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Abstract: Air quality significantly impacts the environment and human living conditions,
with direct and indirect effects on the economy. Precise and prompt detection of air pollu-
tants is crucial for mitigating risks and implementing strategies to control pollution within
acceptable thresholds. One of the common pollutants is nitrogen dioxide (NO2), high
concentrations of which are detrimental to the human respiratory system and may lead
to serious lung diseases. Unfortunately, reliable NO2 detection requires sophisticated and
expensive apparatus. Although cheap sensors are now widespread, they lack accuracy
and stability and are highly sensitive to environmental conditions. The purpose of this
study is to propose a novel approach to precise calibration of the low-cost NO2 sensors.
It is illustrated using a custom-developed autonomous platform for cost-efficient NO2

monitoring. The platform utilizes various sensors alongside electronic circuitry, control and
communication units, and drivers. The calibration strategy leverages comprehensive data
from multiple reference stations, employing neural network (NN) and kriging interpolation
metamodels. These models are built using diverse environmental parameters (temperature,
pressure, humidity) and cross-referenced data gathered by surplus NO2 sensors. Instead of
providing direct outputs of the calibrated sensor, our approach relies on predicting affine
correction coefficients, which increase the flexibility of the correction process. Additionally,
a calibration stage incorporating global correlation enhancement is developed and applied.
Demonstrative experiments extensively validate this approach, affirming the platform
and calibration methodology’s practicality for reliable and cost-effective NO2 monitoring,
especially keeping in mind that the predictive power of the enhanced sensor (correlation co-
efficient nearing 0.9 against reference data, RMSE < 3.5 µg/m3) is close to that of expensive
reference equipment.

Keywords: air pollution assessment; nitrogen dioxide detection; low-cost sensing systems;
correction techniques; artificial intelligence; neural networks

1. Introduction
High concentrations of nitrogen dioxide (NO2) pollution have long been recognized as

harmful to human health. Potential health issues linked to elevated NO2 levels encompass
skin infections, respiratory system problems, nasal and ocular irritation, bronchitis, lung
cancer, and worsening of underlying health issues [1–3]. Two standards for NO2 are in place,
proposed in the CAFE Directive [4], concerning average yearly and hourly concentrations
(40 µg/m3 and 200 µg/m3, respectively; the latter should not be surpassed for over 18 h
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a year). The WHO provides similar guidelines [5]. However, concentrations surpassing
these limits are being recorded by over a dozen percent of monitoring stations in Europe.
This issue is predominantly linked to urban areas, especially in proximity to vehicular
transportation systems. NO2 pollution has substantial economic consequences (e.g., the
estimated costs in 2016 in China were close to USD 30 billion [3]). Another aspect is the
environmental impact of NOx pollution, which includes eutrophication of water systems,
acid rain occurrence, and photochemical smog [6]. The latter is responsible for intense algal
blooms, leading to ecological degradation of water reservoirs. Furthermore, the increase in
O3 concentration due to NOx negatively impacts agriculture.

Standard NO2 monitoring requires large and stationary equipment, as well as con-
trolled installation conditions and periodical service. The most reliable methods are
(i) photofragment chemiluminescence (featuring high sensitivity yet needing repetitive
calibration) [7], (ii) long-distance differential optical absorption spectroscopy (good sensi-
tivity but poor spatial resolution) [8], (iii) laser-induced fluorescence (of excellent sensitivity
yet exploiting a pulsed laser and a vacuum system) [9], and (iv) cavity ring spectroscopy
(portable system not requiring calibration) [10]. Notwithstanding, the above techniques
involve expensive equipment, which is also associated with high maintenance costs.

The aforementioned disadvantages of stationary monitoring stations fostered the
development of compact and low-cost sensors, which enable portability and exhibit low
deployment expenses. Another important advantage is an increased spatial resolution
of air pollution detection, which is crucial due to spatial and temporal heterogeneity of
air pollutants, particularly in densely populated urban areas [11–13]. Unfortunately, low-
priced sensors are grossly inaccurate when compared to the reference stations [14–16],
which is due to their inherent instability [17], limited fabrication repeatability [18,19],
cross-sensitivity to other gases [20–22], as well as susceptibility to environmental variables
(temperature, humidity, etc.) [23–25]. Although achieving sufficient accuracy in pollutant
detection is crucial, a substantial volume of less precise data from cost-effective sensors can
supplement the output of limited reference stations. Inexpensive devices offer affordable
monitoring alternatives for low- and middle-income countries [26]. Additionally, sensor
networks [27,28] installed on ground vehicles or unmanned aerial vehicles [29,30] might
emerge as pivotal elements of air quality monitoring systems in the foreseeable future.

In recent years, significant efforts have been directed toward developing calibration
techniques to enhance cheap sensor systems’ reliability. Two categories of sensor calibration
techniques exist: field and laboratory ones [31]. While laboratory methods are theoretically
more accurate, they are conducted under conditions seldom replicated in real-world settings
(considering environmental parameters and the presence of various ambient gases), making
them susceptible to failure when validated in the field [14,15]. Consequently, most studies
opt for field calibration, utilizing reference data collected by governmental monitoring
stations in corresponding locations. In a numerical sense, calibration exploits a spectrum
of regression procedures and a range of advanced machine learning procedures, such as
artificial neural networks. A number of approaches utilizing regression techniques have
been reported in the literature. In [31], electrochemical sensors of NO and NO2 were
calibrated using multivariate linear regression (MLR), support vector regression (SVR),
and random forest (RF) by taking into account temperature and humidity data. In [32],
linear statistical learning algorithms, Gaussian process regression (GPR), ridge regression,
random forest regression (RFR), and MLR were applied to calibrate cheap NO2 and PM10

sensing devices, taking into account temperature and humidity. Some of these methods
provided promising results. In [33], the MLR technique was employed to calibrate the
chemiluminescence NO-NO2-NOx analyzer, again, using temperature and humidity data.
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A variety of studies using regression models for calibrating cost-efficient sensors can be
found in [34–37].

Over the recent years, the utilization of artificial neural networks for sensor correc-
tion has become increasingly popular, which seems to be more reliable than the methods
outlined in the previous paragraph. In [26], calibration of CO, NO2, O3, and SO2 sensors
has been carried out, taking into account ambient temperature and humidity and utilizing
single linear regression (SLR), MLR, RFR, and long short-term memory networks (LSTM).
The obtained results indicate that LSTM is superior to all regression-based algorithms
considered in the study. In [11], sensor calibration using historical time series has been
carried out using a convolutional neural network for short-term variation modeling and a
recurrent neural network (RNN) for extracting global and periodic features. The results of
correcting commercial CO and O3 sensors (also taking into account temperature and hu-
midity) demonstrated advantages of CNN/RNN over a number of benchmark techniques
such as SLR, SVR, or a composition of LSTM and CNN. Other related studies reported
in the literature include utilization of Bayesian NNs [38], shallow NNs [39], or dynamic
NNs [40,41].

