
Nodal models of Pressurized Water Reactor core for
control purposes – a comparison study

Bartosz Puchalski∗, Tomasz A. Rutkowski∗, Kazimierz Duzinkiewicz∗

Department of Control Systems Engineering, Faculty of Electrical and Control Engineering,
Gdansk University of Technology, G. Narutowicza Street 11/12, 80-233 Gdansk, Poland

Abstract

The paper focuses on the presentation and comparison of basic nodal and ex-

panded multi-nodal models of the Pressurized Water Reactor (PWR) core,

which includes neutron kinetics, heat transfer between fuel and coolant, and

internal and external reactivity feedback processes. In the expanded multi-

nodal model, the authors introduce a novel approach to the implementation

of thermal power distribution phenomena into the multi-node model of reactor

core. This implementation has the form of thermal power distribution coeffi-

cients which approximate the thermal power generation profile in the reactor. It

is assumed in the model that the thermal power distribution is proportional to

the axial distribution of neutron flux in the un-rodded and rodded reactor core

regions, as a result of control rod bank movements. In the paper, the authors

propose a methodology to calculate those power distribution coefficients, which

bases on numerical solutions of the transformed diffusion equations for the un-

rodded and rodded reactor regions, respectively. Introducing power distribution

coefficients into the expanded multi-nodal model allows to achieve advanced ca-

pabilities that can be efficiently used in design and synthesis of more advanced

and complex control algorithms for PWR reactor core, for instance in the field

of reactor temperature distribution control.
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1. Introduction

The mathematical models of nuclear reactor processes can be divided into

two main groups, the first of which is related to complex and accurate models,

while the second represents less accurate, reduced and simple models. These two

groups have different applications and purposes. The first group models may

be used in design of reactor core, safety considerations, or detailed analyses of

phenomena and nature of processes occurring in the nuclear reactor core. On the

other hand, the less accurate models composing the second group can be used in

control systems synthesis, and for education or training purposes. The second

group models should also comply with several aspects which the first group is

unable to fulfil, for instance easy implementation, convenient calculation time,

or simple description. This paper focuses on the second group of models, with

emphasis on nuclear reactor control systems and algorithm synthesis.

Several approaches can be efficiently used in that field, of which the lumped

parameter models are most common and widely utilized. In (Han, 2000) the

author presents dynamic models for the primary loop systems of nuclear power

plants, which have the potential of fast running on personal computers. These

models have been mainly made for thermal-hydraulic analysis purposes. An-

other example is the paper (Fazekas et al., 2007), in which the authors present

simplified dynamic models of primary circuit elements of a nuclear power plant

for control system design purposes. Also in (Dong et al., 2009) the authors

present lumped parameter dynamic models of primary loop elements for control

system design and simulation, while in (Karla et al., 2015; Tarnawski and Karla,

2016) the authors present an approach to building lumped model based low

cost non-real-time and real-time nuclear reactor simulators. Lumped parameter

models can also be utilized in advanced process control. Authors in (Kulkowski

et al., 2015; Sokolski et al., 2016) presents simple and complex non-linear dy-
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namic models of nuclear power plant steam turbine used for that purposes.

Another modelling approach is the usage of fractional calculus. In (Espinosa-

Paredes et al., 2011; Nowak et al., 2014a,b) the authors present similar ways of

modelling neutron point kinetics equations which play a significant role in the

reduced models of nuclear reactor core. Also in (Nowak et al., 2015) the authors

introduce fractional order neutron kinetics equations, along with the integer

order heat transfer model. The fractional order models are more complex than

the lumped non-fractional parameter models, because of more sophisticated

computational methods to be applied. On the other hand, they have an ability

to mimic some physical processes in a more accurate way.

The last, but not least, field in simplified modelling of nuclear processes is

nodal approach. Nodal methods divide the distributed systems into smaller

parts (nodes) which can be modelled by ordinary differential equations. Due

to a high number of computational nodes used, these models are most com-

plex, yet still capable of performing calculations in convenient time. The nodal

models are also interesting for their ability to model spatial relations in the

modelled elements with little effort. The point kinetics approach is not proper

in some types of nuclear reactors, as stated in (Dong et al., 2010). The authors

of that paper derive the nodal neutron kinetics model with corresponding nodal

thermal-hydraulic models of nuclear reactor core. In (Puchalski et al., 2016)

the authors derive nodal thermal-hydraulic models of reactor core with corre-

sponding power distribution coefficients, while in (Sharma et al., 2003; Tiwari

et al., 1996), for control purposes of xenon induced spatial oscillations, the au-

thors divide the nodal model of reactor core into a number of zones, which are

then treated as small cores coupled through neutron diffusion – a concept of

coupled-core kinetics.

In (Zhang, 2012; Zhang and E. Holbert, 2013) the authors compare nodal and

distributed parameter models in the frequency domain and identify advantages

and disadvantages of each model, while in (Puchalski et al., 2015a; Guimarães

et al., 2008) the authors present simple and multi-nodal models of the U-tube

steam generator, a crucial element in the nuclear power plant, for control and
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simulation purposes. For example, in (Puchalski et al., 2015a) and (Puchalski

et al., 2015b) the multi-regional fuzzy controller, with local PID controllers and

Takagi-Sugeno reasoning mechanism for U-tube steam generator water level

control, and the membership functions tuning procedure is described.

The nodal models presented in the paper are based on the point kinetics

model to describe the time-depended average neutron population including the

delayed neutrons in the reactor core. Moreover, they make use of a nodal

approach to describe the heat transfer between the reactor fuel and coolant,

and the reactivity feedback influences related to the main internal and external

mechanism of fuel and coolant temperature changes and control rod bank move-

ment. In the paper the authors expand the nodal approach presented mainly

in (Kerlin, 1978) and applied in (Naghedolfeizi, 1990; Kapernick, 2015; Liu,

2015; Perillo, 2010) by adding special thermal power distribution coefficients

to approximate thermal power generation distribution in the reactor core with

respect to the reactor control rod bank movement.

This paper is organized as follows. In Section 2 the point kinetics model is

briefly described, while in Section 3 basic nodal models of the PWR reactor core

are described and compared in simulation. In Section 4 the extended multi-nodal

model of PWR reactor core is described in detail, including: model equations,

different cases of thermal power distribution coefficient calculations, comparison

of simulation results for selected number of fuel nodes, and comparison with

dedicated nuclear simulation and analysis software. Finally, conclusions are

presented in Section 5.

