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We analyze quantum network primitives which are entanglement breaking. We show superadditivity of quantum
and classical capacity regions for quantum multiple-access channels and the quantum butterfly network. Since
the effects are especially visible at high noise they suggest that quantum information effects may be particularly
helpful in the case of the networks with occasional high noise rates. The present effects provide a qualitative
borderline between superadditivities of bipartite and multipartite systems.
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Introduction. Fundamental discoveries of quantum cryp-
tography without entanglement [1] and with entanglement [2],
quantum dense coding [3], and quantum teleportation [4]
constitute cornerstones of the domain called quantum channel
theory [5,6]. Very important, purely quantum phenomena
are superadditivities of capacities in multipartite variants of
quantum capacity Q with classical side channels [7] (cf. [8]).
One of the newly observed effects was the nonadditivity
of classical capacity C of multiple-access channels with
no side resources [9] (see [10] for a continuous-variables
analog). Recently, a fundamental, most striking superadditivity
in a bipartite scenario for quantum capacity Q with no
side resources was discovered [11] and followed by the
announcement of another surprising phenomenon of breaking
additivity of secret key capacity K [12] which can be refined
to extreme cases [13] (cf. [14]). A challenging open problem is
the additivity of classical capacity C in a bipartite scenario. The
conjecture of additivity of the so-called Holevo capacity χ (�)
has been disproved recently in an impressive way [15] when
superadditivity for two channels was proven. The problem
of the additivity of capacity C(�) is still open since the
latter is an asymptotic quantity. During the research on that
fascinating issue it has been shown in particular that bipartite
channels which are entanglement breaking [16] (i.e., chan-
nels which cannot create entanglement between sender and
receiver) cannot contribute to such superadditivity phenomena
[16–18].

In the present article we address the question of whether
the superadditivity of the capacity of entanglement breaking
channels is valid in multipartite scenarios. We find, quite
surprisingly, that it is not true: both Q and C (i.e., quantum
and classical capacities without side resources) in the case
of two-access entanglement breaking channels may exhibit
superadditivity when supplied with a highly entangling chan-
nel. We show also strong nonadditivity of capacity in the
quantum butterfly network [19]. None of the present effects
can have an analog in bipartite scenarios. In this way, our
result provides superadditivity effects sharply discriminating
between a bipartite scheme and one with more than two
users.

For classical capacities our quantum networks violate a
special rule which is valid for all discrete classical networks

and follows immediately from the additivity theorem provided
in [9]: in any classical multiple-access network primitive it is
impossible to improve the transfer rate of one sender by adding
resources to another sender. Here we shall call it the locality
rule (LR) of data transfer.

Multiple-access entanglement breaking channels and su-
peraddivitity. Let us present a pair of channels for which we
have superadditivity of quantum capacity. The first channel is
presented in Fig. 1. Alice and Bob have d-dimensional inputs,
while Charlie has d-dimensional output. The channel performs
the Bell measurement on two qudits and sends a result of the
measurement to Charlie. Formally our channel can be written
as a completely positive trace preserving linear map,

�(�AB)=
∑

i

TrAB(|�i〉〈�i |AB�AB |�i〉〈�i |AB)|�i〉〈�i |C,

(1)

where |�i〉AB are d2 orthogonal Bell states. Because
|�i〉〈�i |AB are Kraus operators of rank one, the channel is
entanglement breaking. Hence, the quantum capacity region
of this channel is given by RA = 0 and RB = 0. The second
channel is the identity qudit channel from Bob to Charlie. Its
quantum capacity region is given by RA = 0 and RB � log2 d.

We now find the quantum capacity region of the tensor
product of these two channels. Let Bob send half of the
maximally entangled pair of qudits through the first channel
and the other half through the second channel and let Alice
send a qudit through the first channel. Because the first channel
measures a qudit sent by Alice and a qudit from the maximally
entangled state in the Bell basis and sends a result of the
measurement to the receiver, it effectively teleports a qudit
sent by Alice to the output of the second channel. Hence, the
rate pair (RA,RB) = (log2 d,0) can be achieved. On the other
hand, RA + RB cannot be greater than log2 d because the first
channel performs the complete von Neumann measurement on
two qudits. As a consequence, the quantum capacity region of
the tensor product of these two channels is given by

RA + RB � log2 d. (2)

Our channel is an entanglement breaking channel in
contrast to the channel considered in Ref. [9], which shows
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FIG. 1. Entanglement breaking multiple-access channel. BM
stands for Bell measurement.