This study introduces a novel autonomous NO2 measurement platform and a robust
machine learning (ML) framework for calibration of cheap commercial sensors. The plat-
form comprises primary and auxiliary NO2 detectors, additional sensors for assessing
environmental conditions (temperature, humidity, pressure), and hardware units with
drivers for measuring and data transmission protocols. Our approach employs a combina-
tion of data-driven models: artificial neural network (ANN) and kriging interpolant for
predicting affine correction factors of low-cost sensors. At the same time, the uniqueness of
correction factors is ensured through appropriate regularization. The calibration procedure
integrates environmental parameters as well as NO2 concentrations from main and surplus
sensors as inputs. Furthermore, global data correlation enhancement is achieved by adding
an additional calibration stage. The developed calibration strategy has been validated with
the use of the reference and cheap detector data collected during a five-month-long mea-
surement period conducted at several venues in Gdansk (nearly 480,000 citizens), Poland.
Comprehensive experiments corroborate that the calibrated NO2 sensor ensures excellent
monitoring precision with a correlation coefficient close to 0.9 w.r.t. reference measurements
and RMSE not exceeding 3.5 µg/m3. At the same time, it has been demonstrated that
all incorporated correction mechanisms are relevant and contribute to quality improve-
ments. The reported level of performance makes the presented platform and the calibration
methodology appropriate for practical, low-cost, and dependable NO2 monitoring.

2. Inexpensive NO2 Sensing Units
Here, we outline the design of the developed autonomous NO2 monitoring platform.

In particular, we provide a brief summary of the sensing units, including the electronic
circuitry and sensors. The ML-based correction strategy is explained in Section 3.

2.1. Autonomous Monitoring Platform

For the purpose of acquiring measurement data as well as implementing calibration
of inexpensive NO2 sensors, custom microprocessor-based hardware units have been de-
signed and prototyped. The system is equipped with a number of environmental sensors,
installed to provide various types of data, later employed to improve NO2 detection reli-
ability. The platform also encapsulates a wireless communication device (GSM modem)
for transmitting the readings to the cloud. The development of automatic data acquisition
procedures involves commercial elements controlled by the BeagleBone(R) Blue micropro-
cessor system [42], containing a device for storing data and a built-in power supply. The
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system can operate for at least two hours without external supply due to the presence of a
re-chargeable 7.4 V/4400 mA battery. The use of low-cost sensors, along with commercially
available low-cost modules, makes the entire platform a low-cost solution, especially when
compared to professional, calibrated laboratory-class equipment used as a reference. The
BeagleBone board incorporates serial input/output (I/O) ports to connect the units (GSM
transmission module and several cheap sensors). The schematic diagram of the unit has
been shown in Figure 1, which also provides information about sensors included in the
platform. The primary operating software as well as drivers for hardware units have been
written in Python3. The GSM modem transmits the sensors’ readings to the cloud, which
may be accessed through the web browser.
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Figure 1. Autonomous ambient monitoring unit: (a) block diagram (the picture shows the main func-
tional units of the platform along with the peripherals, specifically, sensors, communication devices,
and environmental parameter detectors); (b) sensors incorporated into the proposed autonomous
measurement platform.

All units have been placed on the customized base plate fabricated from polyethylene
terephthalate using a 3D printing manufacturing process (see Figure 2a,b). All gas detectors
(SGX, ST, MICS) have been installed in near proximity (cf. Figure 2a) along with the
temperature and humidity detectors evaluating operating parameters of SGX, ST, and
MICS. The supplementary sensor measuring external temperature and humidity was
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mounted at the unit’s edge because of the heat generated by the hardware. Figure 2b also
illustrates an optional USB stick module (Intel) supporting computations. This module
can be used to speed up the application of the calibration model on the device; however,
the platform has sufficient time between measurements to complete all calculations even
without the hardware accelerator. The complete system is installed in a polyethylene
terephthalate weatherproof case shown in Figure 2c.
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Figure 2. Proposed measurement equipment: inside view, panels (a,b) show top and bottom layers,
respectively, and (c) exploded view.

It should be noted that the low-cost sensors used in the proposed system may exhibit
certain limitations. While the parameters of the sensors are given in the manufacturer
datasheets [43–47], the real-world operation for such sensors is challenging, and one cannot
expect the quality of the results of low-cost sensors to be comparable to the professional
reference equipment. We did not estimate the influence of sensor cross-sensitivity to other
gases nor saturation and recovery time after high exposure. Instead, we used the results
from multiple sensors and developed an algorithm for providing as good conformance as
possible to the reference measurements in real, outdoor, and long-term conditions.

According to the manufacturers, the electrochemical sensors used in our platform
have a limited lifetime (2–3 years), and they must be replaced accordingly. The sensors
are mounted in the sockets, making their replacement straightforward. Other components
have longer lifetimes, where the overall lifetime of the platform can be estimated at 10 years,
provided that the regular replacement of the above-mentioned electrochemical sensors
is performed.

2.2. Reference Data

In order to calibrate and assess the reliability of the monitoring platform delineated
in Section 2.1, acquiring high-quality reference data is crucial. In this study, we utilized
an air monitoring network in the city of Gdańsk, Poland, set up under the auspices of the
ARMAG Foundation [48]. The locations of the reference facilities are shown in Figure 3a,
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and the photo of a single facility is presented in Figure 3b. The utilized instruments include
the following:

• Thermo environmental 42C chemiluminescent NOx analyzer (stations 1 and 3);
• API Teledyne 200E chemiluminescent NOx analyzer (station 8).
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Figure 3. Base stations for reference data acquisition: (a) the exact locations and (b) a photo of the
selected station along with the developed hardware unit. The stations are established by the ARMAG
Foundation, and according to its terminology, they are dubbed AM1, AM3, and AM8. Maps are
provided by OpenStreetMap [49].

ARMAG offers the air condition data (gathered every hour) to the public at no cost
via their website https://armaag.gda.pl/en/ (accessed on 19 February 2025).

It should also be noted that selecting Gdansk for the presented study has been decided
for practical reasons. Gdansk University of Technology is located in Gdansk, which has
appropriate measurement infrastructure (reference stations) described above. As the
presented low-cost measurement platforms have to be allocated in the vicinity of the base
stations in the process of data acquisition, Gdansk was a natural choice for the study.
Furthermore, it is a representative urban zone with a large population and considerable
industrial infrastructure as well as relatively heavy traffic, which are all factors contributing
to NOx-type air pollution.