2. Point kinetics model of the reactor core

In general, the behaviour of the distributed physical systems can be repre-

sented by lumped point models. Partial differential equations, commonly used

to describe spatial systems, can be simplified to ordinary differential equations

with a finite number of parameters. With this simplification, the space depen-

dent nature of the process can be neglected by using averaged physical quan-
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tities. For the nuclear reactor core, the point model describes average values

of the neutron density and the temperature of fuel or coolant, i.e. the physical

quantities which are most important for reactor core operation.

In the paper, the point kinetics model of nuclear reactor core is used to

describe the time-depended average neutron population, including six groups

of delayed neutrons. It is featured by a well-known set of ordinary differential

equations Duderstadt and Hamilton (1976).

dn̄(t)

dt
=
ρ(t) − β

Λ
n̄(t) +

6∑
i=1

λiCi(t), (1)

dCi(t)

dt
=
βi
Λ
n̄(t) − λiCi(t), i = 1, ..., 6, (2)

where n̄ is the average neutron density, ρ is the reactivity, β =
∑6
i=1 βi is the

total yield of the delayed neutron precursors, Λ is the average neutron generation

time, λi are the decay constants of the delayed neutron precursors, Ci are the

concentrations of the i-th group of the delayed neutron precursors, βi are yields

of the delayed neutron precursors, and t is the time.

Taking into account the well-known fact that the thermal power generated

in the reactor core is proportional to the neutron flux and the average neutron

density

PTH(t) ∼ φ ∼ n̄, (3)

the thermal power generated in the reactor core is assumed to be calculated

from the formula

PTH(t) =
n̄(t)

N0,N
PTH,N , (4)

where PTH is the reactor thermal power, N0,N is the nominal average neutron

density at full power, PTH,N is the nominal power of the reactor core, and φ de-

notes the neutron flux. The values of numerical parameters of the PWR reactor

point kinetic model are included in Appendix A. The heat transfer processes,

and the reactivity feedback due to the fuel temperature, coolant temperature,

and control rod bank movements, are also taken into account and described in

detail in the following sections for the appropriate reactor nodal models.
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Figure 1: Basic heat transfer nodal models of nuclear reactor core: A) with one fuel node and

one coolant node (1F/1C); B) with one fuel node and two coolant nodes (1F/2C).

3. Basic heat transfer nodal models of the reactor core

This section focuses on two basic nodal models of heat transfer in the reactor

core, Fig. 1. These models are most popular and widely used in the field of

control algorithm synthesis. The first nodal model includes one fuel node and

one coolant node – 1F/1C (Fig. 1A), while the second model has the structure

with one fuel and two coolant nodes, respectively – 1F/2C (Fig. 1B). In both

cases, the heat generated at the fuel node is calculated using the point kinetics

model described in the previous section. The coolant nodes are treated as well-

stirred tanks (Kerlin, 1978). Also, the heat transfer between the fuel node and

the coolant node is proportional to the differences between the temperature of

the fuel node and the temperature of the coolant in the coolant node (Fig. 1A))

or the temperature of the coolant on the outlet of the first coolant node, same

as in the inlet to the second coolant node (Fig. 1B)).

3.1. The nodal model 1F/1C

The mathematical model of heat balance between one fuel and one coolant

node (Fig. 1A) is derived from the classic Newton law of cooling and is described

by two differential equations

mF cpF
dTF (t)

dt
= fFPTH(t) −Ah(TF (t) − TC(t)), (5)
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mCcpC
dTC(t)

dt
= (1 − fF )PTH(t) +Ah(TF (t) − TC(t))+

−WCcpC(TCout(t) − TCin), (6)

where mF is the mass of the fuel, cpF is the specific heat capacity of the fuel,

TF is the fuel temperature, fF is the fraction of the total power generated in the

fuel, A the is effective heat transfer area, h is the average overall heat transfer

coefficient, TC is the average coolant temperature, mC is the mass of the coolant,

cpC is the specific heat capacity of the coolant, WC is the coolant mass flow rate

within the core, TCout is the coolant outlet temperature, and TCin is the coolant

inlet temperature.

In accordance with the assumed heat balance model (5)-(6), the average

coolant temperature at the coolant node is determined as the mean value of the

inlet and outlet coolant temperatures

TC(t) =
TCout(t) + TCin(t)

2
. (7)

Finally, after rearranging Equation (7) the outlet coolant temperature can be

expressed as

TCout(t) = 2TC(t) − TCin(t), (8)

while the reactivity feedback balance related to the main internal mechanisms

(fuel and coolant temperature effects) and external mechanisms (control rod

bank movements) for this model can be represented by the algebraic equation

ρ(t) = ρext + αF (TF (t) − TF,0) + αC(TC(t) − TC,0), (9)

where ρext is the deviation of the external reactivity from the initial (critical)

value, αF is the fuel reactivity coefficient, TF,0 is the initial condition for the fuel

temperature, αC is the coolant reactivity coefficient, TC,0 is the initial condition

for the average coolant temperature.

Unfortunately, the above presented point model has a main drawback re-

sulting from the use of Equation (8). When a sudden increase/decrease in the

inlet coolant temperature takes place, the temperature of the outlet coolant will
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instantly decrease/increase at the same time. This effect is incorrect and does

not agree with the reality. The values of the numerical parameters in the nodal

model 1F/1C are included in Appendix A.

3.2. The nodal model 1F/2C

The nodal model 1F/2C has the structure consisting of one fuel and two

coolant nodes – Mann’s model (Fig. 1B). In that model, the driving temperature

difference is changed into the temperature difference between the fuel and the

average temperature of the first coolant node. Hence, an assumption is made

that the temperature of the coolant on the outlet of the considered coolant node

equals the average coolant temperature in the considered coolant node. In that

case, the mathematical model of heat balance between nodes is composed of

three ordinary differential equations (Kerlin, 1978; Kapernick, 2015; Liu, 2015;

Perillo, 2010).

The first equation describes the heat balance for the fuel node

mF cpF
dTF (t)

dt
= fFPTH(t) −Ah(TF (t) − TC1(t)), (10)

where TC1 is the average coolant temperature in the first coolant node.This

equation is similar to Equation (5) due to the presence of one fuel node, as

shown in Fig. 1A.

