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cDept. of Mechanical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India

Abstract

This work proposes four novel hybrid quadrature schemes for the efficient and accurate eval-
uation of weakly singular boundary integrals (1/r kernel) on arbitrary smooth surfaces. Such
integrals appear in boundary element analysis for several partial differential equations including
the Stokes equation for viscous flow and the Helmholtz equation for acoustics. The proposed
quadrature schemes apply a Duffy transform-based quadrature rule (Duffy, 1982) to surface el-
ements containing the singularity and classical Gaussian quadrature to the remaining elements.
Two of the four schemes additionally consider a special treatment for elements near to the
singularity, where refined Gaussian quadrature and a new moment-fitting quadrature rule are
used.
The hybrid quadrature schemes are systematically studied on flat B-spline patches and on
NURBS spheres considering two different sphere discretizations: An exact single-patch sphere
with degenerate control points at the poles and an approximate discretization that consist of
six patches with regular elements. The efficiency of the quadrature schemes is further demon-
strated in boundary element analysis for Stokes flow, where steady problems with rotating and
translating curved objects are investigated in convergence studies for both, mesh and quadra-
ture refinement. Much higher convergence rates are observed for the proposed new schemes in
comparison to classical schemes.

Keywords: Boundary element analysis, Duffy quadrature, isogeometric analysis, moment-
fitting quadrature, singular integrals, Stokes flow.

1 Introduction

One of the main difficulties of the boundary element method (BEM) is the efficient approxima-
tion of singular integrals that appear in the boundary integral equation (BIE). One approach
to overcome this challenge is to superimpose known solutions to the unknown fields such that
singularities are removed (Cruse, 1974; Liu and Rudolphi, 1999; Liu, 2000; Klaseboer et al.,
2009). This approach is referred to as nonsingular, regularized or desingularized BEM. It is ap-
plied to linear elasticity (Scott et al., 2013; Taus et al., 2019), to Stokes flow (Taus et al., 2016;
Harmel et al., 2018) and to the Helmholtz equation (Simpson et al., 2014; Peake et al., 2015),
among others. Klaseboer et al. (2012) further apply nonsingular BEM to fluid mechanics by
considering Stokes equations for viscous flow, Laplace equation for potential flow and Helmholtz
equation for free-streamline flow.

The nonsingular BEM avoids singular integrals and is thus commonly used in recent papers,
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but it requires additional integrals and knowledge about analytical solutions and is further
disadvantageous in efficiency and implementation (Khayat and Wilton, 2005). An alternative
approach considered is to use the classical BIE without regularization and to approximate the
singular boundary integrals with special quadrature rules. Such an approach is considered in
this paper for weakly singular boundary integrals (kernel proportional to 1/r)1 that are re-
quired and sufficient for steady and three-dimensional BIEs of several linear problems such as
Stokes flow, potential flow, elastostatics, heat conduction and acoustics. Existing quadrature
rules for surface elements containing the singularity (denoted singular elements) are discussed
in Sec. 1.1 and for the adjacent elements near to the singularity (denoted near singular ele-
ments) in Sec. 1.2. The application of these quadrature rules to various boundary element (BE)
problems is then discussed in Sec. 1.3.

1.1 Approximation of weakly singular integrals

Considerable progress has been made with quadrature rules based on variable transformations
that map the physical domain to a parent domain so that the singularity is removed through
the introduction of the Jacobian of the transformation, e.g. see Schwartz (1969); Takahasi and
Mori (1973); Lean and Wexler (1985); Khayat and Wilton (2005) and Cano and Moreno (2015).
The Duffy transformation from a square to a triangle (Fairweather et al., 1979; Duffy, 1982)
is of particular interest here. In finite element (FE) analysis for fracture mechanic, numerical
quadrature based on the Duffy transformation (Duffy quadrature in short) is used to integrate
singular shape function derivatives (Tracey, 1971; Stern and Becker, 1978) and in the context
of the extended FE method (Laborde et al., 2005; Béchet et al., 2005; Lv et al., 2018). Duffy
quadrature is further used to integrate rational bubble functions with multiple singularities
in FE analysis for Stokes flow (Schneier, 2015). More recently, Tan et al. (2019) propose the
Duffy-Distance transformation that includes a further mapping that has to be adjusted depend-
ing on the shape of the element. Numerical investigations show that weakly singular integrals
on spheres and cylinders can be approximated mostly with high accuracy, whereas the location
of the singularity and the aspect ratio of the elements have a strong negative impact. Other
important quadrature rules based on variable transformations are the tanh rule (Haber, 1977)
and the sinh-tanh rule (Borwein and Ye, 2006), the quadrature rule from Telles (1987) that is
based on a non-linear coordinate transformation and a polar coordinate transformation that
is also applicable to elements with collapsed edges (Taus et al., 2016). The application of the
quadrature rules from Sec. 1.1, including Duffy quadrature, to various BE problems is discussed
in more detail in Sec. 1.3.

In addition to variable transformation methods, there are many other approaches for the ap-
proximation of weakly singular boundary integrals: Guiggiani et al. (1992) propose the approxi-
mation of singular integrals by singularity subtraction, Dautray and Lions (1985) and Atkinson
and Chien (1995) use piecewise polynomial functions to approximate surface and integrals, while
Niu et al. (2005) propose semi-analytical integration of the singular kernel. Recently, Ochiai
(2022) propose the triple-reciprocity BEM that allows a direct integration on Lagrange elements
and Velázquez-Mata et al. (2022) present a method that constructs efficient quadrature rules
for the approximation of singular integrals from the finite part of known integrals including the
shape functions.

1.2 Approximation of weakly near singular integrals

Weakly singular integrals are approximated efficiently with adaptive quadrature rules (Lachat
and Watson, 1976; Gao and Davies, 2000) by dividing near singular elements into subelements

1r denotes the distance between field point and the singularity
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and applying Gauss-Legendre quadrature to the subelements. The number of subelements and
the number of quadrature points for each subelement are determined individually based upon
analytical (Stroud and Secrest, 1966) or numerical (Bu and Davies, 1995) criteria. Similarly as
on singular elements (see Sec. 1.1), quadrature rules based on variable transformation can also be
used on nearly singular elements to approximate weakly singular integrals. The quadrature rule
from Telles (1987) is also applicable to near singular elements, while Duffy quadrature (Duffy,
1982) is only accurate on the singular element. Other variable transformation considered for
the approximation of weakly near singular integrals include the radial variable transformation
(Hayami and Matsumoto, 1994), the distance transformation (Ma and Kamiya, 2002; Xie et al.,
2013) and the sinh transformation (Johnston et al., 2007; Xie et al., 2021). The quadrature
scheme presented in Gong et al. (2020) combines the benefits of the sinh transformation method
and adaptive methods such it is capable of integral kernels of the type 1/r, 1/r2 and 1/r3 on
near singular elements. Many other quadrature rules for weakly singular integrals on nearly
singular elements can be found in the literature as for example the parameterized Gaussian
quadrature (Lutz, 1992), line integral approaches (Krishnasamy et al., 1994; Liu, 1998) and
analytical (Padhi et al., 2001; Zhou et al., 2008) and semi-analytical methods (Sladek et al.,
2001; Niu et al., 2005; Han et al., 2022).

An alternative approach is to construct quadrature rules by the moment fitting method, i.e. solve
a variant formulation of the moment fitting equations for the quadrature weights and abscis-
sas. First, moment fitting quadrature rules for the exact integration of polynomial functions on
triangles (Lyness and Jespersen, 1975) and on quadrilaterals (Dunavant, 1985) were presented.
Moment fitting quadrature rules for polynomials are formalized and generalized by Wandzu-
rat and Xiao (2003), while a numerical algorithm for polynomials on triangles, squares and
cubes is given by Xiao and Gimbutas (2010). In all these approaches the integral on the right
hand side of the moment fitting equations is computed analytically. Moment fitting quadrature
for discontinuous functions is proposed for crack propagation analysis with the extended FE
method (Mousavi and Sukumar, 2010b; Zhang et al., 2018), where the moment fitting integrals
are evaluated partially analytically and partially numerically applying the method of Lasserre
(1998, 1999). Joulaian et al. (2016) and Hubrich et al. (2017) manipulate the moment fitting
integrals so they can be computed by Gaussian quadrature numerically. This quadrature rule
approximates discontinuous functions on domains of arbitrary geometry and topology highly
efficiently. Moment fitting quadrature rules are further used for the construction of highly effi-
cient quadrature rules in FE analysis for shells (Zou et al., 2021). The present paper proposes a
new Gauss-Legendre quadrature rule with adjusted weights that are determined by the moment
fitting method. The proposed quadrature rule determines weakly near singular integrals exactly
on plane surfaces with regular quadrilateral elements and accurately on curved surfaces. It re-
quires only a moderate number of quadrature points and uses the same abscissas as standard
Gauss-Legendre quadrature. The Gauss-Legendre quadrature rule with adjusted weights is thus
simple to implement and computationally efficient.

1.3 Application to BE analysis

Solving boundary value problems using BE analysis requires to approximate the BIE on the
entire surface including singular, near singular and the remaining regular elements. Numerous
approaches using the quadrature rules from Sec. 1.1 and Sec. 1.2 to approximate the boundary
integrals efficiently can be found in the literature, so the following enumeration of application
is not exhaustive.

Duffy quadrature (Duffy, 1982) is applied to the singular element for Stokes flow problems
(Varnhorn, 1989; Johnson and Scott, 1989; Barakat and Shaqfeh, 2018) and for acoustic prob-
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lems (Amini and Harris, 1990). In these approaches, the integrals on the remaining elements are
approximated by standard Gauss-Legendre quadrature or by simple trapezoidal rules. Ven̊as
and Kvamsdal (2020) additionally consider local refinement of Gauss-Legendre quadrature on
near singular elements for acoustic problems without investigating its influence in detail. The
quadrature rule from Telles (1987) is combined with Gauss-Legendre quadrature for linear elas-
tic problems considering homogeneous material (Karam and Telles, 1988; Simpson et al., 2012)
and liquid inclusions (Dai et al., 2021) and for FSI problems considering Stokes Flow (Patiño
and Nieto-Londoño, 2021). The adaptive integral method for near singular integrals (Gao and
Davies, 2000) is used to solve Laplace’s equation by isogeometric BE analysis for potential
problems (Gong and Dong, 2017), thermal problems (Gong et al., 2018) and thermoelasticity
problems (Gong et al., 2020), whereas the singularity subtraction method (Guiggiani et al.,
1992) is applied in Jarvenpaa et al. (2006) to electromagnetics and in Peng et al. (2017) to
fracture mechanics. Ata and Sahin (2018) consider the tanh-sinh quadrature rule (Borwein and
Ye, 2006) for BE analysis of Stokes flow problems and Keuchel et al. (2017) apply the sinh-
quadrature (Johnston et al., 2007) to nearly singular integrals in the Burton-Miller formulation
of the Helmholtz equation for acoustic problems. The quadrature rule based on polar coordinate
transformation (Taus et al., 2016) is extended in Taus et al. (2019) to handle elements with large
curvatures and aspect ratios efficiently and to improve the accuracy on near singular elements.
The extended quadrature rule is applied to linear elasticity considering Gaussian quadrature on
the regular elements. Giuliani et al. (2018) provide a generalized parallel implementation for
adaptive, geometry aware, and high order boundary element methods using quadrature rules
from Lachat and Watson (1976), Duffy (1982) and Telles (1987) without investigating their
influence on the accuracy of the BE results.

The above mentioned approaches are limited in application (geometry and discretization) or
lack systematic investigation. This paper, therefore, proposes four hybrid quadrature schemes
which

• approximate weakly singular integrals on singular, near singular and regular elements
accurately,

• adaptively combine a new moment fitting quadrature rule with Duffy quadrature (Duffy,
1982) and rings of Gauss-Legendre quadrature with varying quadrature density,

• are systematically studied for discretization and quadrature refinement,

• show fast convergence for three-dimensional BE examples of steady Stokes flow with flat
and curved isogeometric surfaces,

• are applicable to various discretizations (including isogeometric, Lagrange and Hermite
shape functions) using quadrilateral elements of arbitrary genus zero surfaces.

This paper focus on Stokes flow, but the presented quadrature schemes are also applicable to
other BE applications like heat transfer (Mera et al., 2002; Zang et al., 2021), acoustics (Amini
and Harris, 1990; Ven̊as and Kvamsdal, 2020), elastostatics (Simpson et al., 2012; Taus et al.,
2019), mechanical contact (Yac et al., 1970; Zirakashvili, 2020) and electromagnetics (Rajski
et al., 2019; Takahashi et al., 2022). The quadrature schemes are further applicable to coupled
BE and surface FE formulations that can be used to study droplets (Brown et al., 1980; Sauer,
2014), bubbles (Wang et al., 2003; Boedec et al., 2017), shells (Heltai et al., 2017; Maestre et al.,
2017) and wetting (Osman and Sauer, 2015; Luginsland and Sauer, 2017). They can be used
to solve unsteady BE problems since the singular integrals investigated here also occur there.

The remainder of this paper is organized as follows: Sec. 2 presents an overview of the un-
derlying BE theory for incompressible Stokes flow. Boundary quadrature of weakly singular
integrals on singular and near singular elements is discussed in Sec. 3. In addition to known
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rules, the new moment fitting quadrature rule is also presented in this chapter. Sec. 4 presents
the four new hybrid quadrature scheme and investigates their accuracy and efficiency in detail.
The hybrid quadrature schemes are applied to BE analysis for three-dimensional Stokes flow
problems in Sec. 5. The paper then concludes with Sec. 6.