3. Machine-Learning-Based Sensor Calibration
This section delves into the calibration method developed to rectify the NO2 data

obtained from the inexpensive sensor utilized in the hardware units described in Section 2.
The primary algorithmic components include affine sensor correction, a machine learning-
based calibration approach integrating neural network (NN) and kriging interpolation
surrogates, and a global strategy for enhancement of (reference and cheap sensor) data
correlation. Environmental factors (external/internal temperature, pressure, humidity)
and measurements collected by both main and surplus NO2 sensors serve as inputs for
the surrogates.

The remaining part of this section is organized as follows. The formulation of the
calibration problem can be found in Sections 3.1 and 3.2, which discuss the affine sen-
sor correction scheme. Sections 3.3 and 3.4 elucidate surrogate modeling techniques
employed by the calibration procedure. Global data correlation enhancement is then

https://armaag.gda.pl/en/
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discussed in Section 3.5, whereas Section 3.6 summarizes the operating flow of the entire
calibration procedure.

3.1. Problem Statement

Low-cost sensor correction is carried out based on the data collected at the reference
facilities outlined in Section 2.2. The data were acquired within five months, with the
measurements generated hourly. The monitoring units of Section 2, allocated in the vicin-
ity of the corresponding reference stations, produce a set of measurements that include
NO2 readings from the main and surplus sensors, as well as environmental parameters
(temperature, humidity, pressure). Figure 4 visualizes the relevant outputs rendered by the
base station and the low-cost measurement platform. The summary of the data obtained
from the reference facilities and our sensors, along with the associated notation, is also
provided in Figure 4. It should be noted that the internal temperature exceeds the external
one (the opposite relationship occurs for humidity), which is a result of heating of the
electronic equipment within the unit. In other words, the operating conditions of the
internal and external sensors are different. Consequently, it is beneficial—from the point
of view of calibration reliability—to consider both the outside and inside environmental
parameters. The readings from the auxiliary NO2 sensor readings are grossly inaccurate,
yet the analysis of their outputs (in the form of including them as inputs of the calibration
models) enables the indirect quantification of the factors that influence the main sensor
outputs (e.g., cross-sensitivity to various gas pollutants).
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the sensor’s auxiliary outputs are surplus NO2 data (S1 and S2), inside and outside temperature (Ti

and To, respectively) and humidity (Hi and Ho, respectively), and atmospheric pressure (P); (c) data
supplied by the reference station and autonomous monitoring platforms of Section 2.
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The available data are partitioned into two sets: N0 training samples and Nt test-
ing samples, so that Nt equals around one-tenth of the total sample number N (for
details, see Section 4). In the following, the reference training data will be referred to
as yr0

(j)}, j = 1, . . ., N0, and {yrt
(j)}, j = 1, . . ., Nt, will denote testing data. The same

data division has been applied to the cheap sensor NO2 readings. In particular, {ys0
(j)},

j = 1, . . ., N0, pertains to training points, and {yst
(j)}, j = 1, . . ., Nt refers to testing points.

The supplementary data, which will be the input of the calibration models, are gath-
ered into respective vectors. We have {zs0

(j)}, j = 1, . . ., N0—auxiliary training data with
zs0 = [To0

(j) Ti0
(j) Ho0

(j) Hi0
(j) P0

(j) S10
(j) S20

(j)]T, and {zst
(j)}, j = 1, . . ., Nt—supplementary

testing data with zst = [Tot
(j) Tit

(j) Hot
(j) Hit

(j) Pt
(j) S1t

(j) S2t
(j)]T.

Calibration is carried out with the use of the training datasets {yr0
(j)}, {ys0

(j)}, and
{zs0

(j)}, j = 1, . . ., N0. The correction coefficients are represented by C(ys,zs;p), see Figure 5a,
with p being a vector comprising concatenated correction model parameters (e.g., hyperpa-
rameters of the NN), and yc = FCAL(ys,C(ys,zs;p)) standing for the calibrated sensor output.
In Section 4, we consider two variations of the calibration process: (i) with the inputs being
both auxiliary data zs and the primary sensor output ys, and (ii) with the only input being
zs. This is to demonstrate that incorporating the sensor-predicted NO2 level does improve
the correction process reliability.
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Figure 5. Sensor calibration: (a) general structure with the calibration unit producing the correction
coefficients C(ys,zs,p), (b) calibration procedure: Correction coefficients (obtained based on auxiliary
and sensor data ys) serve to assess the calibrated output yc (for comparison, we will also consider
a version without ys as a calibration input). Observe that the correction model is placed between
the (raw) low-cost sensor and the overall output of the measurement system. In actual realization,
the calibration model is used to provide correction coefficients, which are utilized to create the said
final output.

Using the notation discussed in the previous paragraphs, we formulate the sensor
calibration task as follows:

p∗ = argmin
p

√√√√ N0

∑
j=1

(
y(j)

r0 − FCAL

(
C(y(j)

s0 , z(j)
s0 , p)

))2
(1)

According to (1), we aim at identifying the hyper-parameters of the calibration models
so that the reference NO2 readings and those from the calibrated sensor are in the best
possible (L-square) agreement over the considered training set.

3.2. Basic Correction Scheme. Affine Response Scaling

In contrast to conventional approaches, where sensor calibration is arranged by mod-
eling the differences between reference and sensor data, in this work, we employ affine
scaling, which is a composition of multiplicative and additive correction. Initial inspection
of the data (cf. Figure 6) indicates that the magnitude of reference data changes exceeds
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that of cheap sensor data. Consequently, it is beneficial to multiplicatively scale the sensor
outputs using a coefficient larger than unity to ‘globally’ improve the data alignment.
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magnitude of data changes, which is considerably higher for reference readings than for the sensor
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coefficient). The data shown consist of six-week measurement results extracted from the acquired
datasets and corresponding to the three reference stations considered in this study and the low-cost
sensors allocated in their vicinity.