The second and third differential equation describe heat balances for first

and second coolant nodes of 1F/2C model (Fig. 1B) as follows

mC

2
cpC

dTC1(t)

dt
= (1 − fF )

PTH(t)

2
+
A

2
h(TF (t) − TC1(t))+

−WCcpC(TC1(t) − TCin(t)), (11)

mC

2
cpC

dTC2(t)

dt
= (1 − fF )

PTH(t)

2
+
A

2
h(TF (t) − TC1(t))+

−WCcpC(TC2(t) − TC1(t)), (12)

where TC2 is the average coolant temperature at the second node, also consid-

ered as the coolant outlet temperature.
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The reactivity feedback balance for the nodal model 1F/2C takes the form

of the following algebraic equation

ρ(t) = ρext + αF (TF (t) − TF,0) +
αC
2

(TC1(t) − TC1,0)+

+
αC
2

(TC2(t) − TC2,0). (13)

Due to two coolant nodes considered in the nodal model 1F/2C, some variables

and parameters in Equations (11)-(13) are divided by 2.

The main advantage of this model results from a more realistic description

of heat transfer from fuel to coolant, compared to the model with one coolant

node which assumes that the average coolant temperature in the coolant node

is the mean value of its inlet and outlet coolant temperatures. This approach

prevents unnatural static temperature changes at the coolant output node.

3.3. Comparison of simulation results for nodal models 1F/1C and 1F/2C

This subsection compares two basics nodal models, namely 1F/1C and 1F/2C

(Fig. 1). It is shown how the introduction of two coolant nodes affects the av-

erage neutron density n
n0

related to the thermal power PTH of the reactor core,

the temperatures TF at the fuel node and TC at the coolant nodes, and the

outlet coolant temperature TCout.

Figure 2 shows the responses of the reactor core nodal models to the neg-

ative step change of reactivity ∆ρ (control rod bank insertion into the reactor

core), made at the fifth second of simulation, with the final value equal to -5

cents, while Fig. 3 illustrates the model responses to the negative step change

of coolant inlet temperature ∆TCin, with the final value equal to -5% of the

nominal value. Finally, the responses to the negative step change of coolant

mass flow rate ∆WC is shown in Fig. 4, and its final value is equal to -3% of

the nominal coolant mass flow through the reactor core.

In all Figs. 2-4 minor differences in relative values of all presented vari-

ables can be seen, while comparing their dynamic behaviour indicates that all

waveforms have a similar character. The Fig. 2 shows that the temperatures cal-

culated at both fuel and coolant nodes by the 1F/1C model are lower than those
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calculated by the 1F/2C model. Moreover, the average neutron density calcu-

lated by the 1F/1C model is also lower than that calculated by the 1F/2C model.

Intuitively, the average neutron density results are expected to be reversed for

that two types of models. However, the sum of fuel and coolant reactivity feed-

backs, calculated for each model from Equation (9) and (13) respectively, shows

that the reactivity from internal feedbacks obtained for the 1F/2C model is

slightly higher in value than that for the 1F/1C model. This fact directly ex-

plains the reverse trend in average neutron density changes. Major differences

between the models can be seen especially in the coolant temperature at reac-

tor outlet, presented in Fig. 3, where the negative step change of the coolant

inlet temperature is introduced. In that case, the coolant outlet temperature

calculated from the nodal model with only one coolant node (1F/1C) changes

statically to 325.8 ◦C at the fifth second of simulation. This change is caused

by the method of coolant outlet temperature calculation that is related to the

formula presented by Equation (8). From this formula, it can be concluded that

Figure 2: Comparison of models with one fuel node – negative external reactivity step change

∆ρ = −5c (control rod bank insertion into reactor core).
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Figure 3: Comparison of models with one fuel node – negative coolant inlet temperature step

change ∆TCin = −5%.

Figure 4: Comparison of models with one fuel node – negative mass flow rate step change

∆WC = −3%.
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each change of coolant inlet temperature will be immediately followed by an

instant change of coolant outlet temperature. This effect is invalid and undesir-

able, as it affects the negative reactivity feedback. Hence, the1F/1C model is

inappropriate for that specific control purposes. On the other hand, the nodal

model with two coolant nodes (1F/2C) lacks this disadvantage, due to introduc-

ing the second coolant node to the heat transfer structure of the model. Let us

note that the temperature of the second coolant node is treated as the coolant

outlet temperature from the reactor core (Fig. 1B).

4. Expanded heat transfer multi-nodal model of the reactor core

The concept of the expanded multi-nodal reactor core model is shown in Fig.

5. This approach is an expansion of the previously described basic nodal model

of heat transfer (subsection 3.2). It may be treated as discrete approximation of

the spatial model. By adding more fuel and coolant nodes the multi-nodal model

is getting closer to the spatial model, yet still preserving simple mathematical

description.

The alteration of thermal power distribution in the reactor core is mainly

caused by control rod bank movement and/or poisoning or depletion of the

nuclear fuel, and has direct impact on the fuel and coolant temperatures in

particular zones of the reactor core. In the paper the authors introduce power

distribution phenomena to the multi-node model in the form of power distri-

bution coefficients DCi, which approximate the thermal power generated in all

nodes of the multi-nodal model of the operating reactor, with special empha-

sis on the control rod bank movement. In the simplest case, those coefficients

may be equal and constant over time and over the space of the reactor core

(subsection 4.2.1) – uniform power generation profile. Alternatively, they can

be kept constant in time, but related to the nominal axial distribution of the

neutron flux along the reactor core height (subsection 4.2.2). In those cases,

only the information about the unchanged (nominal) shape of the neutron flux

is used to calculate the power distribution coefficients DCi. This insensibility of
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Figure 5: Expanded heat transfer multi-nodal reactor model.

the neutron flux to the control rod bank movement can be observed in tightly

coupled cores, in which the reactor core height/migration length (H/M) ratio

is small and ranges from a few to slightly more than ten (Lewis, 2008). For

loosely coupled cores, in which the values of the H/M ratio can reach several

dozens, strong deviations of axial neutron flux distribution are observed (Lewis,

2008). In those cases, the power distribution coefficients DCi should be treated

as variable parameters which depend on time and reactor region changes result-

ing from the control rod bank movement – insertion to the depth x from the

top of the reactor. This case is represented by power distribution coefficients of

Type III (subsection 4.2.3). The parameters of the PWR reactor core analysed

in the paper give the value of the H/M ratio equal to 48.