2 Incompressible Stokes flow

Incompressible steady-state Stokes flow is briefly outlined in this section: The constitutive
relation for an incompressible Newtonian fluid is introduced in Sec. 2.1, while the governing
equations, namely the linear momentum balance for Stokes flow and the mass balance for
incompresible flow, are presented in Sec. 2.2. The singular Green’s functions are discussed and
investigated in Sec. 2.3.1, and the boundary integral equation (BIE) for Stokes flow is then
presented in Sec. 2.3.2.

2.1 Fluid constitution

The three-dimensional Cauchy stress tensor for an incompressible Newtonian fluid with dynamic
viscosity η is given by

σ = −p1 + 2ηD , (1)

where D :=
(
gradv + (gradv)T

)
/2 is the symmetric part of the velocity gradient and p =

−trσ/3 is the fluid pressure in domain F . The incompressibility of the fluid is enforced by the
continuity equation that is given in absence of mass sources or sinks by

div v = 0 in F , (2)

where v denotes the velocity.

2.2 Fluid equilibrium

The steady-state motion of a viscous2 fluid flow is governed by the steady Stokes equation

divσ = −ρ b̄ in F , (3)

together with the continuity equation (2) and the Dirichlet and Neumann boundary conditions

v(x) = v̄ ∀x ∈ ∂dF ,
t(x) = t̄ ∀x ∈ ∂nF ,

(4)

with velocity v, surface traction t := σn and outward unit normal vector n. Dirichlet and
Neumann boundary regions are denoted by ∂dF and ∂nF , respectively and the entire boundary
of the fluid domain is denoted by S := ∂nF ∪ ∂dF . Apart from (4), a condition on pressure p
is needed on S to define the flow field. 3

This work focuses on the efficient quadrature of boundary integrals for boundary element (BE)
analysis of steady Stokes flow. However, all following results apply to arbitrary weakly sin-
gular boundary integrals including BE for the Helmholtz equation and linear elasticity. The
equilibrium equation for linear elasticity is even mathematically equivalent to the steady Stokes
equation (3).4 The quadrature schemes presented in this work are further applicable to unsteady
BE problems since the singular integrals investigated here also appear there.

2Reynolds number Re < 1 (Pozrikidis, 2002)
3This paper considers incompressible flow with no slip between surface and fluid. In this case, the fluid

pressure on S is given by p(x) = −t · n, since n ·Dn = 0, c.f. Eq.(1).
4For linear elasticity, v in (1) corresponds to the displacement field.

5

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


2.3 Boundary representation of the fluid flow

This section discusses a representation of steady Stokes equation (3) that only lives on the fluid
boundary S. The transformation of Stokes equation into the boundary representation based
on the Green’s functions is presented in Sec. 2.3.1 and discussed in Sec. 2.3.2. This boundary
representation, called boundary integral equation (BIE), is the most important equation in
boundary element analysis, which is summarized in Sec. A. The singular nature of the Green’s
functions leading to the singular integral kernels in the BIE is investigated in Sec. 2.3.4.

2.3.1 Green’s functions for steady Stokes flow

Considering a given point load b̄
∞

(x− y), that is applied at the fixed source point y, leads to
the singularly forced steady Stokes equation

divσ = −ρ b̄∞ in F . (5)

The distance between an arbitrary field point x ∈ F and source point y is defined as r := ‖r‖
with r := x− y. The point load can then be written as

b̄
∞

(r) = δ(r) b∞ , (6)

where δ(r) denotes the Dirac delta function and b∞ denotes a constant force vector that de-
scribes magnitude and orientation of the point load. The solutions for velocity and stress of a
singularly forced Stokes flow (5) are given by the components

v∞i (x) =
1

8πη
Gij(r) b∞j ,

σ∞ij (x) =
1

8π
Tijk(r) b∞k ,

(7)

where Latin indices i, j and k (from one to three) indicate components in Cartesian coordinates
following Einstein’s summation convention. The Green’s functions for velocity and stress are
given by

Gij(r) =
δij + r̄ir̄j

r
,

Tijk(r) = −6
r̄ir̄j r̄k
r2

,

(8)

where r̄i is the component of r̄ := r/r and δij denotes Kronecker’s delta. From (8) follows
that the indices of both Green’s functions are arbitrarily interchangable.5 Further, the Green’s
functions are symmetric with respect to r such that Gij(r)=Gij(−r) and Tijk(r)=−Tijk(−r).

Integrating the Green’s functions over the fluid domain F and applying the divergence the-
orem yield the important integral identities for the velocity Green’s function∫

∂F
Gij(r)nj(x) dax = 0 y ∈ S , (9)

and the stress Green’s function

− 1

4π

∫ pv

∂F
Tijk(r)nk(x) dax = δij y ∈ S , (10)

where
∫ pv

d� denotes the Cauchy principal value integral.

5The Green’s function tensors are symmetric such that Gij(r) = Gji(r) and Tijk(r) = Tikj(r) = Tjik(r) =
Tjki(r)=Tkij(r)=Tkji(r).
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2.3.2 Boundary integral equation

The governing equations for incompressible Stokes flow, (1), (2) and (3), are transformed into a
boundary representation that is referred to as the boundary integral equation (BIE). The BIE
allows to determine the fluid velocity at any point y ∈ F by solving only surface integrals defined
on S. To derive the BIE, a general incompressible Stokes flow (v,σ) is related to a singularly
forced incompressible Stokes flow (v∞,σ∞) by use of the introduced Green’s functions (7) and
Lorentz reciprocal theorem (Lorentz, 1896). Integrating the resulting identity over the fluid
domain and applying the divergence theorem yields the BIE

vi(y) = − 1

8π η

∫
S
Gij(x− y) tj(x) dax +

1

8π

∫
S
vj(x)Tijk(x− y)nk(x) dax , (11)

where y ∈ F denotes a source point within the fluid domain. Considering the limiting behavior
of the singular integrals yields the BIE for a point on the surface (y ∈ S)

vi(y) = − 1

2ϕη

∫
S
Gij(x− y) tj(x) dax +

1

2ϕ

∫ pv

S
vj(x)Tijk(x− y)nk(x) dax , (12)

where ϕ denotes the solid angle of the enclosed domain.6 Note that (11) and (12) consider
exterior flow problems where an object or particle enclosed by surface S is surrounded by the
infinite fluid domain F . Similar BIEs for interior and two-sided problems and their derivations
can be found, see for instance Pozrikidis (1992) and Harmel (2022).

BIEs for unsteady Stokes flow and corresponding Green’s functions can be found for instance in
Power and Partridge (1993) and Jiang et al. (2012). Those BIEs involve additional complexities
like trivariate domain integrals and Laplace or Fourier transforms.

2.3.3 Boundary discretization and collocation

The surface geometry S and the continuous BIE (12) are discretized into nel elements and nno

nodes (control points in isogeometric analysis). The discretized BIE is then collocated at nno

source points yA ∈ S, with A = 1, . . . , nno, to obtain a square boundary element (BE) system.
The source points yA are thus referred to as collocation points in the following. Note that
integration over the whole surface has to be performed once for each collocation point. Explicit
expressions for the discretized BIE and the collocated BE system can be found in Appendix A.

This paper considers isogeometric discretizations, where the control points are not necessar-
ily located on the surface, which makes them unsuitable for collocation. Instead, the location of
the collocation points are determined by the Greville abscissae (see e.g. Greville (1964), Johnson
(2005) and Auricchio et al. (2010)).

2.3.4 Singular nature of the Green’s functions

The Green’s functions (8) become singular for r approaching to zero. Source point y is therefore
a singularity of both Green’s functions. According to their definitions, the velocity Green’s
function Gij(r) is proportional to 1/r, while the stress Green’s function Tijk(r) is proportional
to 1/r2. This kind of function behavior is referred to as weakly singular and strongly singular,
respectively. Since these singularities are an essential component of boundary element (BE)
analysis, their asymptotic behavior for r → 0 is numerically investigated on spherical and on

6For a smooth surface (locally at least C1-continuous) the solid angle becomes ϕ = 2π.
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flat surfaces in the following. The Green’s functions behavior is evaluated by a scalar invariant,
the Frobenius norm, that is defined for the second order tensor G(r) = Gij(r) ei ⊗ ej by

‖G(r)‖F =
√
Gij(r)Gij(r) , (13)

and for the third order tensor T (r) = Tijk(r) ei ⊗ ej ⊗ ek by

‖T (r)‖F =
√
Tijk(r)Tijk(r) , (14)

where (13) and (14) again follow Einstein’s summation convention. The second-order tensor
Tn is part of an integral kernel of the BIE in Sec. 2.3.2 and therefore of particular interest for
BE analysis. Its asymptotic behavior is additionally investigated here by determining ‖Tn‖F
according to (13).

A spherical surface with radius R is considered first, see Fig. 1a. Given source point y, the
Green’s functions behavior is investigated as field variable x approaches y along the blue curve.
Fig. 1c shows that ‖G‖F is proportional to 1/r (weakly singular), while ‖T ‖F is proportional
to 1/r2 (strongly singular). The ‖G‖F and ‖T ‖F show the asymptotic behavior that is ex-
pected from the Green’s functions definition (8). Fig. 1b further shows that ‖Tn‖F is at first
only weakly singular, although ‖T ‖F is strongly singular. Let us take a closer look on the ex-
pression to substantiate this numerical result with analytical findings: From (8) follows that
‖Tn ‖F ∝ r̄ ·n/r2. For a smooth surface with continuously varying normal vector, the unit vec-
tors r̄ and n become more and more orthogonal as x approaches y, i.e. r → 0. The dot product
r̄ · n thus changes linearly with respect to r (see Fig. 1b) such that the behavior of ‖Tn‖F for
r → 0 is mildened to be only weakly singular. However, for r < 10−8R the behavior of ‖Tn‖F
vs. 1/r changes suddenly: From a perfectly linear relation (‖Tn ‖F ∝ 1/r) to a distorted cubic
relation (‖Tn ‖F ∝ 1/r3). This behavior results from the inaccurate numerical computation of
the dot product r̄ ·n for very small r that is shown in Fig. 1b. Within the numerical quadrature,
Tn is typically not required to be evaluated for such small values of r. The discussed change in
the convergence behavior of Tn has therefore no effect on the approximations of the singular
integrals in Sec. 2.3.2.

a.

b. c.

y

Figure 1: Singular nature of Green’s functions: a. Spherical surface (radius R) with singularity at y;
b. Limiting behavior of |r̄ ·n| for r := ‖r‖ approaching 0; c. Limiting behavior of the Green’s functions.

Second, a source point on a tilted planar surface of side length L is considered (see Fig. 2a). It
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can be seen in Fig. 2c that the Green’s functions show the same asymptotic behavior here as for
spherical surfaces: ‖G‖F is weakly singular and ‖T ‖F is strongly singular for r → 0. However,
the numerical evaluation of ‖T n‖F yields an overall cubic asymptotic behavior deviating from
theoretical expectations: For a source point located on a plane surface, the vectors n and r̄ are
orthogonal. Analytically their dot product thus yields n · r̄ = 0 and the expression Tn conse-
quently vanishes. The deviating behavior of ‖T n‖F is caused by the diverging numerical result
for r → 0 on plane surfaces that is shown in Fig. 2b. On flat surfaces it is therefore advisable
to use the known value Tn = 0 in the BE computation instead of evaluating it numerically.
Nevertheless, it should be noted that moderate values of r result in very small ‖T n‖F (smaller
than 10−10 for r > 10−2L).

a.

b. c.

y

Figure 2: Singular nature of Green’s functions: a. Tilted planar surface (size L × L) with singularity
at y; b. Limiting behavior of |r̄ · n| for r := ‖r‖ approaching 0; c. Limiting behavior of the Green’s
functions.

3 Boundary quadrature of singularities

This section investigates singular boundary quadrature on the plane sheet from Fig. 3a that
consists of 3× 3 plane biquadratic B-spline elements with side length Le. The depicted colloca-
tion point y0 is located on the center element which is therefore referred to as singular element
(blue, surface Ssing), whereas the adjacent elements are referred to as near singular elements
(green, surface Snear). The weakly singular integral

I� :=

∫
S�

1

‖x− y0‖
da (15)

that is representative of the behavior of the two integrals in the BIE (12) is approximated on Ssing

and on Snear using various quadrature rules: Sec. 3.1 studies Duffy quadrature and classical and
modified Gauss-Legendre quadrature on the singular element and Sec. 3.2 investigates classical
Gauss-Legendre quadrature and a new Gauss-Legendre quadrature rule with adjusted weights
on the near singular elements. The quadrature accuracy is evaluated by means of the relative
quadrature error

e�rel :=
‖Ih� − I�‖
I�

, (16)
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where Ih� denotes the numerical approximation of integral (15) on surface S�.7

singular
element

near
singular
elements

collocation
pointy0

a. b.

Snear

Ssing

Figure 3: Boundary quadrature of singularities: a. Singular element (blue, Ssing) with collocation point
y0 and the surrounding near singular elements (green, Snear). b. Duffy quadrature points on the singular
element for ñgp = 3 (see Table 2 and (B.13)) and collocation point y0.8 Duffy quadrature points for
different collocation point positions are shown in Fig. B.4.