The details of the affine correction can be found in Figure 7. As mentioned, given the
reference and sensor data, it is recommended to ensure that the multiplicative correction
factor A(j) > 1, which can be ensured by setting the value of the hyper-parameter α (cf.
(9), (10)) strictly below unity. In practice, α is optimized simultaneously with identifying
the primary correction model. Based on the initial experiments, we set α = 0.8 for all
experiments in Section 4.
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3.3. ML-Based Sensor Calibration

In our approach, low-cost sensor correction is carried out using a composition of
neural networks (NNs) and kriging interpolation surrogates (cf. Section 3.4). The utilized
NN model is a multi-layer perceptron (MLP) [50,51]. The specific structure of the NN
model, shown in Figure 8, incorporates three fully connected hidden layers with 20 neurons
each and a sigmoid activation function. The surrogate is trained using a backpropagation
Levenberg-Marquardt algorithm [52] (maximal number of epochs 1000, MSE for perfor-
mance evaluation, random training/testing data division).
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Figure 8. Main calibration model in the form of a neural network (MLP comprising three hidden
layers that are fully connected). The surrogate’s inputs are environmental parameters (temperature,
humidity) as well as raw, low-cost sensor readings. Based on this data, the (trained) model provides
predictions of the additive and multiplicative correction coefficients A and D, respectively.

Note that the selected NN architecture is purposely simple, which brings a number of
benefits. On the one hand, the network training is quick, so that a number of variations can
be conveniently explored. On the other hand, due to a large number of training samples
(as compared to the number of NN weights), the surrogate is a regression model of low
sensitivity to the number of layers. Furthermore, a straightforward MLP structure allows
for smoothing out the inherent noise of both sensor and reference readings.

As mentioned in Section 3.2, two calibration variations are employed, in which the
primary sensor output ys is either treated as the surrogate input or not taken into account.
These will be marked as CANN.y(ys,zs,pANN) and CANN(ys,zs,pANN), respectively. Recall that
the correction function outputs are affine scaling factors A and D.

3.4. Auxiliary Correction by Means of Kriging Interpolation

Apart from NN, we also employ kriging [52] as an additional correction mechanism.
Kriging belongs to data-driven modeling approaches with numerous engineering and
scientific applications [53–58]. The kriging formulation with Gaussian correlation functions
can be found in Figure 9. Our approach renders independent models for multiplicative and
additive correction coefficients A and D. Note that kriging surrogate (cf. (K.7)) consists of
two parts, one being a regression model g(x)Tβ (usually involving low-order polynomials),
the other being a stochastic one accounting for local disparities from the trend. The hyper-
parameters θk are determined using maximum likelihood estimation.
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Figure 9. Surrogate modeling using kriging interpolation. The model consists of two parts, a
regression (trend) function and localized variations from the trend Z(x). The trend function is
typically a low-order polynomial (here, of the second order), whereas Z(x) is a linear combination of
radially symmetric basis functions (here, Gaussian), with the scaling parameters determined through
maximum likelihood estimation.

The kriging surrogate is established using the same training dataset as used for the NN
model, i.e., {x(j)}j = 1, . . ., N0, are either vectors {zs0

(j)} or a composition of {zs0
(j)} and cheap

sensor outputs {ys0
(j)}. The respective kriging models, rendering the correction coefficients

A and D, are denoted as CKR(ys,zs,pKR) and CKR.y(ys,zs,pKR).
The kriging surrogate serves as an additional calibration model along with the NN

predictor. It should be emphasized that kriging interpolant ensures an exact fit to the
training data but has limited ability to generalize. A combination of both kinds of models
allows us to achieve a better trade-off between generalization and approximation. We
employ a convex combination of the kriging and NN models:

C(ys, zs, pTOT) = βCANN(ys, zs, pANN) + (1 − β)CKR(ys, zs, pKR) (11)

whenever ys-data are excluded from the model input,

Cy(ys, zs, pTOT) = βCANN.y(ys, zs, pANN) + (1 − β)CKR.y(ys, zs, pKR) (12)

when it is included. The overall parameter vector pTOT = [pANN pKR]. The calibration
coefficients are A(ys,zs,pTOT) and D(ys,zs,pTOT) (similarly for (12)). Based on the initial
experiments, it has been determined that β = 0.7 ensures the best results in terms of
low-cost sensor calibration quality.
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At this point some comments are relevant concerning the relationship between ANN
and kriging calibration models. As mentioned earlier, ANN is the primary model imple-
mented using a simple architecture to act as a regressor, which learns typical dependencies
between environmental parameters and the cheap sensor and reference NO2 readings.
Increasing the ANN complexity would lead to improved approximation capability at the
expense of generalization, which is essential given a broad range of NO2 level variability.
This is reflected in better performance of the correction model over the training data in
comparison to the testing data, as indicated in Section 4. In other words, the ANN surro-
gate allows for good overall correction of the inexpensive sensor readings. The kriging
interpolation model, on the other hand, is by definition interpolative, therefore providing a
perfect approximation of the training data. Incorporating this surrogate with a variable
convex combination parameter β allows us to improve the overall approximation capability
of the calibration model while readily controlling the balance between approximation and
generalization. Thus, adding kriging as a supplementary model enhances the calibration
scheme’s flexibility, which would be difficult to achieve with ANN only.

3.5. Global Data Correlation Enhancement

Surrogate-assisted calibration described in Section 3.1 through Section 3.4 is further
complemented by a global data correlation enhancement procedure proposed in this study
as a supplementary correction method. The motivation behind it is that the application of
(here, L-square-based) calibration of the form of (1) may lead to systematic offsets, which are
functions of NO2 level from the cheap sensor. This has been shown in Figure 10a,b using a
part of the training data considered in Section 4. Although surrogate-based calibration leads
to excellent results (see Figure 10a), re-plotting the samples after ordering the reference
NO2 values reveals the aforementioned offsets. More specifically, the average misalignment
between the corrected and reference data is positive for low NO2 levels but becomes slightly
negative for higher levels. This is also noticeable on the scatter plot (right-hand-side panel
of Figure 10b), which is slightly skewed.

