< 0 for compression and 0<ε< 0.02 for stretching according
to the method described in Section 2.2.2.

For the force acting along the [001] and [111] directions Poisson’s ratios
were constant, regardless of the strain directions which were perpendicular to the
direction of force. However, for straining in the [011] direction, the biggest change
in diameter occurred only in the [001] crystallographic direction and there was no

visible change in the rod diameter ν(011)r =1, ν(001)r =0 for the [011] direction. This
is a consequence of the asymmetry of Young’s modulus for these directions (16) –
the [001] direction undergoes greater strain than the [011] direction at the same
radial stress.

Due to the fact that the materials are usually defined by a single parameter,
the value ν(011) was calculated as an average of the full range of the angle of
rotation around the rod axis.

In all cases Poisson’s ratio was the highest for the [001] direction and the
lowest for the [111] direction:

ν(001)>ν(011)>ν(111) (22)

which is shown in Figure 12. These inequalities are reversed when compared to
analogous inequalities for the value of Young’s modulus (15). This means that
the strain in the direction with lower Young’s modulus results in a greater change
in the sample’s diameter than the strain in the direction characterised by higher
Young’s modulus.

In contradistinction to the relation for Young’s modulus (16) and (17), the
relation for Poisson’s ratios between the directions depends on the element of
which the sample is composed.

The following is observed for nickel and copper:

ν
(001)
− ≈ 1.4ν(011)− ≈ 1.6ν(111)−

ν
(001)
+ ≈ 1.2ν(011)+ ≈ 1.6ν(111)+

(23)

while for platinum and gold:

ν
(001)
− ≈ 1.2ν(011)− ≈ 1.3−ν(111)−

ν
(001)
+ ≈ 1.2ν(011)+ ≈ 1.4ν(111)+

(24)

Furthermore, for the strain directions [011] and [111]:

νNi<νCu<νPt<νAu (25)
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(a)

(b)

Figure 12. Values of Poisson’s ratio for rods D=14a in diameter: (a) during compression,
(b) during stretching
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which shows the effect of the density and the material on Poisson’s ratio. Atoms
of a less dense medium have more space to move, and therefore strain in the given
direction results in less strain in the perpendicular plane than in a denser medium.

The lack of clear stabilization of Poisson’s ratio with the increasing sample
diameter can be seen in Figure 13 showing the value of ν for compression and
stretching as a function of the rod radius expressed in lattice constants a. This is
due to the error of ±10% in the determination of the value.

All the test samples subjected to a compressive load acting in the [001]
direction showed values of ν greater than 0.5. This demonstrates the increasing
volume of the nanorod during compression and cannot be justified on the grounds
of classical mechanics. This is not an effect of the larger rod diameter relative to
length as it persisted for all the tested diameters. It is evident from Figure 14
showing the dependence of the change in the sample radius (transverse strain εr)
on longitudinal strain εt, that the curve slope increases with the increasing strain,
which means that Poisson’s ratio increases with increasing strain.

Figure 14. Dependence of the transverse strain εr on the longitudinal strain εt for the
compression of gold nanorod in the [001] direction

3.3. Shear modulus

The shear modulus was determined from the frequency of torsional vibra-
tion of the rod according to the Formula (5). The results obtained in this way
determine the average value of the modulus from all the directions perpendicu-
lar to the axis of the rod. For that reason, in order to determine this value it
is sufficient to indicate the adopted crystallographic orientation of the nanorod
cross-section.
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Figure 13. Dependence of Poisson’s ratio on the radius and crystallographic orientation
of the nanorods
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Figure 13 – continued. Dependence of Poisson’s ratio on the radius and crystallographic
orientation of the nanorods
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Table 11 shows the results of a series of tests for different diameters and
different crystallographic orientations of a nanorod made of gold. Since the value
of the shear modulus does not depend on the nanorod diameter, or its effect
is within the margin of error, the modulus for other samples was determined
based on simulations performed for one diameter – 14a. The results for the tested
nanorods are presented in Figure 15.