4.1. Mathematical model

The heat balance equations for the i−th fuel/coolant node of the expanded

multi-nodal model of reactor core (Fig.5), can be presented as follows

dTFi(t)

dt
=
ηfFPTH(t)DCi

mF cpF
− Ah

mF cpF
(TFi(t) − TC(2i−1)(t)), (14)
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dTC(2i−1)(t)

dt
=

2η(1 − fF )PTH(t)DCi

2

mCcpC
+

Ah

mCcpC
(TFi(t) − TC(2i−1)(t))+

− 2nWC

mC
(TC(2i−1)(t) − TC(2i−2)(t)), (15)

dTC(2i)(t)

dt
=

2η(1 − fF )PTH(t)DCi

2

mCcpC
+

Ah

mCcpC
(TFi(t) − TC(2i−1)(t))+

− 2nWC

mC
(TC(2i)(t) − TC(2i−1)(t)), (16)

where η denotes the number of fuel nodes, DCi are the thermal power distri-

bution coefficients, which for instance may depend on the depth x of control

bank immersion into the reactor core, i = 1, ..., η represents the fuel node index,

2i − 1 is the odd coolant node index and 2i is the even coolant node index. It

should be noted that temperature TC0 which results from substitution of i = 1

to equation (15) is related to inlet coolant temperature TC,in.

The reactivity feedback balance for the expanded multi-nodal model (Equa-

tions (14)-(16)) is described as

ρ(t) = ρext + αF

η∑
i=1

[DCi · (TFi(t) − TFi,0)]+

+ αC

η∑
i=1

[
1

2
DCi · (TC(2i−1)(t) − TC(2i−1),0)+

+
1

2
DCi · (TC(2i)(t) − TC(2i),0)] (17)

Let us notice that the power distribution coefficients DCi in Equations (14)-(17)

play the role of weight factors. The index ’0’ denotes the initial values of the

fuel and coolant node temperatures.

4.2. Power distribution coefficients

4.2.1. Type I

The first type of power distribution coefficients DCi considered in the paper

is based on the most basic hypothetical assumption that the power generated

in the reactor core is uniform and equally distributed along the core height

(Naghedolfeizi, 1990). In that case, the values of the thermal power distribution
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coefficients DCi in the expanded multi-node model for each i− th fuel node can

be calculated as follows

DCi =
1

η
for i = 1, ..., η (18)

with the assumption that

η∑
i=1

DCi = 1. (19)

For example, in the multi-nodal model with three fuel nodes (η = 3) all coeffi-

cients are equal to 1/3, while in the model with five fuel nodes (η = 5) they are

equal to 1/5, and so on.

4.2.2. Type II

For the second type of power distribution coefficients DCi proposed by the

authors, an assumption is made that the reactor core has cylindrical geometry, as

presented in Fig. 6A. Consequently, the values of particular power distribution

coefficients DCi are constant in time and only related to the nominal axial

distribution of the neutron flux in the reactor core, that is when control rod

bank is fully withdrawn from the reactor core (Fig. 6A).

The axial distribution of the neutron flux in the finite cylindrical volume

of the reactor core is approximated using the diffusion equation expressed in

terms of the axial coordinate z. For the unrodded reactor region (marked with

Figure 6: Cylindrical reactor core: A) with the control rod bank withdrawn from reactor, B)

with the control rod bank inserted into the reactor to depth x from the top.

15

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


subscript u) this equation has the following form (Lewis, 2008)

d2

dz2
χu + α2χu = 0, 0 ≤ z ≤ H̃, (20)

where α is defined as (Lewis, 2008)

α2 =
1

M2

(
k∞
k

− 1

)
−B2

r , (21)

and χu is the neutron flux distribution along the z coordinate in the unrodded

core, M is the migration length, k∞ is the infinite multiplication factor, Br

is the radial buckling, and k is the multiplication factor. The solution of the

second order ordinary differential equation (20) with the boundary condition

χu(0) = 0 is given as a function of the axial coordinate z (Lewis, 2008)

χu (z) = C sin(αz), (22)

where C is related to the maximum value of the neutron flux χu.

Figure 7 shows an appropriate graph of the function χu (z). It has been

drawn for the axial neutron flux distribution of the PWR reactor core without

the control rod bank (the control rod bank immersion depth x = 0%), assuming

that the C parameter (Eq. (22)) was equal 1. Next, the constant power dis-

tribution coefficient DCi is determined for each i-th fuel node. The number of

coefficients is strictly related to the number of the considered fuel nodes η. To

determine the value of each coefficient, firstly the reactor height is divided into

minor intervals for which the coefficient values are calculated. The length of

each interval ∆H̃ = H̃/η is the same and related to the number of fuel nodes η.

Next, the limits for each interval are calculated, i.e. the values h0, h1, h2, ..., hη

are identified. Then, for each minor interval an area under the neutron flux

distribution described by function (22) and limited by particular interval lim-

its is calculated. Finally, each minor area is divided by the total area under

the neutron flux distribution function. A precise formula to calculate each DCi

coefficient is given as

DCi =

∫ hi

hi−1
χu(z)dz∫ H̃

0
χu(z)dz

for i = 1, ..., η. (23)
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Figure 7: Neutron flux distribution in the cylindrical reactor core with the control rod bank

fully withdrawn.

The values of the DCi coefficients of Type II are listed in Table 1, for 3, 5

and 10 fuel nodes of the considered PWR reactor core, while their graphical

representation is shown in Fig. 8.

It can be clearly seen that the Dci coefficients of Type II have values strictly

related to the axial distribution of the neutron flux along the reactor core height

and symmetrical with respect to the core half-height.

Table 1: Dci coefficients of Type II for the expanded multi-nodal model of PWR reactor core.

i Dci, η = 3 Dci, η = 5 Dci, η = 10

10 – – 0.024

9 – – 0.071

8 – – 0.110

7 – – 0.139

6 – – 0.154

5 – 0.095 0.154

4 – 0.250 0.139

3 0.250 0.309 0.110

2 0.500 0.250 0.071

1 0.250 0.095 0.024
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Figure 8: Dci coefficients of Type II for the expanded multi-nodal model of PWR reactor core

- with 3, 5 and 10 fuel nodes.