3.1 Boundary quadrature on singular elements

Classical Gauss-Legendre quadrature (Gauß, 1815), modified Gauss-Legendre quadrature (Heltai
et al. (2014) for biquadratic NURBS) and Duffy quadrature (Fairweather et al., 1979; Duffy,
1982) are investigated in Appendix B with respect to their suitability for approximation of
weakly singular integrals. The resulting advantages and deficiencies of these three quadrature
rules are summarized here.

Fig. 4 shows that the relative quadrature error (16) decreases with increasing number of quadra-
ture points nqp (26) for all three quadrature rules. However, their convergence behavior is very
different: The error for classical and modified Gauss-Legendre quadrature with respect to nqp

yield the rather low convergence rates of 1/2 and 1, respectively.9 Fig. 4a shows that the rela-
tive quadrature error for modified Gauss-Legendre quadrature can be reduced to the range of
machine precision by increasing the number of quadrature points to nqp > 1015, while classical
Gauss-Legendre quadrature cannot reach machine precision as it has an inherent error bound
of esing

rel > eclass ≈ 3× 10−9.

Duffy quadrature leads to a much lower error for small nqp and, most importantly, to a signif-
icantly improved convergence behavior: Fig. 4b shows that the relative error converges to the
analytical solution with erel ∝ 1/nqp

2.5 for small nqp ≤ 18 and with erel ∝ 1/nqp
12 for higher

nqp such that is in the range of machine precision for nqp > 200. Hence, Duffy quadrature is
several orders of magnitude more accurate than modified Gauss-Legendre quadrature, not to
mention classical Gauss-Legendre quadrature.

Further, collocation points and classical Gauss-Legendre quadrature points may coincide, in

7Analytical solutions: Ising = log
(
12
√

2 + 17
)
Le and Inear =

(
6 log(

√
2 + 1) + log

(
2
√

2 + 3
))
Le

8The color scheme from Fig. 3 is used throughout the paper to visualize the quadrature schemes: Blue, green
and white are used to distinguish between singular, near singular and regular elements (see Fig. 6a for a 4x4
mesh). Various other colors, including magenta for Duffy quadrature, are used to illustrate the quadrature rules
applied to these elements (see Fig. 7 for the same 4x4 mesh).

9The minimum distance between quadrature points and collocation points (B.7) is inversely proportional to
the number of quadrature points, i.e. rmin ∝ n−1

qp .
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a.

esi
n

g
re

l

rmin/L
e

∝ 1/nqp

∝ 1/
√
nqp

ε m
a
ch

in
e

eclass

emod

∝ 1/nqp

∝ 1/n2.5
qp

∝ 1/n12
qp

b.

Figure 4: Boundary quadrature on singular elements: a. Relative quadrature error esingrel for Gauss-
Legendre quadrature vs. the minimum distance between quadrature point and collocation point rmin

(B.7), the vertical dashed line shows the smallest admissible distance εmachine ≈ 2.2× 10−16. The
horizontal lines show that classical Gauss-Legendre quadrature has an inherent error bound eclass ≈
3 × 10−9, while modified Gauss-Legendre quadrature theoretically meets emod ≈ εmachine. b. Relative
quadrature error esingrel for modified Gauss-Legendre quadrature and Duffy quadrature vs. the number of
quadrature points nqp.

which case the integral kernel becomes infinite and useless. Classical Gauss-Legendre quadra-
ture is therefore less robust than modified Gauss-Legendre quadrature and Duffy quadrature,
where the coincidence of collocation points and quadrature points is generally prevented.

For classical and modified Gauss-Legendre quadrature, it is sufficient to evaluate the shape
functions only once on the master element for all collocation points and elements.10 Gauss-
Legendre quadrature is therefore simple to implement. Duffy quadrature, on the other hand,
needs to be modified depending on the location of the collocation points (see Fig. 3b) and it is
thus more difficult to implement. The above findings are summarized in Table 1.

efficiency robustness implementation

classical Gauss-Legendre poor low simple
modified Gauss-Legendre low high simple

Duffy quadrature high high involved

Table 1: Boundary quadrature on singular elements: Suitability of classical and modified Gauss-
Legendre quadrature and Duffy quadrature for singular boundary quadrature (see Appendix B).

In conclusion, Duffy quadrature is highly accurate and thus most recommend for singular inte-
gral approximation. Modified Gauss-Legendre quadrature is a robust alternative that is simple
to implement but less accurate, while classical Gauss-Legendre quadrature is not recommend
for the quadrature of singular kernels since it lacks robustness and efficiency.

10Isogeometric shape function values are determined from universal Bernstein polynomials and element specific
Bézier extraction operators (Borden et al., 2011), see Appendix A.
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3.2 Boundary quadrature on near singular elements

This section deals with the approximation of singular integrals on so-called near singular ele-
ments. The collocation point is located near these elements, but not on within them (green
elements in Fig. 3a). The accuracy of Gauss-Legendre quadrature on near singular elements
is investigated in Sec. 3.2.1, while a new and efficient quadrature rule for these elements is
presented in Sec. 3.2.2. The quadrature rules discussed in Sec. 3.1, modified Gauss-Legendre
quadrature and Duffy quadrature, are only beneficial on singular elements and thus not consid-
ered here.

3.2.1 Classical Gauss-Legendre quadrature

Fig. 5a shows that the relative quadrature error (16) for classical Gauss-Legendre quadrature on
near singular elements decreases with increasing number of classical Gauss-Legendre quadrature
points until it within machine precision for neqp = 16×16 quadrature points per element (ñqp =
16).11 The refinement of classical Gauss-Legendre quadrature is on near singular elements
much more effective than on singular elements. However, determining an appropriate number
of quadrature points per singular element requires a careful trade-off between accuracy and
computational effort. Four variables that refer to the number of quadrature points are used in
this paper. An overview of these variable is given in Table 2 and more details can be found in
Appendix B.

neqp := ñqp × ñqp
a.

b.

c.

Figure 5: Boundary quadrature on singular and near singular elements: a. Relative error for classical
Gauss-Legendre quadrature with ñqp = 2, 4, 6, . . . , 16 on the singular element and on the near singular
elements from Fig. 3a vs. the number of quadrature points per element neqp. b. Adjusted weights for the
exact calculation of singular integrals on 3×3 plane quadrilateral elements with ñqp = 3. c. Two element
types that have the same quadrature values but different orientations.

11ñqp is introduced for the systematic application of quadrature rules in Sec. 4. It denotes the number of
univariate quadrature points for type Gauss-Legendre quadrature, i.e. ne

qp = ñqp× ñqp (see Fig. B.1 for ñqp = 4).
For Duffy quadrature, ne

qp additionally depends on the position of the collocation point (see Fig. B.4 for ñqp = 3).
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quantity definition description

ñqp – univariate number of quadrature points

neqp Eqs. (18), (B.1), (B.13) and (B.11) number of quadrature points per element

nqp Eq. (26) total number of quadrature points

n̄qp Table 4 mean number of quadrature points

Table 2: Boundary quadrature of singularities: Variables that refer to the number of quadrature points.

3.2.2 Gauss-Legendre quadrature with adjusted weights

As discussed in Sec. 3.2.1, a large number of Gauss-Legendre quadrature points is required to
obtain accurate approximations of singular integrals on near singular elements. This section
presents a new quadrature rule that yields high accuracy by adjusting the quadrature weights
for singular kernels instead of increasing the number of quadrature points. The new quadrature
rule is therefore referred to as Gauss-Legendre quadrature with adjusted weights.

The main idea is to use the locations of neqp classical Gauss-Legendre quadrature points in the
parameter space, denoted by ξi (see Appendix B.1), and determine the corresponding quadra-
ture weights we

i = we(ξi) by solving a linear moment fitting problem such that 1/r kernels are
integrated exactly. Quadrature rules based on moment fitting have been introduced by Joulaian
et al. (2016), Thiagarajan and Shapiro (2016) and Hubrich et al. (2017) and applied to surface
integration by Hubrich and Düster (2019) and Zou et al. (2021). Here, the quadrature weights
on near singular element e have to fulfill

ne
qp∑
i=1

J(ξi) NA(ξi)

r(ξi)
we
i

!
=

∫
Ωe

NA

r
da := fA (17)

for each shape function NA with A = 1, . . . , (p + 1)(q + 1). The local surface stretch at ξi is
denoted by J(ξi) such that da(ξi) ≈ J(ξi) we

i .
12 The integral kernel NA/r is proportional to the

discrete BE kernels (A.9), since ‖G‖ ∝ 1/r and ‖T n‖ ∝ 1/r as shown in Fig. 1c. Quadrature
weights that fulfill (17) on element e thus determine the singular BE integrals on this element
exactly. The right hand side of (17) is determined to machine precision by classical Gauss-
Legendre quadrature with 16× 16 quadrature points (see Fig. 5a).

From (17) follows that
neqp = (p+ 1)× (q + 1) (18)

quadrature points are required to obtain the following square moment fitting system of equations
for near singular element e

Ae we = f e , (19)

with weight vector we = [we
1, . . . ,w

e
ne
qp

]T, solution vector f e = [fe1 , . . . , f
e
ne
qp

]T and matrix compo-
nents

Ae
AB :=

1

r(ξB)
NA(ξB) J(ξB) , (20)

with subscripts A = 1, . . . , neqp and B = 1, . . . , neqp. The system of equations (19) is solved on
each near singular element for the respective weight vector we.

12The reader is referred to Appendices A.1 and A.4 for more details on BE discretization and on the mapping
to the parameter space, respectively.
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The proposed Gauss-Legendre quadrature rule with adjusted weights is illustrated by apply-
ing it to the biquadratic B-spline sheet from Fig. 3a. The adjusted quadrature weights are
determined by solving (19) with neqp = 9 for each of the eight near singular elements. Fig. 5b
shows the difference between adjusted and classical Gauss-Legendre weights, defined on singular
element e by

∆we
i = we

i − wGL
i . (21)

It can be seen that small adjustments of the weights are sufficient to obtain integral approxi-
mations on near singular elements that are exact to machine precision. Due to symmetry, only
two different sets of quadrature weight values occur on near singular elements: Larger weight
differences on elements sharing one edge with the singular element (element type 1) and smaller
weight differences on elements sharing one point with the singular element (element type 2). The
near singular elements in Fig. 5c are colored to indicate elements of type 1 (blue) and elements
of type 2 (red). The element type, and thus the quadrature weights, are represented in this
way repeatedly throughout the remainder of this paper. The classical Gauss-Legendre weights
(wGL

1 , . . . ,wGL
9 ) and the quadrature weight differences for element type 1 (∆w1

1, . . . ,∆w1
9) and

for element type 2 (∆w2
1, . . . ,∆w2

9) are given in Table C.1.

The same weight values are applied to all elements of the same element type, but the ori-
entation of the weights may differ. The application of Gauss quadrature with adjusted weights
therefore requires some additional bookkeeping. However, this is the only additional effort
compared to classical Gauss-Legendre quadrature, since both quadrature rules use the same
quadrature point locations. Shape functions and their derivatives can simply be determined a
priori at the known locations ξGL in the parameter domain as discussed in Appendix A. This
property makes Gauss quadrature with adjusted weights highly suitable for hybrid quadrature
based on classical Gauss quadrature, as will be seen in Sec. 4. Both set of weights are derived
for a very specific case here, but they yield exact (to the range of machine precision) integrals
on regular, quadrilateral and plane NURBS elements of biquadratic order and arbitrary size,
as will be seen in Sec. 4.1. Moreover, Gauss quadrature with adjusted weights is also benefi-
cial on curved surface, where it improves the quadrature accuracy compared to classical Gauss
quadrature (see Sec. 4.2).

4 Hybrid quadrature schemes

The quadrature rules for singular and near singular elements from Sec. 3 are combined here to
obtain hybrid quadrature schemes capable of efficient singular integral approximation on the
entire surface. The hybrid quadrature schemes are then applied to plane B-spline surfaces in
Sec. 4.1 and to curved NURBS surfaces in Sec. 4.2.13 The findings on hybrid quadrature schemes
are summarized in Sec. 4.3. The following four hybrid quadrature schemes are investigated:

a. hybrid Gauss-Legendre quadrature (G)

– singular element: modified Gauss-Legendre quadrature with ñqp = n0

– near singular elements: classical Gauss-Legendre quadrature with ñqp = n0

b. hybrid Duffy-Gauss quadrature (DG):

– singular element: Duffy quadrature with ñqp = 2n0
14

13The numerical computations in Secs. 4 and 5 are carried out in MATLAB using IEEE 754 double precision
(53 bit with machine precision εmachine ≈ 2.2× 10−16).

14Fig. 4 shows that increasing the number of Duffy quadrature points drastically reduces the quadrature error
on the singular element. However, the overall error for DG, DGr and DGw is dominated by the remaining
elements where classical Gauss-Legendre quadrature is applied (see Fig. 9 for a B-spline sheet). A higher number
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– near singular elements: classical Gauss-Legendre quadrature with ñqp = n0

c. hybrid Duffy-Gauss quadrature with progressive refinement (DGr)

– singular element: Duffy quadrature with ñqp = 2n0

– near singular elements: classical Gauss-Legendre quadrature with ñqp = 2n0

d. hybrid Duffy-Gauss quadrature with adjusted weights (DGw)

– singular element: Duffy quadrature with ñqp = 2n0

– near singular elements: Gauss-Legendre quadrature with adjusted weights (ñqp = 3)

In all cases, classical Gauss-Legendre quadrature with ñqp = n0 is used on the regular elements
(see Fig. 6 for singular, near singular and regular elements on a plane sheet). The quadra-
ture density n0 controls the total number of quadrature points nqp for the hybrid quadrature
schemes.15 It should be noted that even though Duffy quadrature can be applied to the entire
surface to evaluate the singular integrals efficiently, this only gives accurate results for the entire
surface but not for individual elements, as is required in BE analysis.