Table 11. Values of the shear modulus G (GPa) for gold nanorods

label orientation diameter [a] frequency [GHz] modulus G [GPa]

Au-001-2.5 (001) 5 17.8 50.8
Au-001-4 (001) 8 19.3 53.8
Au-001-7 (001) 14 20.0 53.6
Au-001-10 (001) 20 20.2 53.9

Au-011-2.5 (011) 5 12.8 24.9
Au-011-4 (011) 8 14.9 32.4
Au-011-7 (011) 14 14.9 29.7
Au-011-10 (011) 20 15.1 30.3

Au-111-2.5 (111) 5 13.2 27.7
Au-111-4 (111) 8 14.0 28.0
Au-111-7 (111) 14 14.3 27.9
Au-111-10 (111) 20 14.5 28.3

Figure 15. Dependence of the shear modulus on the crystallographic orientation
of the cross-section for nanorods 14a in diameter

A characteristic feature is the twofold difference between the values for the
[001] direction and the corresponding values for the directions [011] and [111], the
latter two being similar in magnitude. This indicates a relationship between the
shear modulus and the shape of the Wigner-Seitz cell.
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Table 12 shows the values of G obtained in the conducted numerical
experiments (columns “simulation”) and the values obtained from the calculations
based on the constants (columns “tables”). The last column gives the shear
modulus for a polycrystalline body.

Table 12. Values of the shear modulus G (GPa) for the investigated nanorods

(001) (011) (111)
element polycrystals

tables simulation tables simulation tables simulation

Ni 124.2 125.4 79.5 58.2 58.9 48.1 76
Cu 75.6 85.4 44.7 39.3 30.1 32.4 48
Pt 76.5 116.4 76.5 57.1 54.8 64.4 61
Au 42.0 53.5 26.2 29.6 18.8 27.5 27

The difference between the values of the shear modulus obtained from
the calculations, and the values determined from the elastic constants shown in
Table 12 is as big as 30%. It is difficult to determine with certainty whether this
is caused by the size of the nanostructures or by the selected calculation method.
In qualitative terms the results are in line with the expectations – the maximum
value of G was obtained for the (001) cross-section.

The values of the shear modulus calculated from the previously defined
Young’s modulus and Poisson’s ratio for nanorods with the cross-sections (001)
and (011) differ by less than 10% from the corresponding values determined from
the frequency of torsional vibrations. The ratios calculated by two different and
independent methods are comparable, which indicates the internal consistency of
the adopted model.

3.4. Propagation velocity of mechanical waves

The obtained propagation velocities of mechanical waves are close to the
sound velocities in polycrystalline solids of 4970, 3570, 2680 and 1740 m/s for
Ni, Cu, Pt and Au, respectively. A weak dependence of the mechanical impulse
velocity on the sample diameter is observed in the obtained results, while there is
a clear dependence of velocity on the direction of signal propagation. An increase
in the velocity with an increase in diameter is due to the decreasing density and
increasing value of Young’s modulus. The noticeable convergence of the values
obtained for nanorods with the sound velocity in bulk metals shows that the
phenomena associated with the transport of mechanical energy proceed similarly
at the nanoscale as in continuous media.

3.5. Yield point

The onset of plasticity associated with the occurrence of dislocation and
transition of the crystal to a lower energy state is clearly visible as a jump in
the sample’s energy curves and as a top of knee on the stretch curves (Figure 4).
The rapidity of this change is associated with achieving a state in which there
is a sudden increase in the number of dislocations and the material becomes
permanently deformed.
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Plots in Figure 2 show the effect of the crystallographic plane and the
direction of the load on the limit strain (yield point) for each of the elements.
Plots in Figure 3 show the effect of the crystallographic plane and the direction
of the load on the limit stress (yield point). A characteristic feature of all the
analysed elements is the stabilization of the limit strain and limit stress values
that is observed starting from the rod diameter of approx. 15a and the irregularity
of this relation for diameters smaller than 8a.

Plots in Figure 4 show, in the form of a stress-strain curve, the investigated
range of strain and the effect of crystallographic planes on the stretching of the
sample. A characteristic feature of these curves is the weak effect of the sample
radius on the elastic strain. Another feature common for all the obtained results
and characteristic for each element is the value of the stress in the region where
the sample deforms permanently – the value is independent of both the diameter
and the crystallographic direction.

Plots in Figure 4 also show that:

1. samples stretched in the [001] direction maintain a constant value of Young’s
modulus over the entire elastic range, from zero to the yield point;

2. samples compressed in the [111] direction maintain a constant value of
Young’s modulus over the entire elastic range, from zero to the yield point;

3. the material becomes more elastic during stretching (Y decreases) with the
strain increasing in the [011] direction;

4. the material becomes more rigid during compression (Y increases) with the
strain increasing in the [011] direction;

5. Young’s modulus of the sample strained in the [011] direction varies over
the entire range of elastic strain, compression and stretch;

6. during stretching in the [011] direction, immediately before reaching the
yield point (ε≈ 0.02÷0.05), the value of Young’s modulus is close to zero;

7. during compression in the [011] direction, immediately before reaching the
yield point (ε≈ 0.02÷0.05), the value of Young’s modulus is close to zero;

8. for the same value ε, the resultant stress in the [001] direction is about
1.5 times lower for compression than for stretching, while for the [011]
direction the resultant stresses are about 2 times higher for compression
than for stretching;

9. the stresses generated during the sample loading in the [111] direction are
similar for compression and stretching.