4.2.3. Type III

The third type of power distribution coefficientsDCi proposed by the authors

also refers to cylindrical geometry of the reactor core and represents the situation

when the power distribution in the core is related to the depth x of control rod

bank insertion into the reactor, measured from the top (Fig. 6B). The axial

distribution of the neutron flux within the reactor core is also approximated

based on the diffusion equation expressed in terms of the axial coordinate z,

which in this case takes two forms related to the unrodded (index u) and rodded

(index r) reactor regions (Lewis, 2008). Taking into account the insertion depth

x, these equations are presented as (Lewis, 2008)

d2

dz2
χu + α2χu = 0, 0 ≤ z ≤ H̃ − x, (24)

d2

dz2
χr +

(
α2 − β2

)
χr = 0, H̃ − x ≤ z ≤ H̃, (25)

where the parameter β is defined as (Lewis, 2008)

β2 =
1

M2

k∞
k
ρb, (26)

and χr is the neutron distribution along the z coordinates in the rodded part of

the reactor core, while ρb is the reactivity worth of the bank when it is inserted

to the entire length. Here, an assumption is made that the diffusion coefficients

in the rodded r and unrodded u core regions are the same (Lewis, 2008).
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The solutions of the second order differential equations (24)-(25) are pre-

sented in the following forms (Lewis, 2008)

χu (z) = C sin(αz), (27)

χr(z) =


C ′ sin

[√
α2 − β2

(
H̃ − z

)]
if α2 > β2,

C ′ sinh
[√

β2 − α2
(
H̃ − z

)]
if α2 < β2,

−C ′(H̃ − z), α2 = β2 if α2 = β2.

(28)

The C and C ′ parameters are directly related to each other. The solutions

presented by Equations (27)-(28) should fulfil the boundary conditions for the

considered reactor design (Lewis, 2008)

χu (0) = 0 and χr

(
H̃
)

= 0. (29)

Moreover, the functions (27)-(28) should have smooth and continuous transition.

This condition is presented in the following form Lewis (2008)

χu

(
H̃ − x

)
= χr

(
H̃ − x

)
, (30)

d

dz
χu(z)

∣∣∣∣
H̃−x

=
d

dz
χr(z)

∣∣∣∣
H̃−x

. (31)

Applying of the interface conditions (30)-(31) to Equations (27)-(28), leads

to additional equations relating C and C ′. Taking their ratio C/C ′ into consid-

eration leads to three additional transcendental equations Lewis (2008)

α cot
[
α
(
H̃ − x

)]
= −

√
α2 − β2 cot

(√
α2 − β2x

)
if α2 > β2, (32)

α cot
[
α
(
H̃ − x

)]
= −

√
β2 − α2 coth

(√
β2 − α2x

)
if α2 < β2, (33)

−αx = tan(α(H̃ − x)) if α2 = β2. (34)

These transcendental equations (32)-(34) are solved for the unknown variable

k, which is also present in Equations (21) and (26). In order to solve these
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equations, symbolic and numerical methods were used. The obtained numerical

results reveal that Equations (32)-(34) have many solutions over the area of

interest specified by the below described limits ku and kr

ku =
k∞

1 +M2(B2
r +B2

z )
, (35)

kr = (1 − ρb)ku. (36)

The proper solution should not contain discontinuities over that area. In or-

der to select the proper solutions, the authors solved Equations (32)-(34) for 201

linearly spaced points between ku and kr, with step ∆x = 0.0183 and discarded

those which did not form a continuous set of k values. The solutions selected

by the authors are shown in Fig. 9, as an unknown nonlinear function k = f(x)

which takes into account the relation between the multiplication coefficient k

and the control rod bank immersion depth x. The value of the multiplication

factor kkr also shown in Fig. 9) was derived from the relation α2 = β2. Then,

for given kkr, the appropriate value of xkr was derived from Equation (34).

The values of xkr and kkr are needed to determine the intervals within witch

Equations (32) and (33) are valid.

When the control rod bank is inserted into the reactor core to the distance x,

the spatial distribution of neutrons within the reactor core is determined from

Equations (27)-(28). The constants C and C ′ in these equations are strictly

related to each other and determine the amplitude of the functions that de-

scribe the neutron flux distribution within the reactor core. The values of these

constants can be derived after applying the interface conditions described by

Equations (30)-(31) to Equations (27)-(28). In the presently analysed case the

resulting homogeneous system of Equations (30)-(31), should be solved for C

and C ′ with given k. The authors chose the constants C and C ′ which fulfilled

the above mentioned homogeneous system in such a way that for each given

immersion depth x the maximum value of the neutron flux was normalized and

made equal to one. It should be noted that the selection of these constants
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Figure 9: Multiplication coefficient k vs. control rod bank immersion depth into the reactor

core x

does not affect the values of the distribution coefficients as long as the interface

conditions (30) and (31) are met.

The neutron flux distributions for different depths of control rod bank in-

sertion into the considered PWR reactor core are presented in Fig. 10. Next,

based on the information on the number of fuel nodes η, the particular distri-

bution coefficients DCi corresponding to the current control rod bank insertion

depth x were determined. These calculations based on similar assumptions to

those stated in subsection 4.2.2. The formula for DCi coefficients of Type III

is analogical to Equation (23) with two exceptions. Firstly, the denominator in

formula (23) is to be changed to∫ H̃−x

0

χu(z)dz +

∫ H̃

H̃−x
χr(z)dz (37)

to take into account two functions describing the neutron flux distribution.

Secondly, one of the intervals limited by hi−1 and hi values for which the coef-

ficients DCi coefficients are calculated will contain the transition point between

the functions, namely χu(H̃ −x) = χr(H̃ −x). In that case one coefficient is to
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Figure 10: Spatial neutron flux distributions for different control rod bank insertion depths x.

be calculated according to the following formula

DCi =

∫ H̃−x
a

χu(z)dz +
∫ b
H̃−x χr(z)dz∫ H̃−x

0
χu(z)dz +

∫ H̃
H̃−x χr(z)dz

(38)

where the constants a and b are related to the limits of the interval that contains

the point H̃ − x.