To reduce the offset, we implement a simple procedure that effectively ‘rotates’ the
smoothened sensor data so that it becomes better aligned with the ordered reference mea-
surement. Let yr be the ordered reference data vector, as illustrated by the red line in
Figure 10b. Furthermore, let yc be the calibrated inexpensive sensor data, also ordered (ex-
actly as yr), as illustrated by the blue line in Figure 10b. Finally, let Sm(yc) be the smoothened
yc. In the case of aggressive smoothing, Sm produces a monotonically increasing curve
representing (local) mean values of the vector yc. Global data correlation enhancement is
executed using affine transformation similar to (5), i.e.,

y(j)
c.G = AG(y

(j)
c + DG) (13)

for j = 1, . . ., N0. The coefficients AG and DG are established by solving a regression problem:

[AG DG] = argmin
[A D]

∥yr − A(Sm(yc) + D)∥ (14)

Note that the coefficients are identified at the level of aggregated training data vectors,
and they are not functions of any parameters from the low-cost sensor (neither environ-
mental nor auxiliary ones). The effects of global data correlation enhancement have been
shown in Figure 10c for the same training data subset as considered in Figure 10b. One
can observe a considerable offset reduction, but also the improvement of the scatter plot
symmetry. The employment of the global correction permitted increasing the correlation
coefficient to 0.95 (from 0.93) and reducing RMSE to 1.8 µg/m3 (from 2.1). Clearly, the r2

and RMSE values for the testing data will be less favorable, yet the achieved improvement
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is similar, as demonstrated in Section 4. Meanwhile, Figure 11 shows the effects of global
data correlation improvement for the smoothened calibrated sensor data. As can be seen,
application of (13) and (14) leads to a considerably better alignment between the sensor
and reference data.
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ys and vector zs (the models are combined using the convex combination factor β). Next, the outcome 
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dergo a series of enhancements, which are applied sequentially. Again, the correction coefficients 

are functions of the raw sensor readings and environmental parameters corresponding to the cur-

rent measurement (to be calibrated), whereas global correction is computed based on the entire 
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Figure 11. The effects of global data correlation enhancement shown for smoothened calibrated
sensor data. As it can be observed, upon correlation improvement, the reference and sensor data are
considerably better aligned, which carries over to increased correlation coefficient and lower RMSE.
The global correction is analytically described by Equation (13), with correction coefficients obtained
through a regression process as in (14).

3.6. Complete Operating Flow of Calibration Procedure

The complete calibration procedure employs the mechanisms discussed in Section 3.2
through Section 3.5. The first step is to predict the (local) correction coefficients by kriging
and neural network surrogates using a supplementary vector zs and the true sensor reading
ys. Both models are combined as described in Section 3.4 using the convex combination
factor β. The intermediate quantity yc is a result of the affine correction (2), (3), whereas the
ultimate corrected output is rendered by applying the global correlation scheme (13), (14).
The procedure’s flowchart can be found in Figure 12.
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Figure 12. Flowchart of the calibration process. (Local) calibration coefficients are rendered by
the composition of the NN and kriging models, which take into account the actual NO2 sensor
output ys and vector zs (the models are combined using the convex combination factor β). Next,
the outcome yc is rendered using the affine correction of the sensor reading. Finally, global data
correlation enhancement is applied, producing the corrected reading yc.G. Thus, the cheap sensor
readings undergo a series of enhancements, which are applied sequentially. Again, the correction
coefficients are functions of the raw sensor readings and environmental parameters corresponding
to the current measurement (to be calibrated), whereas global correction is computed based on the
entire available training dataset.
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4. Results and Discussion
This section delves into the outcomes yielded by the calibration framework presented

in Section 3, implemented on the inexpensive sensor detailed in Section 2. We will briefly
delineate the dataset composition utilized in validation experiments, describe in detail the
results achieved for various setups, and formulate key observations.

4.1. Data Description

Our verification experiments exploit the data gathered from the three reference sta-
tions outlined in Section 2.2 and located in the city of Gdansk, Poland. Data acquisition
has been performed across five months, from March till August 2023. The autonomous
monitoring units of Section 2 have been placed in the immediate vicinity of the reference
facilities. The readings were collected hourly. The total sample number is over 10,000.
As mentioned earlier, about 90 percent of samples were used to establish the correction
models (NN and kriging surrogates, global data correlation enhancement). The remain-
ing samples were used for testing. The training data are denoted as {yr0

(j)} (reference
measurements), {ys0

(j)} (cheap sensor measurements), and {zs0
(j)} (measurements of an

auxiliary sensor), j = 1, . . ., N0. The testing data are denoted as {yrt
(j)}, {yst

(j)}, and {zst
(j)},

j = 1, . . ., Nt, with Nt = 1008 = 3·336. The latter correspond to three 14-day periods from
the following locations (Station 1, 1–15 April; Station 2, 15–29 July; Station 3, 1–14 July).
Figure 13 visualizes selected training data subsets, both reference and uncorrected readings.
It should be emphasized that the disparities between the readings are considerable, so that
the calibration process is a difficult undertaking.
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Figure 13. Selected NO2 data subsets: reference and the respective uncorrected sensor outputs:
(a) training data, (b) testing data. As can be noticed, the discrepancy between the low-cost sensor
and reference readings is significant, especially in terms of the amplitude. Also, it is pretty consistent
across the time period corresponding to the measurement campaign.

4.2. Numerical Results

The cost-efficient NO2 sensor embedded into the hardware unit of Section 2 has
been calibrated using the technique of Section 3, based on data described in Section 4.1.
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For the purpose of comparison, we have considered a number of calibration setups, as
encapsulated in Table 1. Each setup represents a different set of the model input data
(selected or complete surplus detector parameters, inclusion of NO2 output ys from the
main sensor), optional incorporation of the kriging metamodel, as well as employment
of the global data correlation enhancement. This allows us to demonstrate the relevance
of particular algorithmic tools and their contribution to the improvement of the low-cost
sensor measurement reliability. The NN surrogate has been trained 10 times for each
setup, and the best results (as measured using the RMSE loss function on the training
data) indicated the ultimate surrogate. The affine scaling factor α (cf. Section 3.2) has been
concurrently adjusted in this process, and α = 0.8 was selected for being the most beneficial
(i.e., it ensured the highest generalization capability and accuracy of the calibration models).

Table 1. Calibration setups considered in verification studies. The table indicates the type of
calibration models used (NN or a combination of NN with kriging), specifies the calibration inputs
and whether the raw low-cost sensor readings are incorporated as an input, and indicates utilization
of the global correlation enhancement scheme (cf. Section 3.5).

Calibration
Setup Calibration Model

Input Variables Global
Data Correlation

EnhancementSupplementary Data NO2 Measurements
from Main Sensor (ys)

1 NN Restricted (only To, Ti, Ho, and Hi) NO NO
2 NN Restricted (zs without pressure P) NO NO
3 NN + kriging 1 Restricted (zs without pressure P) NO NO
4 NN Restricted (zs without pressure P) YES NO
5 NN + kriging 1 Restricted (zs without pressure P) YES NO
6 NN Complete zs YES NO
7 NN + kriging 1 Complete zs YES NO
8 NN Complete zs YES YES
9 NN + kriging 1 Complete zs YES YES

1 Models combined using the convex combination factor β = 0.7.

The numerical results can be found in Table 2, which reports the obtained correlation
coefficient r and modeling error (here, RMSE) for the testing and training data. The utilized
definitions have been included in Figures 14–17, which show visualization of the results
for three selected setups (setups 2, 5, and 9), which present the reference and corrected
sensor outputs for the selected sub-sets, as well as the respective scatter plots. For further
clarification, Figure 18 depicts the combined training and testing outputs, specifically for
Setup 9, arranged based on ascending values of NO2 concentrations. The displayed data
comprise reference NO2 levels alongside the respective raw and calibrated sensor readings.