3.6. Stability of nanorods during compression

Let us assume that the formulas valid for massive bodies apply also to
nanorods. The critical force at which the compressed rod loses stability (buckling)
is determined from Euler’s criterion:

F =
π2Y J

(κL)2
(26)
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where J = πD4/64 – the moment of inertia of a circular cross section; κ – the
coefficient depending on the method of fastening the ends assuming values from
0.5 for rigid fastening of both ends to 2 for a free end. The critical strain can be
obtained from:

εcr−=
(

πD

4κL

)2

(27)

Table 13 contains the values of critical strain for three values of κ: 0.5, 1.0 and
2.0; the nanorod diameter is given in units of crystal lattice constant a; the length
was 50a. Although the values larger than 0.1 have no physical meaning as they
exceed the scope of the linear theory of elasticity, they have not been left out from
the table.

Table 13. Values of critical strain for the investigated nanorods

κ
D[a]

0.5 1.0 2.0

3 0.142 0.036 0.009
5 0.395 0.099 0.025
8 1.011 0.253 0.063
14 3.095 0.774 0.193
20 6.317 1.579 0.395

Permanent deformation of the material begins when the strain reaches
ε≈ 0.05 and it can be seen that for rigid fastening, where κ= 0.5, there is no
buckling for any of the diameters before the yield point is reached. For κ = 1
buckling can occur before the yield point is reached for rods 3a in diameter. If
the loaded end were free, i.e. κ = 2, buckling can occur before the yield point
for nanorods with diameters of 3a, 5a and 8a. The coefficient κ for nanorods
is related not only to the method of fixing the ends, but also to the fact that
thermal vibrations may initiate a loss of stability by leading to deviations from the
equilibrium position. Taking into consideration the uncertainty of whether Euler’s
formula can be directly applied in the discussed situation and that concerning the
value of the coefficient κ to be adopted in the described experiments, a curve
representing the maximum deviation from the state of equilibrium as a function
of strain has been drawn. A hypothetical curve for platinum for the [001] direction
is shown in Figure 16.

The increase in the deflection of the nanorod axis that is apparent in the
graph occurs only when the yield point has been reached, therefore, the stability
is not lost earlier. The increase in the deflection after reaching the yield point is
caused by the onset of slips.

4. Conclusions

The conducted systematic studies of monocrystalline nanorods showed
the effect of the direction of the load on the mechanical properties, while the
corresponding effect of the nanorod diameter was observed only for rods with
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Figure 16. Maximum deviation of the compressed rod axis (platinum, [001] direction)

a diameter below 8 lattice constants. The analysis of the obtained results showed
that Young’s modulus was highest measured in the [111] direction and remained
invariant when the direction of the load was reversed. Its value was lowest when
measured in the [001] direction, in this case it was smaller by a factor of 20 for
compression compared with stretching. For the [011] direction it was 50 times
higher for compression compared with stretching. The values of Poisson’s ratio
and shear modulus were the highest for the load in the [001] direction, and the
lowest for the [111] direction. Beyond the yield point slips were observed in the
planes of densest packing (111), regardless of the direction of the load, and they
always originated from the outer surface of the nanorod.

The described dependence of the mechanical properties of the nanostruc-
tures on the type of load (compression vs. stretching), not considered in the liter-
ature, still requires confirmation by comparison with experiment and with more
accurate (ab initio) computational approaches.

The obtained results reveal that coming up with a correct nanomechanical
model requires the use of different material constants depending on the mechanics
of the system which they describe. As in the case of macroscopic systems, material
constants offer a correct description only for strains below 2%. For strains in the
order of ±80% of the strain required to break the nanostructure, it is sufficient
to use a quadratic function to describe the dependence σ(ε). In the entire range
of elastic strains, the relation σ(ε) can be described by a cubic polynomial (with
an uncertainly below 8%).
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The presented analysis showed that the approaches used in the theory of
elasticity and strength of materials can be used for nanostructures comprising
more than 1000 atoms. However, all the characteristics of the materials should
and may be obtained computationally using MD. A description of the behaviour
of a nanostructure under load may be obtained by strength of materials methods,
while for complicated cases the finite element method can be employed whereby it
becomes possible to create models whose sizes exceed those admitted by particle
methods.
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