For comparison studies, the authors performed calculations of DCi coeffi-

cients for different numbers of fuel nodes: η = 3, η = 5, η = 10 and for various

depths x of control rod bank immersion into the reactor core, expressed in me-

ters and % of reactor core height. The results of these calculations are presented

in Tables 2-4 and in Figs. 11-13. It can be clearly seen, that the numerical val-

ues of DCi coefficients are strictly related to power distributions corresponding

to control rod bank movements.

Changes of DCi coefficients may be approximated, according to the con-

trol rod bank immersion depth x, by appropriate polynomials with parameters

identified using the least squares algorithm. For example, for η = 5 the ap-

proximation of DCi coefficients may be expressed in the form of fourth degree
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Table 2: DCi coefficients calculated for η = 3 fuel nodes.

Depth x [m] 0,0000 0,3660 0,7320 1,0980 1,4640 1,8300 2,1960

Depth x [%] 0 10 20 30 40 50 60

DC1 0,2500 0,2562 0,2834 0,3290 0,3904 0,4646 0,5370

DC2 0,5000 0,5055 0,5234 0,5354 0,5170 0,4647 0,3974

DC3 0,2500 0,2383 0,1932 0,1355 0,0926 0,0707 0,0656

Table 3: DCi coefficients calculated for η = 5 fuel nodes.

Depth x [m] 0,0000 0,3660 0,7320 1,0980 1,4640 1,8300 2,1960

Depth x [%] 0 10 20 30 40 50 60

DC1 0,0955 0,0981 0,1094 0,1290 0,1567 0,1933 0,2361

DC2 0,2500 0,2556 0,2794 0,3175 0,3642 0,4110 0,4345

DC3 0,3090 0,3127 0,3251 0,3352 0,3258 0,2810 0,2261

DC4 0,2500 0,2468 0,2261 0,1794 0,1262 0,0934 0,0826

DC5 0,0955 0,0868 0,0599 0,0389 0,0270 0,0213 0,0207

Table 4: DCi coefficients calculated for η = 10 fuel nodes

Depth x [m] 0,0000 0,3660 0,7320 1,0980 1,4640 1,8300 2,1960

Depth x [%] 0 10 20 30 40 50 60

DC1 0.0245 0.0251 0.0281 0.0334 0.0410 0.0513 0.0641

DC2 0.0710 0.0729 0.0812 0.0956 0.1157 0.1420 0.1720

DC3 0.1106 0.1133 0.1250 0.1444 0.1700 0.1998 0.2259

DC4 0.1394 0.1423 0.1544 0.1731 0.1943 0.2113 0.2087

DC5 0.1545 0.1569 0.1662 0.1777 0.1842 0.1738 0.1401

DC6 0.1545 0.1558 0.1589 0.1575 0.1416 0.1072 0.0861

DC7 0.1394 0.1389 0.1335 0.1154 0.0827 0.0604 0.0522

DC8 0.1106 0.1080 0.0927 0.0640 0.0435 0.0330 0.0304

DC9 0.0710 0.0662 0.0465 0.0301 0.0209 0.0163 0.0158

DC10 0.0245 0.0206 0.0135 0.0088 0.0062 0.0049 0.0049
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Figure 11: Dci coefficients of type III for different control rod bank insertion depths x and

η = 3 fuel nodes.

Figure 12: Dci coefficients of type III for different control rod bank insertion depths x and

η = 5 fuel nodes.
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Figure 13: Dci coefficients of type III for different control rod bank insertion depths x and

η = 10 fuel nodes.

polynomials. Let us notice that the power distribution coefficients DCi are now

redefined and expressed as functions DCi(x) of control rod bank immersion x

into the reactor core

DC1(x) = −0.00099x4 + 0.0032x3 + 0.028x2 − 0.0033x+ 0.095, (39)

DC2(x) = −0.014x4 + 0.028x3 + 0.043x2 − 0.0016x+ 0.25, (40)

DC3(x) = 0.024x4 − 0.13x3 + 0.18x2 − 0.047x+ 0.31, (41)

DC4(x) = 0.0095x4 + 0.0072x3 − 0.11x2 + 0.04x+ 0.25, (42)

DC5(x) = −0.019x4 + 0.095x3 − 0.14x2 + 0.012x+ 0.096. (43)

Figure 14 shows the polynomial approximation of the power distribution co-

efficients DC1(x)-DC5(x) described by formulas (39)-(43). Generally, the here

described procedure to calculate power distribution parameters gives good re-

sults and is proposed to be used within the range 0-60% of the control rod

immersion depth x in the reactor core.
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Figure 14: Polynomial approximation of DCi(x) coefficients for η = 5.

4.3. Compassion of simulation results obtained using the expanded multi-nodal

model

This subsection compares the simulation results obtained using the expanded

multi-nodal reactor model. The comparison is made for models consisting of

three fuel nodes η = 3 and five fuel nodes η = 5, with corresponding six and

ten coolant nodes. It mainly focuses on the application of different types of

DCi coefficients in the expanded multi-nodal models presented in the paper

(subsections 4.2.1-4.2.3).

The simulation tests were carried out for three different simulation scenarios

related to different inputs of the expanded multi-nodal reactor model: (1) the

immersion of the control rods, (2) the inlet coolant temperature, and (3) the

coolant mass flow rate. These scenarios were changed independently with a neg-

ative step from the nominal value of the analysed input variable. In all scenarios

the initial position of the control rod bank was set to x = 30%. The variables

observed during the simulation included: dynamic changes of the normalized

neutron density and the coolant temperature at reactor outlet; the steady state

temperatures at all fuel and coolant nodes (the fuel and coolant node tempera-

ture profile). Let us notice that each figure (Figs. 15-22) contains four diagrams,

of which the diagrams on the left represent dynamic changes of the analysed

26

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


variable, while those on the right show its steady-state values. In all diagrams,

the labels Type I, Type II and Type III denote the type of the power distribu-

tion coefficients DCi(x) applied to the expanded multi-nodal model. The label

3F/6C is related to the model with three fuel and six coolant nodes, while the

label 5F/10C corresponds to the model with five fuel and ten coolant nodes.