Table 2. Sensor calibration performance. The table reports the values for the training data (columns
two and three) and the testing data (columns four and five) for each calibration setup considered in
Table 1.

Calibration
Setup

Training Data Testing Data

Correlation Coefficient r RMSE
[µg/m3] Correlation Coefficient r RMSE

[µg/m3]

1 0.82 4.0 0.70 5.6
2 0.89 3.0 0.81 14.3
3 0.95 2.2 0.82 4.4
4 0.91 2.8 0.84 4.0
5 0.95 2.0 0.85 3.9
6 0.93 2.5 0.86 3.9
7 0.96 1.8 0.86 3.8
8 0.94 2.4 0.878 3.6
9 0.96 1.7 0.883 3.5
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Figure 14. Definitions of correlation coefficient r and RMSE. Both r and RMSE are used as the pri-
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as to compare its different variations. RMSE has been selected as a relevant metric of the absolute 
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Figure 14. Definitions of correlation coefficient r and RMSE. Both r and RMSE are used as the primary
performance indicators to evaluate the reliability of the proposed calibration strategy, as well as
to compare its different variations. RMSE has been selected as a relevant metric of the absolute
error, which gives an idea of the corrected sensor dependability as compared to the typical ranges of
measured NO2 concentration.
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Figure 15. Sensor correction (Setup 2 of Table 1): (a) training data subsets; (b) testing data (uncor-

rected and corrected sensor readings are shown using green and blue lines, reference marked black); 

(c) scatter plots of the training and testing samples (shown in the left and right panels, respectively) 

(gray and black colors indicate uncorrected and corrected samples). The results indicate considera-
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Figure 16. Sensor correction (Setup 5 of Table 1): (a) training data subsets; (b) testing data (uncor-

rected and corrected sensor readings are shown using green and blue lines, reference marked black); 

Figure 15. Sensor correction (Setup 2 of Table 1): (a) training data subsets; (b) testing data (uncorrected
and corrected sensor readings are shown using green and blue lines, reference marked black);
(c) scatter plots of the training and testing samples (shown in the left and right panels, respectively)
(gray and black colors indicate uncorrected and corrected samples). The results indicate considerable
improvement of the alignment between the calibrated sensor and the reference data in comparison to
the raw sensor, which is also observed on the scatter plots. Observe that the testing data are completely
separate from the training data and have not been used for calibration model identification.

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Sensors 2025, 25, 2352 18 of 28

Sensors 2025, 25, x FOR PEER REVIEW 18 of 28 
 

 

 
(c) 

Figure 15. Sensor correction (Setup 2 of Table 1): (a) training data subsets; (b) testing data (uncor-
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Figure 16. Sensor correction (Setup 5 of Table 1): (a) training data subsets; (b) testing data (uncor-

rected and corrected sensor readings are shown using green and blue lines, reference marked black); 

Figure 16. Sensor correction (Setup 5 of Table 1): (a) training data subsets; (b) testing data (uncorrected
and corrected sensor readings are shown using green and blue lines, reference marked black);
(c) scatter plots of the training and testing samples (shown in the left and right panels, respectively)
(gray and black colors indicate uncorrected and corrected samples). The results indicate considerable
improvement of the alignment between the calibrated sensor and the reference data in comparison to
the raw sensor, which is also observed on the scatter plots. At the same time, it can be observed that
Setup 5 provides noticeably better results than Setup 2 shown in Figure 15, which is primarily due to
the incorporation of the auxiliary kriging surrogate.
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global enhancement (cf. Section 3.5). 

Figure 17. Sensor correction (Setup 9 of Table 1): (a) training data subsets; (b) testing data (uncorrected
and corrected sensor readings are shown using green and blue lines, reference marked black);
(c) scatter plots of the training and testing samples (shown in the left and right panels, respectively)
(gray and black colors indicate uncorrected and corrected samples). The results indicate considerable
improvement of the alignment between the calibrated sensor and the reference data in comparison to
the raw sensor, which is also observed on the scatter plots. At the same time, it can be observed that
Setup 9 provides noticeably better results than both Setup 2 (Figure 15) and Setup 5 (Figure 16), which
is due to the concurrent employment of all correction mechanisms, including global enhancement (cf.
Section 3.5).
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Figure 18. Sensor calibration (Setup 9): (top) the complete training and (bottom) testing dataset,
arranged based on ascending NO2 concentrations. The visualization permits highlighting the benefits
coming from calibration, especially pushing the corrected outputs towards their reference data
counterparts (w.r.t. the raw data). It can be noticed that due to global correction (cf. Section 3.5),
the calibrated sensor data are symmetrical with respect to the reference data. The lack of perfect
symmetry for the testing data (bottom panel) is minor and caused by the fact that the testing data
corresponds to relatively long periods of time outside the training intervals.

The application of the calibration model requires approximately no more than
100,000 multiplication and 10,000 addition operations (upper limit with considerable
margin), which can easily be applied in the time between the measurements on the
proposed platform.

Additional validation included a comparison of the proposed calibration approach
with several benchmark frameworks: linear regression (LR) and two direct approaches—
artificial neural network-based (ANN) calibration and calibration implemented using a
convolutional neural network (CNN) [55]. The numerical results are gathered in Table 3.
For ANN/CNN prediction, the calibrated model output is predicted directly, in contrast
to our approach, where correction coefficients are predicted. An analysis of the results
shows that our calibration methodology outperforms all benchmark techniques in terms of
both correlation coefficients and RMSE. Thus, it can be concluded that the key mechanism
behind this superiority lies in the employment of affine correction (cf. Table 3), which
ensures better performance compared to the direct prediction of the calibrated sensor using
ANN of the same architecture or a CNN.

Table 3. Benchmarking: LR and direct ANN/CNN-based prediction.

