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ABSTRACT 

 
Rapid development of diverse computer architectures and hardware accelerators caused that designing 

parallel systems faces new problems resulting from their heterogeneity. Our implementation of a parallel 

system called KernelHive allows to efficiently run applications in a heterogeneous environment consisting 

of multiple collections of nodes with different types of computing devices. The execution engine of the 

system is open for optimizer implementations, focusing on various criteria. In this paper, we propose a new 

optimizer for KernelHive, that utilizes distributed databases and performs data prefetching to optimize the 

execution time of applications, which process large input data. Employing a versatile data management 

scheme, which allows combining various distributed data providers, we propose using NoSQL databases 

for our purposes. We support our solution with results of experiments with real executions of our OpenCL 

implementation of a regular expression matching application in various hardware configurations. 

Additionally, we propose a network-aware scheduling scheme for selecting hardware for the proposed 

optimizer and present simulations that demonstrate its advantages. 
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1. INTRODUCTION 
 

The market of electronic hardware is developing in extreme pace, making sophisticated 

computing devices accessible to households. Research and development departments of hardware 

manufacturing companies compete in designing new architectures and accelerators. HPC (High 

Performance Computing) systems no longer can be considered as sets of very expensive devices 

forming a cluster, physically installed in one room. The HPC field has to deal with increasing 

heterogeneity of the systems and it should be taken into account that the parallelization is 

performed on many levels. We should be able to combine concepts as Grid Computing [1], 

GPGPU [2] and Volunteer Computing [3] into one multi–level parallel design. 

 

Our parallel processing framework KernelHive [13] is able to perform parallel computations on a 

set of distributed clusters containing nodes with different types of computing devices. We 

presented the KernelHive system and its performance capabilities in [4] and proposed an 

execution optimizer focusing on energy efficiency in [5]. This paper is an extended version 

of [14], where we added data intensity capabilities to the KernelHive system. For this purpose we 

proposed MongoDB [6] database as a backend. For our experiments, we used our solution to the 

regular expression matching problem [7]. This allowed to propose a new data prefetching 

optimizer, which we extend  by proposing a network-aware internal scheduler. 
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The outline of this paper is as follows: in Section 2 we formulate the addressed problems by 

introducing data intensity in HPC systems in 2.1, describing the existing KernelHive architecture 

in 2.2 and justifying the need for network-aware scheduling in 2.3. We present our solutions in 

Section 3 including data addressing in 3.1, selecting database system in 3.2, the new prefetching 

optimizer in 3.3 and network-aware scheduling scheme in 3.4. The description and results of our 

experiments are presented in Section 4 with real parallel executions on a single device in 4.1, in a 

heterogeneous environment in 4.2 and simulations of executions with scheduler comparison in 

4.3. Finally, we conclude our work in Section 5. 

 

2. PROBLEM FORMULATION 
 

2.1. Data Intensity in HPC Systems 

 

From the parallelization point of view, the spectrum of computational problems in general can be 

structured as shown in Figure 1. The parallelization process requires dividing the problem into 

subproblems, solving them independently by parallel processes and finally merging the results. 

Certain problems require only partitioning the input data into chunks, which are processed 

indepentently. Problems of this type are called embarassingly parallel and in Figure 1 are located 

in the compute intensive corner. Until this work, the KernelHive system was dealing only with 

this type of problems (e.g. breaking MD5 hashes). 
 

 

Figure 1.  Spectrum of Computational Problems from the Parallelization Viewpoint 

 

The black arrows on Figure 1 show possible directions of development of the KernelHive system. 