nonadditivity of classical capacity regions. One may wonder if
it is possible to show nonadditivity of classical capacity regions
for the entanglement breaking channel and some other channel.
We demonstrate such a pair of channels. The first channel is
presented in Fig. 2. Alice and Bob have d2- and d-dimensional
inputs, respectively, while Charlie has d-dimensional output.
The channel transmits a qudit from Bob to Charlie. Depending
on the state of Alice’s qudit, the state of Bob’s qudit is
transformed by one of the d2 unitary operations used in the
dense coding protocol. After this transformation, Bob’s qudit
is sent through the depolarizing channel,

Dx(�) = (1 − x)ρ + x
I

d
, (3)

while Alice’s qudit is discarded. For x � d
d+1 , the depolarizing

channel, and hence also our channel, is entanglement breaking.
The classical capacity region of this channel is given by RA +
RB � C. C is the Holevo capacity of the depolarizing channel
Dx and is given by the formula

C = log2 d − Hd

(
1 − x

d − 1

d

)
, (4)

where Hd (x) = −x log2 x − (1 − x) log2
1−x
d−1 . The second

channel is the identity qudit channel from Bob to Charlie. Its
classical capacity region is given by RA = 0 and RB � log2 d.

We now turn our attention to the classical capacity region
of the tensor product of these two channels. When Bob sends
half of the maximally entangled pair of qudits through the first
channel and the other half through the second channel, then
Alice can transform the maximally entangled state to one of
the d2 orthogonal states by inputting to the first channel one
of the d2 orthogonal states. Because the first qudit from the
maximally entangled state is sent through the depolarizing
channel and the second qudit is sent through the identity
channel, the parties can achieve in this way the rate pair
(RA,RB) = (CE,0). CE is the entanglement assisted classical
capacity of the depolarizing channel [20] and is given by the
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FIG. 2. Entanglement breaking multiple-access channel. Ui

stands for controlled unitary operation and Dx stands for depolarizing
channel.

formula

CE = 2 log2 d − Hd2

(
1 − x

d2 − 1

d2

)
. (5)

Alice cannot send more than CE bits of information as she
does not control the input to the second channel and hence the
entanglement assisted classical capacity of the depolarizing
channel is the maximal capacity which can be achieved. On
the other hand, RA + RB � log2 d + C because it cannot be
greater than the Holevo capacity of the tensor product of the
depolarizing channel and the identity qudit channel. Hence,
two extreme points of the classical capacity region of the tensor
product of these two channels are given by

(RA,RB) = (CE,0),
(6)

(RA,RB) = (0,C + log2 d).

These extreme points prove nonadditivity of capacity regions.
If x → 1, then CE/C → d + 1 and we can have arbitrarily
large superadditivity of the capacity regions.

Noisy extensions. It is worth noting that one can consider
two natural modifications of the channel which demonstrate
nonadditivity of quantum capacity. (i) The first one is a mixture
of the Bell measurement which happens with probability 1 − q

and classical uniform noise which happens with probability q.
Together with the identity qudit channel from Bob to Charlie,
this channel can simulate the quantum depolarizing channel
Dq from Alice to Charlie. In fact, with probability 1 − q

Charlie can completely recover a quantum message while
with probability q he is left with the completely random
noise coming from part of the singlet state (apart from
completely useless classical uniform noise). Hence, in this
case one can achieve RA = Q(Dq). (ii) Suppose that instead
of the just described channel, we have a mixture (with the
same probabilities) of the Bell measurement and the identity
channel. The channel also returns a flag marking which of
the two events happened. If this channel is supported by the
identity qudit channel from Bob to Charlie, then one can
achieve RA = log2 d.

General networks: Amplifying swapping transfer and quan-
tum version of the butterfly network. Consider the channel �

provided in Fig. 3. Each sender has a d2 dimensional classical
input and a d dimensional quantum one. Since here we deal
with quantum channels which have more than one sender, we
may also include the common information rate [21], that is, the
rate of the same information that is faithfully transfered to both
receivers Ã and B̃. We denote the common information rate by
R

(o)
X , where X = {A,B} stands for the single sender’s system

or, more generally, the sender’s site which may contain many
systems at the local sender’s disposal. The total rate vector
is denoted by R = (RAÃ,RAB̃,RBB̃,RBB̃,R

(o)
A ,R

(o)
B ). We must

stress here that this description is more detailed than the one
usually used (cf. [19]). In fact, one often analyzes only rates
RAB̃ and RBÃ for the fixed values of RAÃ and RBB̃ , which
are assumed to contain also common information that is not
counted separately. We keep here all rates since it is more
natural taking into account the structure of the channel we
consider. From the fact that just before both outputs of the
channel we have depolarizing channels Dx , it follows that
the total capacity region of the channel is contained in the set
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FIG. 3. Entanglement breaking quantum butterfly network. Ua

and Ub stand for controlled unitary operations. Dx stands for
depolarizing channel.