As described in Sec. 1, hybrid Duffy-Gauss quadrature (DG) has been used in BE analysis for
Stokes flow problems (Barakat and Shaqfeh, 2018). Progressive refinement of Gauss-Legendre
quadrature is additionally considered for acoustic problems (Ven̊as and Kvamsdal, 2020). This
approach resembles hybrid Duffy-Gauss quadrature with progressive refinement (DGr), but
Ven̊as and Kvamsdal (2020) do neither describe the refinement strategy nor investigate its in-
fluence on the BE result. Hybrid Duffy-Gauss quadrature with adjusted weights (DGw) is an
entirely new scheme that is presented in this paper for the first time.

Each of the four schemes presented is applicable to arbitrary surface discretizations with quadri-
lateral elements. However, the investigation here focus on biquadratic isogeometric discretiza-
tions: The quadrature schemes are applied to a biquadratic B-spline sheet in Sec. 4.1 and to a
biquadratic NURBS sphere in Sec. 4.2.

4.1 Hybrid quadrature on a B-spline sheet

The introduced hybrid quadrature schemes are applied to a biquadratic B-spline sheet in this
section. The coarsest discretization level ` = 1 with 4 × 4 elements is shown in Fig. 6a, while
Figs. 6b and c show the subsequent levels ` = 2, 3 created by successive knot insertion. Black
circles represent the nno collocation points on the sheet. Among those, y0 (red face) is chosen
to illustrate the introduced quadrature schemes. The quadrature rules applied to the B-spline
elements are discussed in Sec. 4.1.1. The accuracy of the hybrid quadrature schemes is then
compared in Sec. 4.1.2.

4.1.1 Elemental quadrature

The four hybrid quadrature schemes are applied to the B-spline sheets from Fig. 6. Fig. 7
shows the elemental quadrature rules used for quadrature schemes G (a), DG (b), DGr (c)
and DGw (d) on the B-spline sheet from Fig. 6a (` = 1) considering collocation point y0 and
quadrature density n0 = 3. The elemental quadrature rules on the sheets from Fig. 6b (` = 2)
and c (` = 3) are shown in Fig. C.1. The corresponding quadrature point locations and weights
are given in Fig. C.2 for ` = 1, 2, 3.

of Duffy quadrature points would increase the computational effort without increasing the quadrature error and
is therefore not considered here.

15Variables defining the number of quadrature points for an element or for the entire discretization are sum-
marized in Table 2. More details can be found in Appendix B.
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Elements:

singular near sing. regular

Collocation points:

y0

a. b. c.

Figure 6: Hybrid quadrature on a B-spline sheet : Singular, near singular and regular elements for the
quadrature of a singularity at collocation point y0 on a biquadratic sheet with 4 × 4 elements (` = 1,
a.), with 8× 8 elements (` = 2, b.) and with 16× 16 elements (` = 3, c.).

Elemental quadrature rule:

Duffy Gauss with adj. weightsclassical Gauss modified Gauss

ñqp

= 3

ñqp

= 6

ñqp

= 3

ñqp

= 6

ñqp

= 3

ñqp

= 3

a. b. c. d.

Figure 7: Hybrid quadrature on a B-spline sheet : Quadrature rules used for Gauss-Legendre quadra-
ture (G, a.), for hybrid Duffy-Gauss quadrature (DG, b.), for Duffy-Gauss quadrature with progressive
refinement (DGr, c.) and for hybrid Duffy-Gauss quadrature with adjusted weights (DGw, d.) consid-
ering collocation point y0 and quadrature density n0 = 3.

In BE analysis, the integration over the whole surface has to be performed for each collocation
point once (see Appendix A.2). The quadrature weights for Gauss-Legendre quadrature with
adjusted weights as well as the weights and locations of the quadrature points for modified
Gauss-Legendre quadrature and for Duffy quadrature depend on the location of the collocation
point. The introduced quadrature schemes thus require small modifications based on the lo-
cation of the collocation point. The collocation points on a biquadratic NURBS sheet (black
circles in Fig. 6) can be divided into three types based on their location:

• type C: at a corner point of an element

• type E: at the midpoint of an elemental edge

• type M: at the midpoint of an element (e.g. y0)

The location of the Duffy quadrature points are shown in Fig. 3b for collocation points of
type M and in Fig. B.4 for collocation points of type C and E. Quadrature points for modified
Gauss-Legendre quadrature on a biquadratic element are shown in Fig. B.1b. This modification
is beneficial in terms of robustness and efficiency for collocation points of type E and M, while
classical Gauss-Legendre quadrature (Fig. B.1a) is more efficient for type C collocation points.
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Gauss-Legendre quadrature with adjusted weights has been presented and discussed in Sec. 3.2.2
for collocation points of type M. The quadrature weights for collocation points of other types
are obtained in the same manner. Fig. 8 shows the element types for DGw and exemplary
collocation points of type C, E and M. It can be seen that only seven sets of quadrature weights
are required for the integration over all elements and collocation points. These seven sets, which
are required and sufficient for regular biquadratic B-spline sheets of arbitrary refinement, are
given in Tables C.1 and C.2. The largest weight differences occur by far for element type 1 and
5. Therefore, a simpler but still promising approach is to apply adjusted weight quadrature
only to elements of type 1 and 5 and classical Gauss quadrature to the remaining near singular
elements.

Elemental quadrature rule:

Gauss Duffy Gauss with adjusted weights

1 2 3 4 5 6 7

Figure 8: Hybrid quadrature on a B-spline sheet : Element type (above) and the corresponding weight
differences (below) for quadrature scheme DGw and various exemplary collocation points (red dots).

4.1.2 Quadrature accuracy

The absolute quadrature error on element e due to evaluating the singular integral16

Ie =

∫
Ωe

1

‖x− y0‖
dax (22)

at collocation point y0 is defined as

eeabs = |Ihe − Ie| , (23)

where Ihe denotes the numerical approximation of integral (9). Fig. 9 shows the absolute quadra-
ture error on B-spline discretizations of refinement level ` = 1, 2, 3 with n0 = 3. It can be seen
that the maximum elemental error decreases with increasing ` and decreases from scheme a. (G)
to d. (DGw). The total quadrature error for y0, defined as

etot
abs = |Ih − I| (24)

16The singular integral (22) is representative of the behavior of the integrals in the BIE (12).
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a.

b.

c.

d.

` = 1 ` = 2 ` = 3

ee a
b

s
ee a

b
s

ee a
b

s
ee a

b
s

Figure 9: Hybrid quadrature on a B-spline sheet : Absolute quadrature error for G (a.), DG (b.),
DGr (c.) and for DGw (d.) considering collocation point y0 and n0 = 3.

with the elemental summations I =
∑

e Ie and Ih =
∑

e Ihe , also decreases with increasing `
and from scheme a. to d. as Fig. 9 shows. The only exception occurs for scheme DGw from
` = 1 to ` = 2 (see Fig. 9d). The reason for the increasing error is to be found in the most
inner layer of classical Gauss-Legendre elements (third layer in total) that yields the highest
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elemental errors: The sheets for ` = 2, 3 contain the entire third layer, while the ` = 1 sheet
only contains half of that layer. The same effect can be observed for DGw, where the overall
error decreases only by factor 1.3 from ` = 1 to ` = 2. For all other cases, e0

abs is halved with
each refinement step, i.e. linear convergence with convergence rate µ = 1/2.

Fig. 10 depicts the mean relative quadrature error

erel :=
1

nno

nno∑
A=1

‖IhA − IA‖
IA

, (25)

on the investigated B-spline. Fig. 10a shows linear convergence with rate µ = 1/2 for each
quadrature scheme. However, the error for quadrature scheme DG is about two orders of
magnitude lower than for scheme G, while Duffy-Gauss quadrature scheme with progressive
refinement (DGr) reduces the error by two further orders of magnitude. Duffy-Gauss quadrature
with adjusted weights (DGw) is even more accurate and yields the lowest error among the
investigated schemes.

Figure 10: Hybrid quadrature on a B-spline sheet : Quadrature error for n0 = 3 vs. the number of
nodes (a.) and vs. the total number of quadrature points (b.) for ` = 1, . . . , 5.

Fig. 10b shows the mean relative error vs. the total number of quadrature points that is given
by

nqp :=

nno∑
A=1

nel∑
e=1

nA, eqp , (26)

where nA, eqp denotes the number of quadrature points for collocation point yA on element e.
The figure shows the same convergence behavior as noted in Fig. 10a. It also shows that DGr
uses slightly more quadrature points per refinement level than schemes DGw, DG and G. How-
ever, the gain in accuracy clearly outweighs the additional quadrature effort as Fig. 10b shows.
Therefore DGr and especially DGw are the most efficient quadrature schemes for singular inte-
gral approximation on biquadratic B-spline sheets.

Fig. 10 further shows that increasing the number of quadrature points or adjusting the quadra-
ture weights in one ring of elements (DGr or DGw) leads to a beneficial jump in accuracy
(c.f. DG). Using further rings, additional, albeit smaller jumps in accuracy can be expected.
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4.2 Hybrid quadrature on a NURBS sphere

Next, the four hybrid quadrature schemes are applied to spherical surfaces to investigate their
suitability for curved NURBS surfaces. The procedure advocated here is visualized and inves-
tigated by considering biquadratic NURBS spheres, but is applicable to any closed and open
surface defined by a mapping from a planar parameter domain. It should be further noted
that any genus zero surface can be mapped conformally onto a sphere (Gu et al., 2004), so this
example has far reaching applications. Two different spherical discretizations with biquadratic
NURBS elements are considered here: The single-patch NURBS sphere from Fig. 11a and b is
investigated in Sec. 4.2.1, while the six-patch NURBS sphere from Fig. 11c and d is investigated
in Sec. 4.2.2. Fig. 11e shows that the single-patch discretization is exactly spherical independent
of `, whereas the six-patch sphere is only approximately spherical. For the six-patch sphere, the
L2 norm of the radius error17 shows almost quadratic convergence w.r.t. the number of control
points (eL

2

R ∝ 1/nno
2).

a. b.

c. d.

e.

∝
1/n

no 2

∝ 1/nno

Figure 11: Hybrid quadrature on a NURBS sphere: Single-patch NURBS sphere of discretization level
` = 1 (a) and ` = 2 (b) and six-patch NURBS sphere of level ` = 1 (c) and ` = 2 (d). Collocation
points are located on surface Sh = S, while control points are not. e. L2 norm of the radius error for
` = 1, . . . , 6.

The number of elements and control points are given in Table 3 for the single-patch and the six
patch sphere, both of refinement level ` = 1, . . . , 6. The corresponding number of quadrature
points are given in Table 4 for the four hybrid quadrature schemes with quadrature density
n0 = 3. Those numbers also apply to the numerical examples in Sec. 5, which consider spheri-
cal and spheroidal geometries.

The accuracy of the quadrature schemes is investigated by approximating the singular inte-
grals of the BIE (12). The quadrature error for collocation point yA is defined with respect to
identity (9) as

e
yA
SL :=

√√√√ 3∑
i=1

[(∫
S
Gij(rA)nj(x) dax

)2
]
, (27)

17The L2 norm of the radius error eR = (Rh − R)/R is defined as eL
2

R :=
√∫
S e

2
R da/AS , where AS = 4πR2

denotes the surface area of a sphere.
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and with respect to identity (10) as

e
yA
DL :=

√√√√ 3∑
i=1

3∑
j=1

[(∫
S

1

4π
Tijk(rA)nk(x) dax + δij

)2
]
, (28)

where rA := x− yA. The mean quadrature errors with respect to identities (9) and (10) then
follow as

eSL :=
1

nA

nA∑
A=1

e
yA
SL , and eDL =

1

nA

nA∑
A=1

e
yA
DL . (29)

` 1 2 3 4 5 6

nel
32 128 512 2,048 8,192 32,768
24 96 384 1,536 6,144 24,576

nno
62 182 614 2,246 8,582 33,542
56 152 488 1,736 6,536 25,352

Table 3: Hybrid quadrature on a NURBS sphere: Number of elements nel and control points nno
required for NURBS spheres of discretization level ` = 1, . . . , 6 (red font: single-patch sphere, blue font:
six-patch sphere). The number of collocation points is also nno.

n̄qp
`

1 2 3 4 5 6

G
297 1,161 4,616 18,440 73,735 294,919
225 873 3,464 13,832 55,303 221,191

DG
569 1,436 4,891 18,714 74,008 295,192
478 1,135 3,732 14,102 55,574 221,463

DGr
820 1,723 5,197 19,029 74,328 295,513
698 1,361 3,956 14,323 55,793 221,680

DGw
639 1,524 4,989 18,816 74,114 295,298
490 1,140 3,733 14,101 55,574 221,463

Table 4: Hybrid quadrature on a NURBS sphere: The mean number of quadrature points n̄qp = nqp/nno
(rounded) for NURBS spheres of discretization level ` = 1, . . . , 6 (red font: single-patch sphere, blue
font: six-patch sphere) and quadrature density n0 = 3.