Moving in the direction towards communication intensive vertex of the problem spectrum, we 

would be dealing with applications that require communication between the processes (for 

example for frequent updating intermediate results). This direction of development should be 

addressed in the future. The dashed arrow at the bottom reflects profiles required from an 

application for our experiments. We use a regular expression matching application with 

configurable data intensity as proposed in [18]. 
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2.2. Overview of the Existing Architecture 
 

The system architecture so far is shown in Figure 2. Using the graphical interface, the user defines 

an application in a form of a directed acyclic graph. Graph nodes correspond to computational 

tasks and are selected from a repository of predefined node types (e.g. processor, partitioner, 

merger). Each node is provided with a number of computational codes corresponding to its role. 

The edges of the graph denote the direction of data flow between the tasks. 
 

 

Figure 2.  Basic Architecture of the Parallel System 

 

Applications for the system can be defined using our graphical tool called hive-gui (Java Swing 

application), however they are represented in a XML format, allowing other front-ends to use the 

parallel system. A tested example of such front-end is the Galaxy Simulator [9] which was 

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


International Journal of Computer Networks & Communications (IJCNC) Vol.6, No.5, September 2014 

88 

extended by a plugin for KernelHive executions. The application XML, along with data addresses 

are dispatched for execution by a SOAP web service. 

 

Analysis and deployment of the applications is performed by the Engine, which is a high-level 

Java EE application. All of the subject modules report their state to the engine, keeping a live 

representation of the whole system in the engine. Thus we can define rules of scheduling the tasks 

that have a rich view of the available infrastructure and its state. 

 

One of the distinct features of KernelHive is that it is designed to combine multiple distributed 

clusters. The only requirement towards a cluster is that there should be one machine playing a 

role of an entry point to the cluster, which has to be visible (in terms of network) by the Engine. 

To address this requirement, the system utilizes the Cluster subsystem, working as a Java system 

daemon. It is a middleman between the engine and computing devices, which are managed by 

C++ daemons, capable of dynamic compiling and running OpenCL [10] computational code. 

 

2.3. Need for a Network-aware Scheduling Scheme 
 

The results of the experiments with prefetching optimizer presented in [14] revealed, that in case 

of data packages of similar size and efficient data management, network is constantly loaded. The 

benefits of prefetching in a more complex environment (Figure 8) are significantly smaller than in 

case of a single device (Figure 6). This means, that the more computational machines in one 

cluster, the less would be the benefit of data prefetching. What is more, even without prefetching 

mechanism, downloading the input packages to machines from the same cluster would cause 

overlapping of communications and hence longer execution time. The internal optimizer for 

scheduling (baseOptimizer in Figure 4) used for the experiments applied a round-robin scheme: 

the machines were selected for computations in a random order. This is the place, where we 

should propose a more sophisticated, for example network-aware approach.  

The ideas of network-aware scheduling are present in the field of heterogeneous HPC systems. 

For example, the authors of [15] propose a framework for heterogeneous HPC systems, which 

allows to calculate schedules based on network performance information during application 

runtime. This approach is claimed to improve the performance by a factor of 5 comparing to 

homogeneous scheduling schemes. Similar approach was used in [16] to satisfy deadlines on real-

time tandem task graphs. Based on these ideas, we should be able to introduce a network-aware 

improvement to our system. 

 

3. PROPOSED SOLUTION 
 

3.1. Flexible Data Addressing 

 

In the embarassingly parallel applications considered so far, the time of sending the input data to 

the computational node was negligible: the data could be considered as a part of the management 

command and stored in memory. However, in case of larger data a method of storing data on hard 

drive has to be employed, should it be a database system or filesystem. What is more, it should be 

noted that the bandwidth between the cluster manager and engine and, more importantly, data 

server, is significantly lower than in the local network between cluster manager and 

computational nodes. In case of larger input data, we propose an approach, where management 

commands contain only addresses of data packages. The addresses are defined in a versatile way 

and consist of: 

 

• hostname – the TCP hostname of the data server 

• port – the TCP port of the data server 

• ID – identifier of the data package unique within the data server scope 
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This approach has two main advantages: 

• tolerates different technologies for the data servers, which allows to adjust the data server 

to the characteristics of given application and deployment 

• grants the possibility to move the data between the servers during the application runtime 

and changing the addresses in management commands at low cos 

 

In this paper we show examples of exploring both these advantages. For the first one, we propose 

using MongoDB key–value store with the GridFS [11] drivers as the technology for data servers. 