Figures 15 and 16 show the responses of the expanded multi-nodal models

to a ’small’ negative step change of external reactivity, ∆ρ = −5 cents, made

at time t = 5 second. Similar responses to the step change of negative inlet

coolant temperature, ∆TCin = −5% of nominal value, made at the same time

t = 5 second are shown in Figs. 17 and 18. Figures 19 and 20, in turn, show the

responses of the expended multi-nodal models to the step change of negative

coolant mass flow rate, ∆WC = −3% of nominal flow, made at t = 5 second.

Finally, Figs. 21 and 22 present the responses of the expanded multi-nodal

models to a ’large’ step change of negative external reactivity, to ∆ρ = −80

cents, made at t = 5 second.

The figures in this subsection were linked in pairs showing the diagrams for

the same simulation scenario but for different numbers of fuel nodes, Figs. 15-

16, Figs. 17-18, Figs. 19-20 and Figs. 21-22. When analysing these pairs of

figures we can see that dynamic changes of the normalized neutron density and

the coolant temperature at reactor outlet are similar in transient conditions and

in the steady state. As far as the number of fuel nodes is concerned, it is clearly

shown that a greater number of fuel nodes provides better quantitative infor-

mation about the reactor core temperature profile. Large differences between

various types of power distribution coefficients were observed when analysing the

fuel and coolant node temperatures. As a result, different temperature profiles

were obtained.

When analysing the steady-state temperature of fuel nodes in Figs. 15-22,

it can be observed that all fuel nodes have approximately the same temperature

values for coefficients of Type I, while for Type II coefficients the fuel nodes have

symmetrical temperature values with respect to the half-height of the reactor

core. Finally, for Type III coefficients, the temperature profile is asymmetrical
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(lower values at the top and higher at the bottom of the reactor core), which

reflects the presence of the rodded and unrodded parts of the reactor core. Thus,

the third type of power distribution coefficients allows the analysis of reactor

core temperature profile changes resulting from control rod bank movements.

bottom to top of the reactor core. In the case of power distribution co-

efficients of Type I, the coolant nodes temperature increase linearly, while for

power coefficients of Type II and Type III their increase is nonlinear. In the case

of power distribution coefficient of Type III, the coolant nodes located above

the half-height of the reactor have the highest temperatures of all cases and

simulation scenarios.

Figures 21-22 show the responses of the expanded multi-nodal models to a

’large’ negative step change of external reactivity. Comparing Figs. 15-16 and

Figs. 21-22 we can analyse direct impact of the control rod bank immersion

depth x on the temperature profile and power distribution coefficients DCi(x).

Figure 15: Comparison of models with three fuel nodes – negative reactivity step ∆ρ = −5c.
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Figure 16: Comparison of models with five fuel nodes – negative reactivity step change ∆ρ =

−5c.

Figure 17: Comparison of models with three fuel nodes – negative temperature step change

∆TCin = −5%.
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Figure 18: Comparison of models with five fuel nodes – negative temperature step change

∆TCin = −5%.

Figure 19: Comparison of models with three fuel nodes – negative mass flow rate step change

∆WC = −3%.

30

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


Figure 20: Comparison of models with five fuel nodes – negative mass flow rate step change

∆WC = −3%.

Figure 21: Comparison of models with three fuel nodes – negative reactivity step change

∆ρ = −80c.
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Figure 22: Comparison of models with five fuel nodes – negative reactivity step change ∆ρ =

−80c.

Different power distribution coefficient profiles (Type I, Type II, or Type

III) lead to different average neutron density and temperature profiles observed

at fuel and coolant nodes along the reactor height (Figs. 15-16 and Figs. 21-22,

respectively). As for the average thermal power generated at fuel nodes, it is

quite similar for the considered models when the power distribution coefficients

of Type I and Type III are used. For the Type II coefficients, the average

thermal power generated at fuel nodes is larger than that for the two other

types. This is the reason why on the diagrams presented in Figs. 15-16 and

Figs. 21-22, the trends of coolant temperatures at reactor outlet calculated

using Type II coefficients are above the corresponding trends calculated using

Type I and Type III coefficients.

4.4. Comparison with dedicated nuclear simulation and analysis software

In the paper, the simulation results obtained using the expanded multi-

nodal model were compared also with the default 1D nuclear reactor model

implemented in the Apros Nuclear Software (Fortum and VTT, 2017). Param-

eters from Apros software were recalculated and implemented in the expanded

multi-nodal model. Apros Nuclear simulation and analysis software has been
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successfully used in a series of major nuclear power plant projects, including

power upgrade, modernization, safety improvement, and new plant projects

(Fortum and VTT, 2017).

The Apros 1D nuclear reactor model assumes that for each fuel node only

one coolant node is used. In this situation, the authors have performed two

additional simulations which enabled direct comparison of temperatures at par-

ticular fuel and coolant nodes: for five fuel nodes and five coolant nodes (5F/5C),

and for ten fuel nodes and ten coolant nodes (10F/10C), respectively. The sim-

ulation tests were carried out for the simulation scenario related to the negative

step change of external reactivity, ∆ρ = −80c, made at time t = 5 second (ini-

tial position of the control rod bank was set to x = 0%). The variables observed

during the simulation included: dynamic changes of normalized neutron den-

sity and coolant temperature at reactor outlet (Figs. 23- 24), and steady-state

temperatures at all fuel and coolant nodes, considered as the fuel and coolant

node temperature profile (Fig. 25).
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Figure 23: Comparing the Apros 1D nuclear reactor model (5F/5C), and the expanded multi-

nodal reactor model with various power distribution coefficients and model structure.
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Figure 24: Comparing the Apros 1D nuclear reactor model (10F/10C), and the expanded

multi-nodal reactor model with various power distribution coefficients and model structure.
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Figure 25: Comparing the Apros 1D nuclear reactor model and the expanded multi-nodal

reactor models with various coefficients and structures: steady-state temperatures.

When analysing the results presented in Fig. 23 and Fig. 24, can be seen that

dynamic changes of normalized neutron densities and coolant temperatures at

reactor outlet are quite similar in transient conditions and in the steady states.