4.2.1 Single-patch NURBS sphere

Single-patch NURBS surfaces are constructed by revolving a NURBS semicircle by a full rota-
tion (Piegl and Tiller, 1997) and they are thus exactly spherical. Fig. 11a shows a coarse NURBS
discretization of the surface (refinement level ` = 1) and the corresponding control points and
collocation points. The sphere has constant radius (C0-continuity), continuous tangent vec-
tors (C1-continuity) and constant curvature, making it C2-continuous everywhere. However,
these continuity properties are in general not maintained during deformation: The single-patch
NURBS sphere is interpolatory across the patch boundary (C−1-continuity) and between the
other octants of the sphere (C0-continuity), while it is Cp−1-continuous across the remaining
element boundaries. Fig. 11b shows a NURBS discretization of refinement level ` = 2 obtained
by knot insertion (Hughes et al., 2005) maintaining the continuity properties from ` = 1.

Fig. 12a and b shows the quadrature rules used for hybrid Duffy-Gauss quadrature with adjusted
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a. b. c. d. e.

Elemental quadrature rule:

Gauss Duffy Gauss with adjusted weights

n0 2n0

Figure 12: Hybrid quadrature on a single-patch NURBS sphere: Quadrature rules used for hybrid
Duffy-Gauss quadrature with adjusted weights (DGw) considering collocation points that are located
within an element (a. and b.), along the common edge of two elements (c.), at the junction of four
elements (d.) and at the pole, where 2`+2 elements meet (e.). Here ` = 2.

weights (DGw) and exemplary collocation points located within elements. Particular attention
has to be paid to collocation points within the degenerated elements located at the poles of the
sphere (Fig. 12b). For these points, Gauss quadrature with adjusted weights cannot be applied
to the near singular elements in a meaningful way. Therefore, refined Gauss-Legendre quadra-
ture is applied instead to the elements adjacent to the pole (except the singular element where
Duffy quadrature is applied). In contrast, the application of DGw to collocation points within
other elements (Fig. 12a) follows directly from Sec. 4.1 and is thus straightforward. Collocation
points on element boundaries only occur along the lines of reduced continuity between octants
of the sphere (see Fig. 11a and b). DGw is applied to collocation points between two (Fig. 12c)
and four octants (Fig. 12d) by treating each octant of the sphere separately as discussed in
Sec. 4.1. For a collocation point at the pole (Fig. 12e), Duffy quadrature is applied to the 2`+2

elements adjacent to the collocation point.

eeabs

a. b. c. d.

Figure 13: Hybrid quadrature on a single-patch NURBS sphere: Absolute quadrature error (23) for
Gauss-Legendre quadrature (G, a.), hybrid Duffy-Gauss quadrature (DG, b.), Duffy-Gauss quadra-
ture with progressive refinement (DGr, c.) and hybrid Duffy-Gauss quadrature with adjusted
weights (DGw, d.), each considering collocation point yA and n0 = 3.

Fig. 13 shows the absolute element-wise quadrature error (23) for hybrid quadrature schemes
G (a.), DG (b.), DGr (c.) and DGw (d.) considering collocation point yA that is located within
an element.18 It can be seen that scheme G is very inaccurate on the singular element, while the
elemental error decreases with increasing distance to yA. Using scheme DG instead reduces the
quadrature error on the singular element drastically so that the highest errors now occur on the

18In absence of an analytical solution, integral Ie (22) is approximated by DG using Duffy quadrature with
ñgp = 16 and Gauss-Legendre quadrature with ñgp = 60 to obtain an reference solution.
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near singular elements. Scheme DGr reduces the error on those elements so that the singular
integral is approximated on all elements accurately. Gauss-Legendre quadrature with adjusted
weights is designed in Sec. 3.2.2 to determine singular integrals on near singular elements of
plane and regular sheets exactly. Although integral (22) is not approximated exactly on the
near singular elements of curved surfaces, Fig. 13d shows that scheme DGw yields a lower error
than scheme DG for the same number of quadrature points.

The mean quadrature error (29) with respect to the BE identities (9) and (10) is shown in
Fig. 14 vs. the number of total quadrature points (26) for mesh refinement level ` = 2 and vary-
ing quadrature refinement n0 = 2, 4, 8, 16, 32. Both errors decrease with increasing quadrature
refinement for quadrature schemes G, DG and DGr,19 where DG and especially DGr shows
a much faster convergence than G: With n0 = 32, the quadrature error with respect to the
first identity (see Fig. 14a) is eSL ≈ 10−3 for scheme G, eSL ≈ 3 · 10−9 for scheme DG and
eSL ≈ 6 · 10−14 for scheme DGr. The error with respect to the second identity (see Fig. 14b)
shows a similar behavior, albeit the difference between thee three schemes is slightly smaller.
For both errors, schemes DG and DGr show a much better convergence behavior than scheme
G whose convergence rate is linear.

a. b.

Figure 14: Hybrid quadrature on a single-patch NURBS sphere: Mean quadrature error (29) w.r.t. BE
identities (9, a.) and (10, b.) for ` = 2 and varying quadrature refinement n0 = 2, 4, 8, 16, 32.

The singular BE integrals are approximated with high efficiency using a coarse discretization
and a moderate number of quadrature points as shown in the previous paragraph. However, re-
fined discretizations are required to represent high order boundary conditions or more complex
surface geometries. Another application that requires sufficiently small elements are coupled
FE-BE simulations, where FE and BE analysis is conducted on a deforming surface. The accu-
racy of the quadrature schemes on refined discretization is thus of great interest for BE analysis
and is investigated below.

Fig. 15 shows the quadrature error w.r.t. identity (9) for all collocation points on one oc-
tant of a sphere of refinement level ` = 1 (a.), ` = 2 (b.), ` = 3 (c.) and ` = 4 (d.) using
quadrature scheme DGr with n0 = 3. The quadrature error decreases for the majority of the
collocation points with increasing quadrature refinement. However, the collocation points next
to the pole yield similarly high errors independently of `. The mean quadrature error (29)

19Scheme DGw is not considered for quadrature refinement studies, since it has only been formulated with
ne
gp = 3× 3 for the near-singular elements.
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ey
A

S
L

a. b. c. d.

Figure 15: Hybrid quadrature on a single-patch NURBS sphere: Quadrature error e
yA

SL (27) for DGr
w.r.t. identity (9) considering all collocation points on one octant of the sphere for n0 = 3 and discretiza-
tion level ` = 1 (a.), ` = 2 (b.), ` = 3 (c.) and ` = 4 (d.).

considering all collocation points is thus not monotonically decreasing as can be seen in Fig. 16:
The quadrature error for DGr increases for the first refinement steps before it starts to decrease
at ` = 3. Scheme G results in a much higher error that, however, shows linear convergence
with an almost constant rate µ = 0.5. The curves for scheme DG and scheme DGw lie between
those for G and DGr, with DGw being more accurate than DG. For higher `, all investigated
quadrature scheme show linear convergence with the same rate, where DGr is more accurate
than DGw, which is more accurate than DG, which is in turn more accurate than G.

a. b.

Figure 16: Hybrid quadrature on a single-patch NURBS sphere: Mean quadrature error (29) w.r.t. BE
identities (9, a.) and (10, b.) for n0 = 3 and varying mesh refinement ` = 1, . . . , 6.

4.2.2 Six-patch NURBS sphere

This section discusses the application of the four hybrid quadrature schemes to the discretiza-
tions shown in Fig. 11c and d. These discretizations consist of six biquadratic NURBS patches
and are thus referred to as six-patch NURBS spheres. In contrast to the single-patch dis-
cretziation from Sec. 4.2.2, the six-patch NURBS sphere is only approximately spherical (see
Fig. 11e). The application of hybrid quadrature schemes to six-patch NURBS spheres is never-
theless promising, since there are no degenerated and small elements near the pole, which cause
the largest quadrature errors on the single-patch sphere (cf. Fig. 15). It should be further noted
that all collocation points lying on element boundaries also lie on patch boundaries as Fig. 11c
and d shows.
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The quadrature rules and the element types for hybrid Duffy-Gauss quadrature with adjusted
weights (DGw) are shown in Fig. 17a and b for collocation points within patches, in Fig. 17c
for collocation points at junctions of three patches and in Fig. 17d and e for collocation points
at boundaries between two patches. Particular attention has to be paid to collocation points
located near, but not directly at, junctions of three patches (see Fig. 17b and e). For those
collocation points, the number of near singular elements is reduced by one (cf. Fig. 17a and d).

a. b. c. d. e.

Elemental quadrature rule:

Gauss Duffy Gauss with adjusted weights

n0 2n0

Figure 17: Hybrid quadrature on a six-patch NURBS sphere: Quadrature rules used for hybrid Duffy-
Gauss quadrature with adjusted weights (DGw) considering collocation points that are located within
one patch (a. and b.), at the junction of three patches (c.) and along the common edge of two patches
(c. and d.).

The mean quadrature error (29) with respect to BE identities (9) and (10) is shown in Fig. 18
vs. the number of total quadrature points (26) for mesh refinement level ` = 2 and varying
quadrature refinement n0 = 2, 4, 8, 16. Similar to the single-patch sphere from Sec. 4.2.1, the
hybrid quadrature schemes G, DG, and DGr show decreasing quadrature errors as the number
of quadrature points increases. The convergence behavior of quadrature schemes that use Duffy
quadrature is even better for the six-patch sphere than for the single-patch sphere so that DG
and DGr yield mean quadrature errors in the range of machine precision for n0 = 16, respec-
tively for n0 = 8.

a. b.

Figure 18: Hybrid quadrature on a six-patch NURBS sphere: Mean quadrature error (27, a.) and
(28, b.) for ` = 2 and varying quadrature refinement n0 = 2, 4, 8, 16.

Fig. 19 shows the quadrature error w.r.t. BE identity (9) for all collocation points on one quad-
rant of six-patch spheres of refinement level ` = 1 (a.), ` = 2 (b.), ` = 3 (c.) and ` = 4 (d.) using
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a. b. c. d.

Figure 19: Hybrid quadrature on a six-patch NURBS sphere: Quadrature error e
yA

SL (27) for DGr
w.r.t. identity (9) considering each collocation point on one octant of the sphere for n0 = 3 and dis-
cretization level ` = 1 (a.), ` = 2 (b.), ` = 3 (c.) and ` = 4 (d.).

quadrature scheme DGr with n0 = 3. It can be seen that the quadrature error decreases with
increasing quadrature refinement for all collocation points, which was not the case for the single-
patch sphere (cf. Fig. 15). The mean quadrature error (29) with respect to identities (9) and
(10) is shown in Fig. 20 for n0 = 3 and varying mesh refinement ` = 1, . . . , 5. Both quadrature
errors decrease monotonically with increasing mesh refinement for each of the four quadrature
scheme. DGr provides by far the best result, followed by DGw and DG and eventually G, which
is still quite inaccurate even for highly refined meshes. In contrast to eSL (Fig. 20a), DGw does
not yield a significant improvement over DG for eDL (Fig. 20b).

a. b.

Figure 20: Hybrid quadrature on a six-patch NURBS sphere: Mean quadrature error (29) w.r.t. BE
identities (9, a.) and (10, b.) for quadrature density n0 = 3 and varying mesh refinement ` = 1, . . . , 5.

4.3 Conclusions on hybrid quadrature

The suitability of the presented hybrid quadrature schemes for BE analysis has been demon-
strated in the previous sections: Sec. 4.1 shows that Duffy-Gauss quadrature with progressive
refinement (DGr) and especially hybrid Duffy-Gauss quadrature with adjusted weights (DGw)
approximate singular integrals on flat surfaces very efficiently, while Sec. 4.2 shows that DGr is
most efficient on curved surfaces.

It has been further shown that the hybrid quadrature schemes approximate the singular BE in-
tegrals very efficiently on coarse single-patch NURBS spheres (Sec. 4.2.1). These discretizations
are exactly spherical and therefore recommended for BE analysis on rigid spheres or spheroids.
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The application of hybrid quadrature schemes to the six-patch NURBS sphere (Sec. 4.2.2) also
yields accurate results for coarse discretizations, but moreover a significantly improved conver-
gence behavior for mesh refinement. The six-patch discretization is therefore recommended for
more complex surface geometries and deforming surfaces.

5 Application to Stokes flow problems

The suitability of the introduced quadrature schemes for BE analysis is investigated here with
three numerical examples: Sec. 5.1 and Sec. 5.2 consider spheres rotating in a viscous fluid and
translating through a viscous fluid, respectively.20 A rising bubble of non-spherical shape is
considered as a third problem in Sec. 5.3. In all three problems, the velocity on the surface is
given by Dirichlet boundary conditions and the traction on the surface is determined by BE
analysis. The numerical traction results are compared to analytical results based on Chwang
and Wu (1975) and Kong et al. (2012).

5.1 Flow caused by a rotating sphere

The first example considers a rigid sphere (surface S, Radius R) that is surrounded by a viscous
fluid F (dynamic viscosity η). The sphere rotates around its center with the prescribed angular
velocity ω̄ ∈ R3, so that the surface velocity is given by

v(x) = ω̄ × x, ∀ x ∈ S . (30)

A rotation around the vertical axis is considered here, i.e. ω̄ = ω̄ e3. The BIE can be solved
for the surface traction t := σn considering (30) as a Dirichlet boundary condition. Due to the
pure rotational velocity, the traction field has only tangential components, while the normal
traction (i.e. the pressure) is zero.

The BE traction error

et(x) =
‖th(x)− t(x)‖

tmax
, (31)

with the maximum traction value

tmax := max
x∈S
‖t‖ = 3 η ω̄ (32)

located along the equator of the sphere, is introduced to compare the numerical results system-
atically to the analytical solution. Fig. 21 shows the BE traction error on a single-patch NURBS
sphere and on a six-patch NURBS sphere, both of mesh refinement level ` = 4, considering the
introduced quadrature schemes from Sec. 4. Half of the symmetric BE meshes is hidden to
improve the visibility of the results.