The power of the second advantage is exposed on the example of communication and 

computation overlapping by prefetching input data to local servers. 

 

3.2. NoSQL Data Servers 
 

There are numerous technologies designed for storing and accessing big data. The concept of 

filesystems evolved from basic structures for storing data on local hard drives to sophisticated 

distributed filesystems. These solutions are closely connected with the operating system issues, 

like access control and hierarchical organisation of data. Because of this, they often introduce 

some constraints on file names, limit number of files in a directory etc. However, filesystems are 

widely used as the backend for HPC systems, which have to be aware of the characteristics of 

used filesystems. 

 

Another important approach towards storing data is relational databases. Database management 

systems (DBMS) deal with the low level details of storage and hide them from the user. They 

provide wide functionality of storing, retrieving, filtering data, often with regard to transactions 

and cascading of operations. The data is modeled in a rigid form of relational tables with columns 

corresponding to certain object attributes and rows representing some objects. 

 

In case of HPC systems, we rarely require the database to understand the model of our data. 

Often, we just need to store a big file and keep an address to refer to it later. However, we would 

like to benefit from the low–level internal transparency offered by the database systems. For this 

reason, we propose to use a NoSQL database for our reasons. 

 

The NoSQL [12] concept is close to the relational databases, however abandons the rigid 

representation of data. For our experiments, we chose the most popular NoSQL database at the 

time, MongoDB. This database system comes with an extension called GridFS. The extension is 

actually a functionality of the MongoDB drivers that allows automatic dividing the data to 

chunks, storing them separately, but keeping information about the whole files in metadata. 

Another reason for using MongoDB in our heterogeneous system is that it offers mature driver 

implementations for different programming platforms. We benefited from the implementations in: 

 

• python – for the input data package generator 

• C++ - for the program on the computing devices to download the input database 

• Java – for the cluster manager to perform the data prefetching 
 

3.3. Data Prefetching Optimizer 

 

The KernelHive Engine defines a IOptimizer programming interface, listed in Figure 3. 
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Figure 3. IOptimizer interface 

 

The input of each Optimizer implementation consists of: 

 

• Workflow – class representing the whole application workflow, including individual jobs 

and relations between them. The optimizer has access to the state of each job (e.g. 

pending, ready, prefetching, prefetching finished, finished) 

• collection of Clusters – a set of instances of Cluster class, each representing a collection 

of computational nodes. The optimizer has access to the full infrastructure model, 

including the computing devices, their characteristics and current state. 

 

The value returned by the optimizer is a list of jobs, that were scheduled for execution. 

Additionally, the optimizer should change the states of affected jobs and devices. 

 

The interface is general enough to allow its implementations to focus on different criteria and 

perform diverse tasks. It is also possible to combine several optimizers to achieve a complex goal. 

We have already implemented scheduling optimizers aimed for dynamic assignment of jobs that 

became ready for execution to available devices according to certain criteria (e.g. performance, 

energy efficiency). 

 

The new PrefetchingOptimizer implementation requires an internal optimizer for scheduling. This 

way, choosing the hardware for computations can be done by an exchangeable component.   Such 

base is extended by a data prefetching mechanism, listed in Figure 5. The optimizer 

implementation keeps the information about currently performed prefetchings in a map. 