Calibration Method Training Data Testing Data

Correlation
Coefficient

r2
RMSE

[µg/m3]
Correlation
Coefficient

r2
RMSE

[µg/m3]

Linear regression S(zs) 0.28 7.8 0.07 9.9
Linear regression Sy(zs, ys) 0.66 5.4 0.56 6.8

Direct ANN #-based prediction (zs) 0.77 4.4 0.26 8.8
Direct ANN #-based prediction (zs and ys) 0.83 3.8 0.61 6.4

Direct CNN USD-based prediction (zs and ys)
(convolution layers: 32, 16, 8)

0.50 6.5 0.29 8.6

Direct CNN USD-based prediction (zs and ys)
(convolution layers: 64, 32, 16)

0.72 4.8 0.45 7.6

Direct CNN USD-based prediction (zs and ys)
(convolution layers: 128, 64, 32)

0.77 4.5 0.42 7.7

# ANN uses the same architecture as described in Section 3. USD CNN architecture uses filters of the size 4 ×
1 × 1 and three convolution layers followed by a fully connected layer of the size 64 neurons, as well as batch
normalization and ReLU layers in between the convolution layers. CNN is trained using the ADAM algorithm
with a mini-batch size of 1000.
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4.3. Economic Analysis

The Autonomous Measurement Platform outlined in Section 2.1 comprises widely
available electronic modules and parts (COTS). The electrochemical sensors are less ac-
curate than professional measuring equipment, but their cost is also much lower. The
correction mechanisms proposed in this article significantly enhance these cheap sensors’
operation, making them comparable to professional measuring equipment with a corre-
lation coefficient of approximately r = 0.9. As can be seen from Tables 4 and 5, the cost of
a professional reference station is significantly higher, approximately USD 87,000 of the
initial costs and approximately USD 3300 of annual costs. The expenses associated with the
proposed platform are just USD 750 (at mass production, the costs would be significantly
lower). In contrast, the annual cost of platform usage, including sensor replacement due to
their limited lifetime, is approximately USD 120.

Table 4. Cost breakdown of the autonomous measurement platform (per unit).

No. Name of the Component/Module Approximate Cost at Unit Production Lifetime

1. SPS30 particulate matter (PM) sensor
(Sensirion [43]) USD 60 >10 years

2. SGX-7NO2−→NO2 electrochemical sensor
(SGX Sensortech [44]) USD 80 >24 months

3. 7E4-NO2−→NO2 electrochemical sensor
(SemaTech [45]) USD 140 3 years

4.
MiCS 2714−→Compact MOS ambient quality

sensor (SGX Sensortech [46]) for NO2 and
hydrogen detection)

USD 16 not applicable

5.

BME280−→Environmental sensor
(Bosch Sensortech [47]) capable of detecting air

temperature and humidity together with
atmospheric pressure (2 pieces)

USD 14 10 years

6. BeagleBone Blue microcomputer board USD 140 n/a

7. Minor passive components, supplementary
modules and accessories USD 300 n/a

Total cost of hardware USD 750

Electricity (per year) USD 25

GSM transmission costs for IoT GSM rate for
1nce operator (per year) (www.1nce.com,

accessed on 19 February 2025)
USD 11

Table 5. The approximate costs of reference stations equipped with professional analyzers. Cost
estimation is based on information acquired from ARMAG [48].

No. Name Approximate Cost Remarks

1.
Air-conditioned container, without

the measurement equipment (similar
to the one shown in Figure 3b)

USD 25,000 purchase cost

2. NO-NO2-NOx Analyzer
i.e., API T200 USD 25,000 purchase cost

3. PM analyzer PM10, PM2.5, PM1
i.e., GRiMM EDM 280 USD 37,000 purchase cost

4. Service and maintenance of
the analyzers USD 500 cost per year

5.
Electricity

(measurement equipment,
air-conditioning, heating)

USD 2800 cost per year

4.4. Deployment

The deployment of the proposed measurement platforms is rather straightforward.
As the hardware platform is supplied by a low voltage (the allowed input power supply
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voltage range is 12–36 V, max 24 W), even a simple external and certified 15 V laptop-type
power supply can be used. It is sufficient that the external power supply is labelled with
the FCC logo, which means that it has been authorized under the Supplier’s Declaration of
Conformity (SDoC) procedure from the Federal Communications Commission (FCC) of the
United States of America. It should also be certified with CE, which assures that the power
supply has been assessed by the manufacturer and deemed to meet the European Union’s
(EU) safety, health, and environmental protection requirements. The platform hardware
is an experimental device developed for scientific purposes. Consequently, it does not
have any conformity certifications yet. However, if needed to introduce the system to
commercial usage, acquiring such a certificate would not be difficult, as it is a low-voltage
device containing standard, mostly passive components. It would likely be required to
conduct conformance of radio emission tests as the device contains the GSM modem and
the antenna.

Clean air is crucial for human health and the environment. Air pollution has now
been proven harmful to human health and the environment. Therefore, it is important
to monitor the level of air pollution. Dense deployment of the proposed platforms is
easily feasible. The only limitation is the coverage and the capacity of the cellular network
in the area of deployment, as the devices use GSM modems in IoT mode to upload the
measurement results to the database in the computer cloud. Multiple utilization scenarios
can be proposed for the presented low-cost platform with its calibration algorithms. In-
stalling a dense stationary measurement network assessing the air quality in a certain area
would enable end-users to make information-driven decisions to mitigate air pollution
exposure. The wide deployment of the platforms on cars, trucks, buses, bikes, and scooters
would allow monitoring of air pollution on a large scale (street, urban), enabling mapping
the pollution dynamics and locating emission hot spots and increasing the spatial and
temporal resolution. Installing a pair of sensors, one inside and another one outside the
car’s or truck’s cabin, would provide information to the driver to open or close the vehicle’s
windows to prevent being exposed to the increased air pollution in the place where drivers
and passengers stay for long periods.

4.5. Discussion

The results presented in Section 4.2 are examined here to outline the functionality of
the proposed correction process and evaluate the performance of the calibrated sensor. It
should be noted that sensor calibration poses a serious challenge due to notable disparities
between sensor and reference outputs, alongside the wide dynamic range of measurements
(between zero and around 60 µg/m3), as illustrated in Figure 13. Additionally, NO2 values
frequently undergo substantial fluctuations over short intervals.

Despite these challenges, our calibration methodology provides remarkably good
results, which is confirmed by the correlation coefficients and RMSE level indicated in
Table 2. Clearly, the most involved arrangement (Setup 9), which combines NN and kriging
surrogates, the broadest range of input variables (NO2 measurements collected by the
main and surplus sensors and all environmental parameters), and global data correlation
enhancement, is also the most successful one.