The accuracy of the introduced hybrid quadrature schemes is investigated systematically in
two convergence studies: First, the influence of quadrature refinement is investigated by vary-
ing the quadrature density n0 = 2, 4, 8, 16 on a fixed mesh (` = 2). Second, the influence of
mesh refinement is investigated by varying the mesh refinement level ` = 1, . . . , 6, while n0 = 3.
Both convergence studies consider single-patch and six-patch NURBS spheres. The traction
error on the surface is characterized by the L2 norm of the traction error defined as

eL
2

t =
1√
AS

√∫
S
e2

t da , (33)

20A fixed sphere in a steady rotational flow leads to a mathematically equivalent problem as a sphere rotating
in a quiescent fluid. A fixed sphere in a steady transversal flow leads to a mathematically equivalent problem as
a sphere translating through a quiescent fluid.
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a. b. c. d.

e. f. g. h.

Figure 21: Rotating sphere: Traction error for the four hybrid quadrature schemes with n0 = 3.
Single-patch NURBS sphere of refinement level ` = 4: G (a. n̄qp = 18, 440), DG (b. n̄qp = 18, 714),
DGr (c. n̄qp = 19, 029) and DGw (d. n̄qp = 18, 816). Six-patch NURBS sphere of refinement level ` = 4:
G (e. n̄qp = 13, 832), DG (f. n̄qp = 14, 102), DGr (g. n̄qp = 14, 323) and DGw (h. n̄qp = 14, 101).

where AS = 4πR2 denotes the surface area of S.

Fig. 22 depicts eL
2

t for the first convergence study. On the single-patch sphere (Fig. 22a and
b), the traction error decreases for each of the hybrid quadrature schemes, where hybrid Duffy-
Gauss quadrature with progressive refinement (DGr) provides the best result, followed by hybrid
Duffy-Gauss quadrature (DG) and eventually by Gauss-Legendre quadrature (G). Black mark-
ers denote results obtained from an iterative solver.21 This convention is used for all examples
in Sec. 5. Similar results are obtained for the six-patch sphere (Fig. 22c and d), but the L2

norm of the traction error converges only to eL
2

t ≈ 10−3 for ` = 2 and to eL
2

t ≈ 5 · 10−5 for
` = 4. Better results are prevented by the inaccuracy of the six-patch sphere discretization
(see Fig. 11e). The six-patch sphere does not require an iterative solver and is thus preferable
in terms of robustness and computational effort. The quadrature weights for adjusted weight
quadrature are given in Table C.1 and C.2 only for nqp = 3× 3. The results for DGw are thus
not investigated for a varying quadrature density.

Fig. 23 depicts the L2 norm of the traction error for the second convergence study. It can
be seen that the traction error decreases for each of the hybrid quadrature schemes and on both
of the considered discretizations. As expected, scheme DGr and G provide the best and the
worst results, respectively. The results of the remaining two schemes are in between, where
DGw seems to offer no significant advantage in accuracy over DG here. Applying G or DG to a

21The iterative solution method used is the preconditioned conjugate gradients method. For each individual
combination of quadrature scheme, mesh refinement and quadrature density, the depicted error is chosen based
on

eL
2

t =

{
eL

2

t,iter, eL
2

t,iter < 0.9 eL
2

t,direct

eL
2

t,direct, otherwise
,

where eL
2

t,iter and eL
2

t,direct denote the L2 norm of the traction error using an iterative or a direct solver, respectively.
The iterative solver is more robust w.r.t. ill-conditioned BE matrices and yields thus better results on highly
refined single-patch spheres with coinciding control points at the poles.
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a. b.

c. d.

Figure 22: Rotating sphere: Traction error eL
2

t for varying quadrature density n0 = 2, 4, 8, 16 as
introduced in Sec. 4. The error on the single-patch sphere is shown in (a) for ` = 2 and in (b) for ` = 4.
Black markers indicate where an iterative solver is used. The error on the six-patch sphere is shown in
(c) for ` = 2 and in (d) for ` = 4.

single-patch sphere with ` > 1 requires an iterative solver, as indicated by the black markers in
Fig. 23a. Schemes DGw and DGr, which also treat the near singular elements properly, allow to
use a direct solver for ` = 2, 3 also, and are therefore preferable in regard to the computational
time.

Unlike the single-patch sphere, the six-patch sphere (Fig. 23b) does not require an iterative
solver and is therefore very robust, both with respect to mesh and quadrature refinement. The
six-patch sphere further leads to a smaller error, where DGr provides by far the best result with
a convergence rate of almost 1.5 (eL

2

t ∝ 1/n1.5
no ). The kink in the curves for DG and DGw shows

that applying Duffy quadrature to the singular elements without increasing the quadrature
density on the near singular elements is insufficient to yield accurate results for ` > 3.

5.2 Flow caused by a rising sphere

The suitability of the introduced quadrature schemes for a pure rotational problem has been
shown in Sec. 5.1. However, this problem yields only tangential tractions, while the normal
tractions are zero. The suitability of the quadrature schemes for problems with non-zero velocity
and traction components in both normal and tangential direction is investigated in the second
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∝ 1/
√
nno

∝
1/n

no

∝ 1/
√
nno

∝
1/n

no

∝
1/n 1.5no

a. b.

Figure 23: Rotating sphere: Traction error eL
2

t for quadrature density n0 = 3 on the single-patch
NURBS sphere (a) and on the six-patch NURBS sphere (b), both of varying refinement level ` = 1, . . . , 6.
The black markers depict results from an iterative solver.

example: A sphere with radius R is transtaled with constant velocity v̄ = v̄ e3
22 through the

fluid. The Dirichlet boundary condition on the surface S is therefore given by

v(x) = v̄, ∀ x ∈ S , (34)

while the surface traction is unknown.

Fig. 24 shows the L2 norm of the relative BE traction error

et(x) =
‖th(x)− t(x)‖
‖t(x)‖

(35)

for translating spheres of refinement level ` = 1, . . . , 6. The results are generally similar to those
from Sec. 5.1. On the single-patch sphere, the translating sphere problem can be solved with
higher accuracy than the rotating sphere problem. On the six-patch sphere, it is the other
way around. It is noteworthy that the convergence rate for DGr and ` > 4 decreases slightly.
Treating additional rings with refined quadrature would allow to maintain a convergence rate
of 1.5. However, a single refinement ring already gives an excellent gain in accuracy.

5.3 Flow caused by a rising ellipsoid

The suitability of the quadrature schemes for problems with non-spherical surface geometries
is investigated in the third example: A ellipsoid with surface S rises with constant velocity v̄
through a fluid of dynamic viscosity η. The surface of the ellipsoid is described by

x2
1 + x2

2

a2 (1− e2)
+
x2

3

a2
= 1 , for x ∈ S (36)

where e denotes the eccentricity of the ellipsoid (0 ≤ e < 1) and a is the length of its semi-major
axis.23 The velocity on S is given by the Dirichlet boundary condition (34).

22The prescribed velocity can be chosen arbitrarily, i.e. v̄ = v̄i ei. Here, a pure vertical velocity is chosen for
the sake of simplicity.

23The eccentricity of a ellipsoid is defined as e :=
√

1− b2/a2, where b denotes the length of the semi-minor
axis. Two parameters out of the triplet (a,b,e) needs to be known to define the ellipsoidal surface. The example
from Sec. 5.3 considers a ellipsoid with e = 0.75 and a = L/e1/3.
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∝ 1/
√
nno

∝
1/n

no

∝
1/n 1.5no

∝ 1/n0.25
no

∝
1/n

no

∝
1/n 1.5no

a. b.

Figure 24: Rising sphere: Traction error eL
2

t for quadrature density n0 = 3 on the single-patch NURBS
sphere (a) and on the six-patch NURBS sphere (b), both of varying refinement level ` = 1, . . . , 6. The
black markers depict results from an iterative solver.

Fig. 25 shows the BE traction on a six-patch ellipsoid of refinement level ` = 3 using quadrature
scheme DGr with n0 = 3. The normal and tangential components of the traction vector and
its magnitude are shown in Fig. 25a, b and c, respectively. Fig. 25d shows that the relative BE
traction error (35) yields et ≈ 10−3 along patch boundaries and an even much smaller error away
from patch boundaries. The velocity and pressure field on the ellipsoid and in the surrounding
fluid are shown in Fig. 26. The fluid velocity is determined by the BIE for points within the
domain (11), while the surface velocity on S is given by BC (34). The pressure is determined
on the ellipsoid surface by p = −t ·n and within the fluid domain by the pressure BIE (A.11).

tn[η v̄/L] tt[η v̄/L] ‖t‖[η v̄/L] et [10−4]

a. b. c. d.

Figure 25: Rising ellipsoid: BE traction for a ellipsoid of refinement level ` = 3 and quadrature scheme
DGr with n0 = 3. a. normal traction tn = −p; b. tangential traction tt; c. norm of the traction ‖t‖ = t3
here; d. relative traction error et.

The L2 norm (33) of the relative BE traction error (35) is shown in Fig. 27a vs. the number
of nodes, and in Fig. 27b vs. the total number of quadrature points (26). The results are
very similar to those of the rising sphere in Sec. 5.2, since the sphere is a special case of the
ellipsoid (for e = 0): Quadrature schemes DGr and G provide the best and the worst of the
BE results, respectively. Considering DGr with additional rings of refined quadrature would
allow to maintain a convergence rate of 1.5. Quadrature schemes DG and DGw provide almost
the same results, which are in between the results of the former. Thus, all hybrid quadrature
schemes, in particular DGr, prove to be robust to changes in surface shape and are therefore
suitable for various applications, including coupled FE-BE simulations.
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v3 [v̄] vr [v̄] p [ηv̄/L]

a. b. c.

Figure 26: Rising ellipsoid : Velocity and pressure field on the ellipsoid surface and in the surrounding
fluid: a. vertical velocity v3 = v · e3; b. radial velocity vr = v · er, where er := xr/‖xr‖ with xr =
x1e1 + x2e2 ; c. pressure p = −trσ/3.

∝ 1/n0.25no

∝
1/n

no

∝
1/n 1.5no

a. b.

Figure 27: Rising ellipsoid: The L2 norm of the relative pressure error ep for quadrature density n0 = 3
and six-patch NURBS ellipsoids of varying refinement level ` = 1, . . . , 6.

6 Conclusion and outlook

This work presents new quadrature schemes for the efficient approximation of weakly singular
integrals (1/r kernel) and provides important findings on singular quadrature in BE (Boundary
element) analysis. A new quadrature rule that approximates weakly singular integrals on plane
and regular near singular elements exactly is presented in Sec. 3.2.2. Numerical examples have
shown that this quadrature rule can also be advantageous on curved surfaces, as it improves
the accuracy compared to classical Gaussian quadrature. The presented quadrature rule can
be easily extended to determine singular integrals exactly on other surfaces like spheres and
cylinders.

Sec. 4 presents four new hybrid quadrature schemes for BE analysis that combine different
quadrature rules for singular, near singular, and regular elements. Numerical investigations on
flat and curved isogeometric surfaces show that all presented schemes converge robustly for both
quadrature and mesh refinement, with hybrid Duffy-Gauss quadrature with progressive refine-
ment (DGr) being by far the most efficient scheme. The present paper considers a single ring
of elements with refined quadrature, which gives already an excellent gain in accuracy. How-
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ever, considering additional rings would yield even better approximations and is thus worth to
investigate in future works. The quadrature resolution for each ring could then be determined
with respect to numerical criteria such as those of Bu and Davies (1995).

The application of the presented hybrid quadrature schemes to coupled FE-BE analysis of
fluid structure interaction problems is planned in a forthcoming paper. The presented schemes
also offer a wide range of other applications, since they are suitable for arbitrary weakly singular
integrals and are not limited to Stokes flow or to BE analysis at all.
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A Boundary element analysis

Solving the boundary integral equation (BIE) for Dirichlet, Neumann or mixed problems by use
of boundary elements (BE) is discussed in this section. The spatial discretization of the surface
geometry and the BIE (12) is introduced in Sec. A.1, while the subsequent collocation into
a solvable system is discussed in Sec. A.2. The elemental mapping from the physical domain
to a parameter domain is described in Sec. A.3 and the conceptual approximation of surface
integrals by numerical quadrature is presented in Sec. A.4.

A.1 Boundary element discretization

The surface geometry S and the BIE (12) are discretized into nel finite boundary elements,
numbered e = 1, . . . , nel, and nno nodal points. Element e occupies the surface domain Ωe ⊂ Sh
such that the surface geometry is approximated by

S ≈ Sh =

nel⋃
e=1

Ωe , (A.1)

where superscript h denotes approximated quantities. Point x ∈ Ωe is approximated by the
nodal interpolation

x ≈ xh =

ne∑
I=1

NI xI , xh ∈ Ωe ⊂ Sh, (A.2)

where xI denote one of the ne nodal points that define element e and NI denotes the corre-
sponding shape functions 24 (e.g. Lagrange functions, B-splines or NURBS). Discrete elemental
arrays are defined to simplify the notation: The nodal positions for element e are assembled in
the discrete column vector of length nedof := 3ne

xe =


x1

x2
...

xne

 , (A.3)

whereas the nodal shape functions are assembled in the (3× nedof) array

Ne =
[
N1 1, N2 1, · · · , Nne 1 ,

]
(A.4)

24Non-italic discrete arrays xI and xe should not be confused with the italic field variable x.
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where 1 is the usual identity tensor in R3. Approximation (A.2) can be re-written in matrix
form by use of the elemental position vectors as

x ≈ Ne xe . (A.5)

To discretize the BIE, velocity and traction on the surface are approximated in the same fashion.
Velocity and traction are approximated at field point x ∈ Ωe by

v(x) ≈ Ne ve , and t(x) ≈ Ne te , (A.6)

where ve and te denote the nodal velocity and traction vector of length nedof for element e. At
source point y ∈ Ωē, the velocity is analogously approximated by

v(y) ≈ Nē vē , (A.7)

where Nē and vē are the shape function array and the nodal velocity vector for element ē. The
components of the discrete vectors ve, v̄e and te are denoted by veA, vēA and teA, respectively,
while the components of the shape function arrays Ne and Nē are denoted by Ne

iA and Nē
iA.