Each prefetching process is represented by a key-value pair of jobs: 

 

• key – a job that is being processed (data has already been downloaded by the worker) 

• value – next job assigned to the same computational device as the key job, however not 

yet scheduled for execution – only for data downloading 

 

Using a data structure defined this way, the tasks of the optimizer are as follows: 

 

• if a key job has ended and the prefetching for the corresponding next job is over, mark the 

latter as scheduled for execution 
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Figure 4. The new PrefetchingOptimizer 
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• let the internal optimizer perform the scheduling of jobs that became ready for execution 

(due to the workflow dependencies) using hardware that became available (because it 

finished its computations or has been just connected to the system) 

• ensure, that for each currently processed job, there is a corresponding job, for which the 

input data is being prefetched (provided there are some jobs ready for execution) 

 

The optimizers processWorkflow method is called by the Engine upon every event that changes 

the aforementioned states of jobs and hardware, including finishing a job, finishing a prefetching, 

submitting new workflow or connecting new hardware. 

 

After each call of this method, the list of scheduled jobs returned by the optimizer is sent by the 

Engine to appropriate Cluster subsystem instances. Then, the jobs are forwarded to the assigned 

machines, where the Unit subystem listens for jobs to run. Finally, the adequate Worker binary is 

executed. It downloads the necessary input data, application code, builds it and runs the 

computations. 

 

When the computations are finished, the output data is saved in a previously configured database. 

A management command is send back through the Cluster to the Engine, containing the resulting 

data package ID. In case of final results, the ID is used to download them upon users request. In 

case of intermediate data, the ID is used by following jobs in the workflow. 

Figure 5 shows the system design after introducing distributed data servers and the optimizer. 

 

3.4. Network-aware Scheduling Scheme 
 

The problem described in Section 2.3 can be to some extent reduced in case of a computing 

environments with multiple clusters (or more precisely: networks) available. The idea is to 

schedule the tasks equally between the clusters, in order to minimize the number of 

communication overlaps. 

 

As mentioned in Section 3.3, the IOptimizer interface allows to create a hierarchy of optimizers, 

each of which could be responsible for different type of optimization. The PrefetchingOptimizer 

presented in Figure 4 uses an internal optimizer for scheduling. Instead of a round-robin scheduler 

utilized until this work we propose a scheme, where machines from less network-loaded clusters 

are selected first. Within the cluster, the scheduling can be done by another level of internal 

scheduler, in this case the previous round-robin one. 
 

4. EXPERIMENTS 
 

The proposed solution was tested in a series of experiments. We measured the execution times of 

a regular expression matching application with different numbers of input data packages. The data 

packages are 20MB files of random characters, generated and stored in MongoDB by our 

generator script. Additionally, each package is prefixed with a header containing the needle and 

haystack sizes, and the needle itself. In the experiments we searched for the occurrences of the 

pattern ”a*b*c*d”. The details of the application are introduced in [18]. 

 

The prefetching algorithm should enhance the systems performance provided the WAN network 

shown in Figures 3 and 5 brings significant delays and bandwidth limits. To reflect this situation 

during the experiments, the source database was hosted on a server in France, while the 

computations took place in our department lab in Poland. 

 

For assesing the fitness of the proposed network-aware scheduling scheme, we used a prototype 

version of a large-scale HPC system simulator, which concepts were described in [17]. 
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Figure 5. Modified Architecture of the Parallel System 

 

4.1. Experiments on a Single Device 
 

We started with testing the solution on a basic setup with one machine equipped with one Intel 

Core i5 processor. The execution times are shown in Figure 6. As it turns out, the results in case 

of a single device are as expected: for one data package, the difference between execution time 

with and without prefetching is negligible. The scenario of execution is the same in both cases. 

The more data packages, the higher the speedup of the prefetching version, reaching 30% in case 

of 4 input packages. The difference is significant and increasing, because in the prefetching 

scenarios, data transmission and computations are overlapping. 
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Figure 6. Prefetching Experiment Results on a Single Device Environment 

 

4.2. Experiments on a Heterogeneous Infrastructure 
 

After testing the proposed design in action and proving the usefulness of the prefetching 

optimizer, we tested the same application on a cluster of nodes equipped with different types of 

devices. The infrastructure for this extended tests is shown on Figure 7, which is actually a 

screenshot from the hive-gui application, that enables generating the infrastructure charts based 

on the data from the Engine. 