For this setup, the correlation coefficient exceeds 0.88 (and 0.96 for the training data).
At the same time, RMSE is just 1.7 µg/m3 and 3.5 µg/m3 for the testing and training
samples, respectively. This error value is low, particularly given a broad range of recorded
nitrogen dioxide levels, and makes the calibrated low-cost sensor practically usable. High
precision of the corrected sensor also manifests itself in excellent visual agreement between
its output and the reference one, as shown in Figure 17. Again, this has been achieved
despite considerable misalignment between the reference and raw sensor measurements.
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It should also be emphasized that all algorithmic tools developed and employed as
the components of the calibration procedure are relevant and contribute to the obtained
precision of the corrected sensor. For example, noticeable improvement of the correlation
coefficient and reduction of RMSE are achieved due to combining the NN surrogate with
the kriging metamodel (cf. Setup 3 vs. 2, or Setup 5 vs. 4). Increasing the number of
model inputs (e.g., Setup 7 versus 5) is even more essential. The same can be said about
considering the main NO2 sensor output as a correction model input (Setup 5 versus 3),
which by itself improves the correlation coefficient by about 0.03 and lowers RMSE by
nearly 0.5 µg/m3.

Finally, the global data correlation enhancement scheme of Section 3.5 is yet another
important component, which increases the correlation coefficient by an additional 0.02 and
lowers RMSE by about 0.3 µg/m3. As mentioned earlier, these combined enhancements
translate into better visual agreement between the corrected and reference data. Similar im-
provements can be observed on the scatter plots, which are noticeably more concentrated in
the vicinity of the identity function for Setup 9 (Figure 17) than for other Setup 5 (Figure 16),
let alone Setup 2 (Figure 15). Figure 18 provides another way of illustrating the improve-
ments obtained via the introduced correction procedure by showing the aggregated testing
and training samples ordered w.r.t. the increasing NO2 levels. As it can be observed, the
corrected sensor samples are allocated significantly closer to the corresponding reference
data, in contrast to the uncorrected sensor.

The histograms of the absolute errors (i.e., the differences between the corrected and
reference readings, yr − yc, for the complete testing data) for Setups 2, 5, and 9 have been
shown in Figure 19. Close to normal error distribution has been observed, as expected.
However, for Setups 2 and 5, the mean is negative (−1.4 and −1.0 µg/m3, respectively),
which is because of certain asymmetry of the NO2 reading distribution w.r.t. the reference.
This is also noticeable on the scatter plots (Figures 15 and 16), which are slightly skewed.
For Setup 9, owing to global data correlation enhancement, the mean is close to zero, and
the scatter plot is more symmetrical accordingly.

The standard deviations for Setups 2, 5, and 9 are 4.2, 3.8, and 3.3, respectively. This
indicates that enhancing the calibration approach (such as increasing the number of input
variables for the surrogates, combining NN with kriging, and applying global correction)
significantly improves the reliability of the inexpensive sensor. From the data, it can be
inferred that the probability of the calibrated sensor’s absolute error being within 3 µg/m3

is approximately 65%, while the probability of it falling within the ±6 µg/m3 range
exceeds 90%.

Based on the extensive comparison of the performance of low-cost sensors and calibra-
tion algorithms together with the cost of the equipment given in [59], it can be seen that
only a few papers can report the correlation coefficient r > 0.9 [60–62]. Notwithstanding,
calibration was performed individually for each sensor in these works. Furthermore, in [61],
each hardware contains duplicated sensors for better data quality control. The solution
presented in this paper uses the same correction scheme for all sensors (measurement units),
avoiding troublesome individual treatment of each device. Despite this general approach,
the correlation coefficient is very high.

In conclusion, calibrated sensor reliability is outstanding, in particular, for the most
sophisticated correction setup, Setup 9. In practice, an offline execution of the calibration
procedure is possible, meaning it can be performed on the NO2 readings from the sensor of
the measurement platform before transmitting the data to the end user using the wireless
communication module. Another approach is to execute correction directly at the hardware
unit, using the installed computational module described in Section 2.
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Figure 19. Absolute error histograms (yr − yc, reference vs. corrected data) for aggregated testing
samples (values in µg/m3): (top) Setup 2 (mean: −1.4, standard deviation: 4.2), (middle) Setup 5
(mean: −1.0, standard deviation 3.8), and (bottom) Setup 9 (mean: −0.5, standard deviation 3.3). The
distribution means are shown using solid vertical lines, and standard deviations are marked using
dashed lines. These pictures indicate that the calibrated low-cost sensor errors are concentrated closer
to the zero value for more complex calibration setups. Also, the mean value becomes very close to
zero for Setup 9, which is due to the employment of the global response correction.

5. Conclusions
This study introduced an autonomous, custom-built platform for monitoring nitrogen

dioxide (NO2) as well as an innovative machine learning calibration technique for a cheap
NO2 sensor. The employed hardware units comprise main and secondary NO2 sensors,
multiple auxiliary detectors for assessing environmental conditions (temperature, humidity,
pressure), and dedicated electronic devices with drivers for establishing and managing
monitoring protocols and wireless data transmission. The correction method utilizes
an affine adjustment of the inexpensive sensor readings, employing regularization to
ensure the uniqueness of correction coefficients. It combines neural network and kriging
interpolation surrogates as an ensemble metamodel, predicting corrections based on input
variables encompassing environmental parameters and NO2 readings from the main and
secondary detectors. Additionally, a global data correlation enhancement layer is included,
operating across the complete training dataset.

The developed correction process exploited reference and cheap sensor data collected
across multiple locations in Gdansk, Poland, over five months. The proposed monitoring
platforms were situated near reference stations, providing output data for analysis in an
hourly regime. Rigorous verification indicates that the proposed correction technique
achieves exceptional accuracy of NO2 monitoring, boasting a correlation coefficient sur-
passing 0.88 obtained for the reference data. Simultaneously, the RMSE error remains below
3.5 µg/m3. Achieving such excellent accuracy corroborates the practicality and dependabil-
ity of NO2 detection using cheap sensing devices. Supplementary experiments involving
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alternative correction setups underline the importance of the developed algorithmic tools in
refining the correction scheme. Specifically, the inclusion of additional input variables such
as primary and secondary NO2 readings, the fusion of NN and kriging surrogates, and
global data correlation enhancement collectively enhance the accuracy of NO2 detection.

In future efforts, enhancing NO2 monitoring reliability remains a key objective. This
includes employing other gas detection devices (e.g., SO2, CO, O3), using their readings as
auxiliary inputs for the correction model, and exploring cross-sensitivity. Additionally, the
exploration of more advanced ML-based techniques, particularly deep learning NNs and
their integration with regression schemes, will be pursued to refine the calibration process
even further. Another direction of future research would be to expand our framework and
explore its adaptability to diverse climatic conditions in other locations, as well as carry out
investigations concerning long-term sensor drift and the needed calibration updates.
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