The lowercase indices i, j and k run from 1 to 3, while the uppercase index A runs from 1 to nedof .

The BIE (12) is then approximated by use of (A.6) and (A.7) as

Nē
iA vēA =

ne∑
e=1

[GeiA(y) teA + T eiA(y) veA] , (A.8)

where summation over A is implied. The components of the discrete BE matrices Ge and T e,
both of size (3× nedof), are given by

GeiA(y) = − 1

4π η

∫
Ωe

Gij(x− y) Ne
jA dax ,

T eiA(y) =
1

4π

∫
Ωe

Tijk(x− y)nk(x) Ne
jA dax .

(A.9)

The elemental vectors ve and te are assembled into global knot vectors v and t of length
ndof := 3nn, where nn denotes the total number of nodal discretization points, i.e. nodes for
Lagrange and control points for isogeometric discretizations. Similarly, the elemental arrays
Ge, T e and Nē are assembled into global global matrices G, T and N of size (3 × ndof). The
discretized boundary integral equation for a source point y on the interface S can thus be given
in matrix-vector form by

N (y) v = G(y) t + T (y) v . (A.10)

A continuous boundary integral representation for the pressure is given in Pozrikidis (1992) by

p(y) = − 1

8π

∫
S
Pi(x− y) ti(x) dax +

η

8π

∫
S
vi(x) Πij(x− y)nj(x) dax (A.11)

with pressure Green’s function

Pi(r) = 2
r̄i
r2

, (A.12)

and the corresponding tensor for pressure field associated with the stresslet

Πij(r) =
4

r3
(3 r̄ir̄j − δij) . (A.13)

More details on theory, discretization, assembly and implementation of BIEs can be found in
Harmel (2022).
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A.2 Boundary element collocation

The discretized BIE is then collocated at nno source points yA ∈ S, for A = 1, . . . , nno, to obtain
a square system. The source points yA are thus referred to as collocation points in the following.

For Lagrange discretizations on the one hand, the collocation points are simply selected to
be the same as the nodes located on the surface. For isogeometric discretizations on the other
hand, the control points are not necessarily located on the surface, which makes then unsuitable
for collocation. Therefore, the locations of the collocation points are determined by the Gre-
ville abscissae (see e.g. Greville (1964), Johnson (2005) and Auricchio et al. (2010)). Fig. 11a
and b depict the resulting collocation points on spheres with biquadratic NURBS discretizations.

The discretized BIE (A.10) is evaluated for each collocation point to obtain the discrete system

TBE v + NBE v + GBE t = 0, (A.14)

where NBE, TBE and GBE are square matrices of size (ndof×ndof). Evaluating the BIE for collo-
cation point yA fills three rows of the matrices, indicated by vector dA := [3A− 2, 3A− 1, 3A]T

of length 3, with
NBE

(dA, :)
= N (yA),

GBE
(dA, :)

= G(yA),

TBE
(dA, :)

= T (yA) ,

(A.15)

where now A = 1, . . . , nno and N , G and T as defined in (A.7) and (A.9). The subscripts on the
left hand side of (A.15) are given in MATLAB-like notation so that NBE

(d1, :)
, for example, refers

to the first three rows of NBE. The BE system (A.14) is solvable for Dirichlet, Neumann and
mixed problems. However, only Dirichlet problems are considered in the numerical examples in
Sec. 5.

Remark: The probably most intuitive way to create the BE system is to evaluate the dis-
cretized BIE (A.10) for all collocation points successively. However, changing the order of the
loops, i.e. approximating the integrals on element e for all collocation points yA and repeating
this step for the remaining elements subsequently, is computationally much more efficient.

A.3 Mapping to a parameter domain

The surface S is fully characterized by the parametric description

x = x(ξα) , x ∈ S (A.16)

where ξα with α = 1, 2 are curvilinear coordinates associated with a parameter domain P. The
mapping (A.16) reflects the property that the surface is a two-dimensional object embedded
within three-dimensional space. Each elemental surface Ωe is mapped to a quadrilateral master
element in the parameter domain ξα ∈ [−1, 1] of side length 2. Comparing approximations (A.2)
and (A.5) with the parametric mapping (A.16) shows that the nodal shape functions are defined
on the master element, i.e.

NI = NI(ξ
1, ξ2) . (A.17)

This paper considers quadrilateral elements since these can be conveniently related to the master
element introduced above. The reader is referred to Sauer (2018) for more information on
mapping (A.16) and the corresponding surface description in curvilinear coordinates.
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A.4 Boundary quadrature

The boundary integrals are first mapped to the parameter space with mapping (A.16). Each
elemental integral is defined on the master element as∫

Ωe

k(x) da =

∫ 1

−1

∫ 1

−1
k(ξ) Ja(ξ) dξ1 dξ2 , (A.18)

where k(x) denotes an arbitrary integral kernel and Ja denotes the local surface stretch between
surface S and parameter domain P (Sauer et al., 2014). The right hand side of (A.18) is then
approximated with numerical quadrature rules (Gauß, 1815; Golub and Welsch, 1969; Laurie,
2001) that are stated as weighted sums of function values at specified positions in the parameter
space. Bivariate quadrature rules with neqp quadrature points for the approximation of surface
integrals on the master element are thus defined as∫ 1

−1

∫ 1

−1
f(ξ) dξ1 dξ2 ≈

nqp∑
i=1

f(ξi) w(ξi) , (A.19)

where f(ξ) denotes the integral kernel on the master element, while ξi and w(ξi) denote the
position and weight of quadrature point i. Various bivariate quadrature rules are investigated
in Sec. 3 with respect to approximation of singular integrals.

B Existing boundary quadrature rules

The accurate approximation of the singular boundary integrals from (A.14) is crucial in BE
analysis. Various quadrature approaches are therefore investigated in this section with respect
to their suitability for singular integral approximation: The classical Gauss-Legendre quadrature
rule is considered in Sec. B.1, a modified Gauss-Legendre quadrature rule is introduced in
Sec. B.2, while Sec. B.3 considers a Duffy transformation-based quadrature rule for singular
integrals.

B.1 Classical Gauss-Legendre quadrature

Gauss-Legendre quadrature has been introduced by Gauß (1815) and is nowadays the most
common and established quadrature rule for numerical integration. Bipolynomial kernels of
orders p and q are integrated exactly by Gauss-Legendre quadrature with a minimum number
of

neqp = d(p+ 1)/2e × d(q + 1)/2e (B.1)

quadrature points per element, while non-polynomials kernels are only integrated approximately.
This work focus on bivariate Gauss-Legendre quadrature rules with neqp = ñqp × ñqp without
loss of generality. The quadrature point locations are thus denoted by

ξi = [ξ̃j , ξ̃k]
T , (B.2)

for i := j + (k − 1) ñqp, where j and k run from 1 to ñqp. The scalar values ξ̃j and ξ̃k denote
the j-th and the k-th root of the Legendre polynomial Pñqp(ξ), respectively. They can be
determined with numerical methods like Newton’s method or by exploiting explicit expressions
(Golub and Welsch, 1969) or tables (Laurie, 2001). The corresponding weights are given by

wi = w̃j w̃k , (B.3)

with

w̃j =
2(

1− ξ̃2
j

) [
P ′ñqp

(ξ̃j)
]2 (B.4)
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and analogously for w̃k. Fig. B.1a shows the quadrature point locations on the master element
and the corresponding weight values for classical Gauss-Legendre quadrature with neqp = 4× 4.

a. b. c.

y1 y2

y3

Figure B.1: Gauss-Legendre quadrature: Quadrature points and weights for Gauss-Legendre quadra-
ture (GL) with ñqp = 4. Classical GL with neqp = 4 × 4 (a.) and modified GL on a biquadratic
discretization with neqp = 4× 4 and on a bicubic discretization with neqp = 6× 6 according to (B.12).

The application of classical Gauss-Legendre quadrature to regular, i.e. non-singular, kernels is
accurate and robust (Chawla, 1968; Kambo, 1970; Leone et al., 1979). However, the numerical
integration of singular kernels is much more challenging. The weakly singular integral

IA :=

∫
S

1

rA
da , (B.5)

where rA := ‖x − yA‖,25 is investigated in the following considering the collocation points
depicted in Fig. B.1a:

• y1 = [−1,−1]T at the corner of the element,

• y2 = [0,−1]T at the midpoint of an edge,

• and y3 = [0, 0]T at the elemental midpoint.

Fig. B.2a shows that the mean relative quadrature error defined by

erel :=
1

nA

nA∑
A=1

‖IhA − IA‖
IA

(B.6)

decreases for classical Gauss-Legendre quadrature (blue line) with increasing number of quadra-
ture points, i.e. ñqp = 21, 22, . . . , 217, where IhA denotes the numerical approximation of integral
(B.5). However, the convergence rate is only 1/2, so the highest number of quadrature points
neqp = 217 × 217 ≈ 1.72× 1010 still results in erel ≈ 3× 10−6.
Fig. B.2b depicts the mean quadrature error vs. the minimum distance between quadrature
points and collocation points that is defined by

rmin := min
i=1,...,nqp

A=1,2,3

‖x(ξi)− yA‖ , (B.7)

where x(ξi) denote the position on S for quadrature point i. The vertical dashed line shows
εmachine ≈ 2.2× 10−16, which is the smallest computationally admissible value for rmin. Ex-
tending the curve by extrapolating the simulation data shows that the mean error of classical
Gauss-Legendre quadrature is bounded by erel > eclass ≈ 3×10−9, even with unlimited memory
capacity. A huge number of nqp > 1016 quadrature points would be required to obtain such a

25Integral (B.5) is representative of the behavior of the two singular integrals in the BIE ((12) and (A.14)).
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∝ 1/neqp

∝ 1/
√
neqp

a. b.

ε m
a
ch

in
e

eclass

emod

neqp

Figure B.2: Gauss-Legendre quadrature: a. Mean quadrature error erel for kernel 1/r vs. the number
of quadrature points. b. erel vs. the minimum distance rmin (see Fig. 4a).

small error. It should be further noted that classical Gauss-Legendre quadrature does in general
not prevent the coincidence of collocation points and quadrature points. For instance, using an
odd number for ñqp results in a quadrature point located at the middle of the element, where
in many cases a collocation point is also located. The approximation of the integral I3 (B.5) is
infinite for these cases and thus useless.26

In conclusion, three main drawbacks for singular BE integral approximation with classical
Gauss-Legendre quadrature can be identified: The quadrature rule

– is very inefficient with respect to the number of quadrature points,

– has a lower error bound of eclass ≈ 3× 10−9,

– does not prevent the coincidence of collocation points and quadrature points.

On the other hand, classical Gauss-Legendre quadrature is

+ simple to implement and computationally efficient.27

The disadvantages in accuracy and robustness clearly outweigh the advantageous implemen-
tation, making the classical Gauss-Legendre quadrature unsuitable for the approximation of
singular BE integrals.

B.2 Modified Gauss-Legendre quadrature

The classical Gauss-Legendre rule can be modified to overcome the discussed deficiencies, while
maintaining the efficient equal treatment of all elements. This modification is briefly introduced
by Heltai et al. (2014) for biquadratic NURBS and is generalized here for discretizations with
Lagrange or isogeometric basis functions of arbitrary order. The key idea of the modification
is to split the surface elements into virtual sub-elements such that collocation points are ex-
clusively located at the corners of sub-elements. Classical Gauss-Legendre quadrature is then

26The coincidence of collocation points and quadrature points potentially also occurs for even ñqp. The collo-
cation point locations depend on the order of the shape functions used for discretization.

27The shape function values and the corresponding weights are determined once at the quadrature points on
the master element. Isogeometric shape function values are determined from universal Bernstein polynomials
and element specific Bézier extraction operators (Borden et al., 2011).
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applied to the virtual sub-elements.