 

In order to compare the results in the new testbed configuration to the previous ones, we had to 

run the application with package numbers N times higher, where N is the number of computing 

devices. 

 

Figure 7. The Heterogeneous Testbed Configuration 
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Figure 8. Prefetching Experiment Results on a Heterogeneous Environment 

 

The results of the experiment (Figure 8) show, that the benefit from prefetching, though 

significant and increasing, is lower than for one device and in case of 4∗n packages reaches 11%. 

Such results could be an effect of sharing the network between multiple prefetching tasks. Still, 

the optimizer shows promising results in a heterogeneous environment. 

 

4.3. Execution Simulations for Evaluating the Network-Aware Scheduler 
 

A prototype version of the large-scale HPC system simulator described in [18] was used for the 

simulations in this section. The computations were modeled as a master-slave application with 

master denoting the KernelHive engine which distributes the data and slaves corresponding to the 

computing machines. To present our idea clearly, we made the following assumptions: 

 

• tbe input data packages are of the same size; 

• the overlapping of computations occurs only in the local (cluster) networks; 

• the clusters are equipped with the same numbers of machines with identical performance. 

 

Figures 9 and 10 present comparisons of execution times between various hardware 

configurations. The units of the y-axis are not given, because for the simulations we used a 

random value which is irrelevant. Proportions of the execution times are the point of the charts. 
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Figure 9. Simulated Scheduler Comparison for 2 Clusters with 2 Machines 

 

Figure 9 shows the results of the simulations for a small hardware configuration consisting of two 

clusters with two machines each. As we can see, the difference in execution times between the 

round-robin and network-aware schedulers is present only in case of 2 data packages. This is the 

only case  where it is possible to schedule each task to a machine in a different cluster. For one, 

three and four packages it does not make a difference where they would be placed. However, in 

this one case of two input data packages, the execution time of the network-aware solution is two 

times lower. 

 

The aim of the simulator used for the experiment is to allow comparing various attributes of a 

HPC system with possibility to construct complex large-scale infrastructures. In our case it was 

worth estimating, how the network-aware scheduler would affect the execution times in case of 

bigger systems. In Figure 10 we present the results of simulations for various “M x C” 

configurations, where M stands for number of machines in each cluster and C stands for number 

of clusters. 

 

It can be seen, that in case of larger computing infrastructures using the proposed network-aware 

scheduling scheme can be significantly beneficial. It should be noted, that these results are 

relevant only in case of HPC applications, that do not require communication between the tasks 

and if the assumptions listed above are met. 
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Figure 10. Simulated Scheduler Comparison for Various Environments 

 

5. SUMMARY AND FUTURE WORK 
 

Focusing on the aspect of data management in parallel computing systems brings up a number of 

issues, especially in case of heterogeneous multi–level systems. In this paper we addressed a 

subset of those issues by extending our parallel framework KernelHive. 

 

We proposed an architecture with multiple distributed data servers and a versatile data addressing 

scheme that enables using various data storage technologies and high–level optimizations. On this 

basis we used GridFS as a data storage engine and presented the implementation of a new 

optimizer for KernelHive, that enables prefetching data to the computing devices, causing the 

overlapping of computations and communication and hence, reduction of execution time Our 

experiments, based on a regular expression matching application showed that the proposed 

solution is a good base for new data management schemes. Additionally, we extended our 

solution with a network-aware scheduling scheme and presented possible benefits from 

employing it into the system by performing a set of simulations using a large-scale HPC system 

simulator. 

 

In the future we could extend this solution by mechanisms of dynamic transferring of 

intermediate results between the parallel processes with regard to their distribution, possibly 

among distant clusters. The proposed network-aware scheduling scheme should be verified in real 

parallel execution on large-scale computing systems. 
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