S satisfying the following conditions:

RAÃ + RBÃ + R
(o)
A � C,

(7)
RAB̃ + RBB̃ + R

(o)
B � C.

Thus, we have in short C(�) ⊂ S. Suppose now that we
assist the channel with the product of two identity channels,
�A′B ′→Ã′B̃ ′ = IA′→Ã′ ⊗ IB ′→B̃ ′ . This channel has clearly the
transmission rate region C(�):

RA′Ã′ � log2 d,
(8)

RB ′B̃ ′ � log2 d.

Consider the special strategy achieving particularly inter-
esting transmission rates for the butterfly network from Fig. 3
assisted by two identity channels (see Fig. 4 for the assistance
scheme). Any message a by Alice and b by Bob can be sent
down their classical input of the channel and at the same time
can be encoded by Ua

A
† ⊗ IA′ |�+〉AA′ and Ub

B
† ⊗ IB ′ |�+〉BB ′ ,

where |�+〉XX′ is the d ⊗ d maximally entangled state and Ux
X

is one of the d2 unitary operations which are used in the dense
coding protocol. The channel will effectively send the first
half of the state Ub

A ⊗ IA′ |�+〉AA′ through the depolarizing
channel and the second half through the identity channel to
Alice’s receiver’s side and at the same time it will effectively
send the first half of the state Ua

B ⊗ IB ′ |�+〉BB ′ through the
depolarizing channel and the second half through the identity
channel to Bob’s receiver’s site. However, each of the states
is just the same as if it were coming out of a bipartite
entanglement assisted quantum depolarizing channel as in
the previous paragraph. Hence, both senders achieve now the
cross-transfer rates (here the subscripts denote sides and not
the systems which must have been marked by additional X̃

notations):

RAB̃ = CE,
(9)

RBÃ = CE,

FIG. 4. Entanglement breaking quantum butterfly network as-
sisted by two identity channels.

where CE > C. The other rates in vector R are equal to zero
in the case of these states.

To compare the effect with the classical case, we should
prove that it is impossible in a classical network. To show
this, consider the part of the network with one of the receivers
traced out, for example, tracing out Bob’s receiver’s parts B̃

and B̃ ′. Since the input local messages are independent, a
classical analog of such a remaining network primitive (i.e.,
the one with two senders and one receiver) must obey our
locality rule (LR). This says immediately that all of what the
classical network may offer in bits transmitted from B to Ã,
in this case, is C in (9) (instead of CE) which is the original
bound (7). To see it more clearly, let us notice that the additional
noiseless d-ary forward channel from A′ to Ã′ cannot improve
the transfer rate RBÃ (according to the locality rule applied to
this two-access channel with two senders, A and B, and one
receiver, Ã), so the latter must remain equal to C as if the
new connection A′ → Ã′ did not exist. The aforementioned
remark is completely independent of the possible internal
machinery of the two-access channel considered as long as
it is classical. In particular, it is obeyed by the original XOR

gate. This clearly proves that superadditivity of this type cannot
happen in classical networks.

Conclusions. Superadditivities of all kinds found so far
in quantum scenarios (irrespective of whether they were
bipartite or multipartite) required that both channels could
create entanglement. For quantum capacities this rule is well
understood in the case of a bipartite scenario. On the one hand,
an entanglement breaking channel can be simulated with the
help of forward classical communication [16]. On the other
hand, forward classical communication cannot increase the
quantum capacity of the channel [17]. For classical capacities
of bipartite channels the rule was proven independently in [18],
where it was shown that the Holevo capacity is additive on a
tensor product of two channels, when one of the channels
is entanglement breaking. It could be expected that the rule
could be generalized to multipartite networks. Here we have
shown that this is not the case. We have considered two types
of primitives for quantum networks: two-access channels,
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that is, one with two senders and one receiver, and the
butterfly network. We have proven that even if one channel or
network is entanglement breaking, the superadditivity effect
may still hold for both classical and quantum capacities if
other channels have their transmission rates good enough (the
identity channels may be perturbed by low noise and still
our results hold by simple continuity arguments). Usually one
looks for the effects that discriminate between different types
of communication resources. For instance, multipartite entan-
glement is different from bipartite entanglement since there are
nonequivalent types of multipartite entanglement (GHZ and
W states). We may ask about the qualitative differences
between bipartite and multipartite communication. So far it
seemed that all superadditivity effects found in the multipartite
case had their, much harder to find, but of similar type, analogs

in a bipartite scenario. The present superadditivity effects for
entanglement breaking channels sharply discriminate between
bipartite and multipartite scenarios; that is, they cannot
happen in bipartite scenarios. Finally, we note that the size
of the amplification at high noise rates makes it interesting
for applications in occasionally very noisy communication
systems.
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