Choosing the collocation points on a discretization of order p and q as shown in Fig. 11 yields
collocation point locations on the master element at

ξicol = −1 +
2 (i− 1)

p
, i = 1, . . . , p+ 1 (B.8)

and analogous for q and ηjcol. The surface elements are split into virtual sub-elements at ξicol for

i = 1, . . . , p+ 1 and at ηjcol for j = 1, . . . , q+ 1. The sub-elements are illustrated by dashed lines
in Fig. B.1b for biquadratic elements (p=q =2) and in Fig. B.1c for bicubic elements (p=q =3).
Classical Gauss-Legendre quadrature rules are then applied to the virtual sub-elements without
coincidence of quadrature points and collocation points: The collocation points are located at
the corner of the sub-elements, while Gauss-Legendre quadrature points are located within the
element. The use of sub-elements furthermore provides an equal minimum distance (B.7) for
all collocation points. A surface element of order p and q consists of nsub = p× q sub-elements
that are of equal size in the parametric space.28

Note, that the sub-elements are only introduced to illustrate the quadrature strategy. The
discretization and thus the number of elements and nodes remains unchanged. Code-wise, the
division into nsub sub-elements does not appear at all. Instead, the quadrature point locations
and the corresponding weights are defined by so-called modified quadrature rules. The classical
quadrature rules of the virtual sub-elements are combined into one modified quadrature rule for
the whole element. The quadrature weights of the modified Gauss-Legendre rule are obtained
as

w =
1

p q

[
wT

GL︸︷︷︸
i=1

,wT
GL︸︷︷︸
i=2

, . . . ,wT
GL︸︷︷︸

i=p q

]T , (B.9)

where wGL denotes a column vector that contains the weights for classical Gauss-Legendre
quadrature (B.3). With the master element defined on the interval I0 = [−1, 1]× [−1, 1] in the
parametric domain, the sub-elements are defined on the intervals I1 = [ξ1

col, ξ
2
col]× [η1

col, η
2
col],

I2 = [ξ2
col, ξ

3
col]× [η1

col, η
2
col], . . . , Ip q = [ξp−1

col , ξ
p
col] × [ηq−1

col , η
q
col]. The quadrature point positions

of the modified Gauss-Legendre quadrature rule then are

Ξ =
[
ΞT

1 , ΞT
2 , . . . , ΞT

pq

]T
, (B.10)

where Ξi denotes the classical quadrature points Ξ0 := [ξT
1 , ξ

T
2 , . . . , ξ

T
pq] from (B.2), shifted

to interval Ii.
29 The total number of elemental quadrature points for a modified bivariate

Gauss-Legendre quadrature rule is accordingly given by

neqp = p q (ñsub
qp )2 , (B.11)

where ñsub
qp denotes the number of quadrature points per dimension on each sub-element. In

order to obtain a comparable, but not a smaller neqp as for the equivalent classical Gauss-
Legendre rule (B.1), the sub-elemental number of quadrature points is chosen as

ñsub
qp :=

⌈
ñqp

p

⌉
. (B.12)

28This statement holds for isogeometric as well as for Lagrange discretizations. Lagrange discretizations requires
a higher number of nodal points than the isogeometric counterpart of the same order and thus also a higher number
of collocation points. For Lagrange discretizations a collocation point is located at every corner point of a virtual
sub-element, while several possible positions are empty for isogeometric discretizations. However, in both cases
there is no collocation point at any other position than ξcol and ηcol.

29For a biquadratic element, the original quadrature points are shifted to the intervals I1, I2, I3 and I4 such
that Ξ1 = (Ξ− i [1, 1])/2 and Ξ2 = (Ξ + i [1,−1])/2 and Ξ3 = (Ξ + i [−1, 1])/2 and Ξ4 = (Ξ + i [1, 1])/2,where
i denotes a (nqp × 1) array with only ‘1’ entries.
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Fig. B.1 shows the quadrature point positions and the corresponding weights for classical Gauss-
Legendre quadrature (a), for modified Gauss-Legendre quadrature on a biquadratic element (b)
and for modified Gauss-Legendre quadrature on a bicubic element (c), where ñqp = 4 for all three
examples. The total number of elemental quadrature points yields accordingly neqp =4×4=16,
neqp =4d4/2e2 =16 and neqp = 9d4/3e2 = 36, respectively.

The introduced modified Gauss-Legendre quadrature is used to approximate the singular inte-
gral (B.5) for the same collocation points y0

1, y0
2 and y0

3 as in Sec. B.1 to compare the accuracy
of both quadrature rules. The mean quadrature error for modified Gauss-Legendre quadrature
is illustrated by red lines in Fig. B.2. It yields convergence rates of 1 with respect to the number
of quadrature points (a) and with respect to the minimum distance between collocation points
and quadrature points (b). It can be seen that modified Gauss-Legendre quadrature shows a
twice higher convergence rate than the classical counterpart. The mean quadrature error for
modified Gauss-Legendre quadrature can thus be reduced to the range of machine precision by
increasing the number of quadrature points to neqp > 1015.

Summarizing, the modified Gauss-Legendre quadrature rule eliminates the first and second
drawback of the classical one. Also the third drawback has been addressed, as the required
number of quadrature points to achieve a certain precision has been reduced due to the better
convergence rate. However, a convergence rate of 1 still has additional potential for improve-
ment. Even the modified quadrature rule still requires at least neqp = 1,000 to obtain erel ≤ 10−3.
Besides addressing the drawbacks, the modified Gauss-Legendre quadrature also maintains the
desirable property from the classical Gauss-Legendre quadrature: It is sufficient to evaluate the
shape functions once on the master element and reuse the values for all elements independently
of the collocation point position.

In conclusion, the presented modified Gauss-Legendre quadrature

◦ shows moderate efficiency with respect to the number of quadrature points,

+ leads to a vanishing error with progressing quadrature refinement,

+ prevents the coincidence of collocation points and quadrature points,

+ is simple to implement and computationally efficient.

The numerical investigation of the modified Gauss-Legendre quadrature shows a strong robust-
ness and a moderate accuracy making it suitable for the approximation of singular integrals.
A special quadrature rule for singular functions is presented in Sec. B.3 to achieve even more
accurate integral approximations.

B.3 Duffy transformation-based quadrature

The introduced Gauss-Legendre quadrature rule comes along with significant accuracy short-
comings as discussed in the previous two sections. The quadrature approach from Fairweather
et al. (1979) and Duffy (1982) is considered here to overcome this shortcomings. This approach
exploits Duffy transformation from a triangle to a square to remove corner singularities of the
type 1/r. The quadrature rule is referred to as Duffy transformation-based quadrature or as
Duffy quadrature in short form. While Duffy (1982) and Mousavi and Sukumar (2010a) use
Duffy quadrature for integral approximation on triangular elements, two Duffy triangles are
combined here to define the quadrature rule on the master element. The Duffy quadrature is
therefore applicable to arbitrary quadrilateral elements.

Fig. B.3 shows the quadrature point locations on the master element and the corresponding
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weight values for collocation point y0
1 = [−1,−1]T and ñqp = 2, 3, 4. For Duffy quadrature ñqp

refers to the number of quadrature points per dimension on each of the two triangles. The total
number of Duffy quadrature points per element thus yields

neqp = 2ñ2
qp . (B.13)

The quadrature rules from Fig. B.3 accordingly consist of neqp = 8 (a), neqp = 18 (b) and
neqp = 32 (c) quadrature points, respectively.

a. b. c.

nqp

Figure B.3: Duffy quadrature: Duffy quadrature points and their weights on the master element for
collocation point y0

1 with ñqp = 2 (a.), ñqp = 3 (b.) and ñqp = 4 (c.).

The singular integral (B.5) is approximated using Duffy quadrature with an increasing number
of quadrature points to compare its accuracy to Gauss-Legendre quadrature. Fig. 4b shows
that a coarse Duffy quadrature with neqp = 2 yields a similar accuracy as a refined modified
Gauss-Legendre quadrature with neqp = 25. The Duffy quadrature also shows a much better

convergence behavior: The relative error converges to the analytical solution with erel ∝ 1/neqp
2.5

for small neqp ≤ 18 and with erel ∝ 1/neqp
12 for higher neqp such that is in the range of machine

precision for neqp > 200.

In conclusion, the introduced Duffy transformation-based quadrature

+ shows outstanding efficiency with respect to the number of quadrature points,

+ provides a perfect approximation already for moderate quadrature refinement,

+ prevents the coincidence of collocation points and quadrature points.

Duffy quadrature is several orders of magnitude more accurate than modified Gauss-Legendre
quadrature, not to mention classical Gauss-Legendre quadrature, and is thus highly suitable for
the approximation of strongly singular integrals. However, the Duffy quadrature presented is
only directly applicable to corner collocation points and needs to be modified for other locations
(see Fig. B.4). Since quadrature points and weights depend on the particular collocation point,
Duffy quadrature

– is more complex to implement than Gauss-Legendre quadrature.

Three different quadrature approaches are investigated in Sec. 3 with respect to their suitability
for singular integral approximation. First, classical Gauss-Legendre quadrature is not robust
and very inefficient and is thus not recommend for the quadrature of singular kernels. Second,
modified Gauss-Legendre quadrature is very robust, simple to implement and yields moderate
accuracy. As for classical Gauss-Legendre quadrature, it is sufficient to evaluate the shape
functions only once on the master element for all collocation points and elements. Third,
Duffy quadrature approximates singular integrals very efficiently, but the quadrature points and
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a. b. c.

Figure B.4: Duffy quadrature: Duffy quadrature points for ñqp = 3 considering collocation points at
a corner point of an element (a.), at the midpoint of an elemental edge (b.) and at the midpoint of an
element (c.).

weights depend on the location of the collocation point. However, this disadvantage is clearly
outweighed by the enormous gain in accuracy. In conclusion, two investigated methods are
recommend for singular integral approximation: Highly accurate and efficient Duffy quadrature
and modified Gauss-Legendre quadrature that is robust and simple to implement.

C Quadrature point locations and weights

This Appendix presents the quadrature point locations and weights for the new quadrature rule
from Sec. 3.2.2 (see Tables C.1 and C.2) and for the new hybrid quadrature schemes from Sec. 4
(see Figs. C.1 and C.2).

i ξGL
i wGL

i ∆w1
i ∆w2

i ∆w3
i

1 (−ϕ, −ϕ) 25/81 2.31938557634487e-03 -3.06785320861036e-04 2.91091742066762e-04
2 (0, −ϕ) 40/81 -3.96194342728695e-04 -7.65922184471912e-05 -5.18107361679232e-04
3 (ϕ, −ϕ) 25/81 6.73693894590655e-04 -8.35189243303947e-05 3.01814399334244e-04
4 (−ϕ, 0) 40/81 -1.79631123847407e-03 -7.65922184474688e-05 2.78864715425431e-04
5 (0, 0) 64/81 -6.39888952746481e-03 9.40174607438005e-04 -4.34093711446204e-04
6 (ϕ, 0) 40/81 2.35720567649134e-03 -1.18292775950657e-04 1.80583631911146e-04
7 (−ϕ, ϕ) 25/81 2.31938557634498e-03 -8.35189243302836e-05 -1.15997317956140e-04
8 (0, ϕ ) 40/81 -3.96194342729583e-04 -1.18292775950990e-04 1.52292730246639e-05
9 (ϕ, ϕ) 25/81 6.73693894590766e-04 -1.14956900993113e-04 6.76167776109127e-06

Table C.1: Quadrature point locations and weights: Locations ξGL
i and weights wGL

i for classical Gauss-
Legendre quadrature with negp = 3× 3, where ϕ :=

√
3/5. The first three sets of weight differences ∆w1

i ,
∆w2

i and ∆w3
i for Gauss-Legendre quadrature with adjusted weights (see Fig. 8).
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i ∆w4
i ∆w5

i ∆w6
i ∆w7

i

1 -6.54575192148843e-05 6.09298124450708e-04 4.32446315561663e-04 -5.27414657617853e-05
2 9.95820994587060e-06 -3.06041383078942e-03 -8.30579832303280e-05 1.80107109839511e-04
3 -3.87801753661265e-05 1.56570492962638e-03 4.32446315561719e-04 -1.42299297342940e-04
4 9.95820994509344e-06 2.47740158828003e-03 -2.18624664881650e-04 -1.98281169518255e-04
5 1.74968939684494e-04 -1.36002345481279e-04 -1.21107604659743e-03 2.01683928024110e-04
6 -1.01082187085044e-05 3.23573666747901e-04 -2.18624664881706e-04 -1.62236018943496e-05
7 -3.87801753655159e-05 -1.52026938222949e-03 2.20203796807650e-04 6.72447376661167e-05
8 -1.01082187095591e-05 1.03304298742501e-04 3.91571815489933e-04 4.48306966693846e-06
9 -3.27884950691026e-05 -1.93807081374009e-04 2.20203796807483e-04 -4.43308431077871e-05

Table C.2: Quadrature point locations and weights: Weight differences ∆w4
i , ∆w5

i , ∆w6
i and ∆w7

i for
Gauss quadrature with adjusted weights with negp = 3× 3 (see Fig. 8). The j-th set of adjusted weights

is determined by wj
i = wGL

i + ∆wj
i according to (21).

Elemental quadrature rule:

Duffy Gauss with adj. weightsclassical Gauss modified Gauss

ñqp

= 3

ñqp

= 6

ñqp

= 3

ñqp

= 6

ñqp

= 3

ñqp

= 3

a. b. c. d.

Figure C.1: Quadrature point locations and weights: Hybrid quadrature on a biquadratic B-spline sheet
of refinement level ` = 2 (upper row) and ` = 3 (lower row). Quadrature rules used for Gauss-Legendre
quadrature (G, a.), for hybrid Duffy-Gauss quadrature (DG, b.), for Duffy-Gauss quadrature with pro-
gressive refinement (DGr, c.) and for hybrid Duffy-Gauss quadrature with adjusted weights (DGw, d.)
considering collocation point y0 and n0 = 3.
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a.

b.

c.

d.

` = 1 ` = 2 ` = 3

Figure C.2: Quadrature point locations and weights: Hybrid quadrature on a biquadratic B-spline
sheet of refinement level ` = 1, 2, 3. Location and weights of the quadrature points for G (a.), DG (b.),
DGr (c.) and for DGw (d.) considering collocation point y0 and n0 = 3.
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