It is clearly seen that the expanded multi-nodal model with power distribution

coefficients of Type I has the closest fit to the Apros 1D nuclear reactor model

with 5F/5C node configuration. This closest fit exists for two cases of the

analysed expanded multi-nodal model node configurations, namely for cases

3F/6C and 5F/10C. With the increasing number of fuel and coolant nodes in the

Apros 1D nuclear reactor model (from five to ten - Fig. 24), the best fit visibly

changes to the expanded multi-nodal reactor model with power distribution

coefficients of Type II. This situation is observed for the average neutron density

in both considered node structures, i.e. cases 3F/6C and 5F/10C. On the other

hand, for the coolant temperature at reactor outlet, the simulation results are

still quite similar to those obtained using the expanded multi-nodal reactor
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model with power distribution coefficients of Type I. The fuel node temperature

profile shown in Fig. 25 is highly asymmetrical. This fact clearly indicates

that both models have similar functionality related to the approximation of

axial thermal power distribution along the reactor core. However, based on the

simulation results it can be concluded that, despite certain differences between

the compared calculation codes, the obtained simulation results are quite similar

and satisfactory. Better fit of the presented results can be achieved by more

precise tuning of model parameters or by appropriate identification techniques,

but this issue goes beyond the topic of the present paper.

5. Conclusions

The commonly known multi-nodal model of reactor core was expanded us-

ing thermal power distribution coefficients DCi, to introduce thermal power

distribution functionality to the model. The comparison of simulation results

for nodal and multi-nodal models was carried out. The research has showed

that introduction of power distribution coefficients into nodal model of nuclear

reactor core can increase its usefulness. The main advantage of the expanded

multi-nodal model approach is that the temperatures in different zones of the

reactor core may be efficiently and more precisely estimated. This approach

can lead to the development of more advanced control systems for reactor cores,

which can take into account different fuel and coolant temperatures. Introduc-

ing thermal power distribution coefficients makes it also possible to calculate

not only temperatures in different parts of the reactor, but also thermal power

distribution changes. These data can be useful in various analyses performed

for control system synthesis purposes.
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Appendix A. Parameters and initial conditions

Table A.5: Parameters of the nuclear reactor core models. Nominal parameters for 100%

power output are marked with index N.

β

–

0.0065 Λ s 0.0000179 mF kg 101032.71

β1 0.000215 λ1

1
s

0.0124 mC kg 11196.20

β2 0.001424 λ2 0.0305 cpF
J

kg ◦C 247.02

β3 0.001274 λ3 0.1110 cpC
J

kg ◦C 5819.65

β4 0.002568 λ4 0.3010 fF – 0.974

β5 0.000748 λ5 1.1400 A m2 5564.89

β6 0.000273 λ6 3.0100 h W
m2 ◦C 1135.65

αF
1

◦C −1.98 × 10−5 αC
1

◦C −3.6 × 10−5 N0,N
n
cm3 249952819.52

PTH,N MW 3436 WC,N
kg
s 19851.92 TC,in,N

◦C 281.94

Table A.6: Initial conditions for nodal model 1F/1C and 1F/2C.

C1,0

n
cm3 ∗ 1011

2.4212 T
1F/1C
F1,0

◦C

826.3684

C2,0 6.5195 T
1F/1C
C1,0 296.8149

C3,0 1.6027 T
1F/2C
F1,0 826.3684

C4,0 1.1913 T
1F/2C
C1,0 296.8149

C5,0 0.0916 T
1F/2C
C2,0 311.6853

C6,0 0.0127
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Table A.7: Fuel and coolant nodes temperature initial conditions for model 3F/6C with respect

to type I,II,III DCi coefficients.

T IF1,0

◦C

816.4547 T IC1,0

◦C

286.9013 T IIC4,0

◦C

304.2501

T IF2,0 826.3684 T IC2,0 291.8581 T IIC5,0 307.9677

T IF3,0 836.2820 T IC3,0 296.8149 T IIC6,0 311.6853

T IIF1,0 682.8272 T IC4,0 301.7717 T IIIC1,0 286.8368

T IIF2,0 1091.1451 T IC5,0 306.7285 T IIIC2,0 291.7293

T IIF3,0 705.1328 T IC6,0 311.6853 T IIIC3,0 299.6916

T IIIF1,0 809.5095 T IIC1,0 285.6621 T IIIC4,0 307.6540

T IIIF2,0 1150.3394 T IIC2,0 289.3797 T IIIC5,0 309.6696

T IIIF3,0 525.0097 T IIC3,0 296.8149 T IIIC6,0 311.6853

Table A.8: Fuel nodes temperature initial conditions for model 5F/10C with respect to type

I,II,III DCi coefficients.

T IF1,0

◦C

814.4720 T IIF1,0

◦C

536.2037 T IIIF1,0

◦C

625.3150

T IF2,0 820.4202 T IIF2,0 950.4439 T IIIF2,0 1131.1650

T IF3,0 826.3684 T IIF3,0 1115.0200 T IIIF3,0 1187.8225

T IF4,0 832.3165 T IIF4,0 967.0696 T IIIF4,0 782.9781

T IF5,0 838.2647 T IIF5,0 563.1046 T IIIF5,0 414.0259
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Table A.9: Coolant nodes temperature initial conditions for model 5F/10C with respect to

type I,II,III DCi coefficients.

T IC1,0

◦C

284.9185 T IIC1,0

◦C

283.3644 T IIIC1,0

◦C

283.8621

T IC2,0 287.8926 T IIC2,0 284.7844 T IIIC2,0 285.7798

T IC3,0 290.8667 T IIC3,0 288.5021 T IIIC3,0 290.5011

T IC4,0 293.8408 T IIC4,0 292.2197 T IIIC4,0 295.2225

T IC5,0 296.8149 T IIC5,0 296.8149 T IIIC5,0 300.2075

T IC6,0 299.789 T IIC6,0 301.4101 T IIIC6,0 305.1926

T IC7,0 302.763 T IIC7,0 305.1277 T IIIC7,0 307.8609

T IC8,0 305.7371 T IIC8,0 308.8453 T IIIC8,0 310.5293

T IC9,0 308.7112 T IIC9,0 310.2653 T IIIC9,0 311.1073

T IC10,0 311.6853 T IIC10,0 311.6853 T IIIC10,0 311.6853

Table A.10: Additional parameters used in calculations of DCi coefficients.

M m 0.0762 Bz 1/m 0.8584

k∞ – 1.0250 ρb – 0.0233

Br 1/m 1.4273 H̃ m 3.6600
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