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Abstract 

The majority of atomic force microcode (AFM) probes work based on piezoelectric actuation. However, 

some undesirable phenomena such as creep and hysteresis may appear in the piezoelectric actuators that 

limit their applications. This paper proposes a novel AFM probe based on dielectric elastomer actuators 

(DEAs). The DE is modeled via the use of a hyperelastic Cosserat model. Size effects and geometric 

nonlinearity are included utilizing the modified couple stress theory and the von-Kármán strains. A non-

contact interaction condition is adopted for AFM, which is taken into account via the van der Waals force. 

Governing equations are derived employing Hamilton's principle, and a reduced model is obtained using 

an extended Galerkin scheme. The free vibration of the system is formulated when a static voltage is applied 

to the elastomer. The forced vibration is then formulated when the system is under a combination of static 

and dynamic voltages. The ordinary differential equations of the free and forced vibrations are numerically 

and analytically solved by the backward differentiation method and multiple time scales method, 

respectively. Results are presented in time histories, phase portraits, Poincaré maps, fast Fourier transforms, 

and frequency amplitude curves. Overall, the obtained information displays that the system undergoes 

quasiperiodic and periodic motions. Moreover, the resonant response of the DE-based AFM is softening-

type.  
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1. Introduction 
 

Dielectric elastomers are intelligent hyperelastic structures that belong to electrostrictive polymers [1–
4]. They have received considerable critical attention due to their encouraging features such as large 
deformations, lightweight, flexibility, durability, and compatibility. The main applications of DEs find in 
soft robotics, where they can be used to work as actuators and sensors [5, 6]. In addition to these 
applications, they can also operate as energy harvesters and resonators [7–9]. 

Various types of structures, including balloons, square, circular, and rectangular membranes, tubes 
and cylinders, beams in different scales have been proposed to design dielectric elastomer (DE)-based 
structures. The past two decades have witnessed a large growth in the dynamic modeling of DEs based on 
the above-stated structures. In what follows, a detailed review is provided on these dynamic modeling. Zhu 
et al. [10] analyzed nonlinear vibrations of a balloon excited by a DE actuator. Random vibrations of a DE-
based balloon were studied by Jin and Huang [11]. DC dynamic instabilities of a balloon shape DE were 
identified by Sharma et al. [12], who utilized an energy approach in their research. Linear and nonlinear 
dynamics of a circular DE with particular attention to the strain-stiffening of elastomers were researched 
by Wang and co-researchers [13]. Alibakhshi and Heidari  [14] proposed an analytical method, i.e., the 
multiple scales method for solving nonlinear vibrations of DE balloons. The same authors  [15] analyzed 
the chaos in a DE balloon by considering the influence of the second strain invariant. Zhang and Chen [16]  
explored the influence of geometry sizes on beating vibrations of a square and rectangular DE membrane. 
Heidari et al.  [17] discussed chaotic domains in a DE elastomer membrane. Alibakhshi and co-workers 
[18] analyzed static and dynamical instabilities together with nonlinear resonances of a DE rectangular 
membrane by employing different hyperelastic models. Vibrations of a resonator based on DE microbeams 
were studied by Feng et al. [19]. Feng and co-workers  [20] analyzed large amplitude vibrations of a DE 
microbeam resonator. Alibakhshi and co-researcher  [21] investigated the nonlinear dynamics of a DE 
microbeam considering geometrical and physical nonlinearities. A closer look at the above review reveals 
that systems based on DE reveal rich dynamical behaviors. In the time domain, they encounter diverse 
routes to chaos such as quasiperiodicity, chaos. Furthermore, in the frequency domain, softening and 
hardening resonant behaviors, jump, and hysteresis emerge in DEs. The resonant frequency of devices 
based on DEs can be controlled easily after fabrication which is a notable advantage of DEs. In some views, 
DEs can induce large amplitude vibrations that can be used as resonators, and in some cases, they possess 
damping and thereby can be used as electromechanical dampers. 

In the laboratory, different instruments are utilized for probing and imaging too small objects. For 
instance, microscope, telescope, camera, scanning tunneling microscopy (STM), scanning probe 
electrochemistry (SPE), atomic force microscopy (AFM), etc. Researchers have shown an increased interest 
in using AFM due to maneuverability and applicability. AFM finds many applications such as surface 
probing, surface manipulation, biological research, force measurement, and so on. 

A common architecture of AFM involves a microcantilever with a tip apex. By actuating the 
microcantilever, the tip apex touches and probes the intended surface [22–24]. In the most theoretical and 
experimental studies on AFMs piezoelectric actuation-based microcantilevers have been utilized. In 
general, although piezoelectric actuation works efficiently in many environments and applications, some 
limitations have been reported. For example, the piezoelectric actuation may cause spurious peaks in the 
frequency response spectrum, which is not observed in the cantilever resonance. Moreover, creep and 
hysteresis may appear in piezoelectric actuation. Another drawback of AFM based on piezoelectric 
actuation is slow scanning, that is, the slow scanning speed. These limitations have an undesirable effect 
on the performance of AFM.  An alternative to piezoelectric actuation is electrostatic actuation. For this 
reason, electrostatic actuation may discard the above-stated limitations [25, 26]. 

 This paper aims to propose an innovative electrostatic actuation based on dielectric elastomers, which 
have shown their applicability in MEMS. They can easily tune their resonant frequency after fabrication 
and can be designed in different shapes to have the best performance. DE actuators also have a fast speed 
actuation that discards the speed limitation in piezoelectric actuation. With developments in micro and 
nanofabrication and due to the capacity of DEs to operate effectively in macro and nanoscales, this paper 
proposes AFM based on DE actuators. There is not a clearly presented study on AFM based on DEs. In this 
paper, a non-contact dynamic model for dielectric elastomer-atomic force microscopy is developed based 
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on hyperelastic micropolar mechanics. (DE-AFM). Dynamic equations of motion are acquired and solved 
numerically and analytically based on an energy approach. Then, numerical results are discussed in detail. 

 

 
 

2. Theory and Formulation 

 
The schematic figure of the dielectric elastomer atomic force microscopy (DE-AFM) is depicted in 

Fig. 1. The DE-AFM consists of a DE microcantilever, which its free end contacts the surface of an arbitrary 
sample. The DE microcantilever is of length 𝐿, width 𝑏, and thickness 𝑑, which its bottom and upper 
surfaces are coated with compliant electrodes. The microcantilever is placed on a base substrate. By 
applying an electrical load to the electrodes through a conductive wire, the DE actuator is activated, and 
the cantilever vibrates with evolving time coordinate 𝑡, and its tip probes the surface of the sample. When 
the applied voltage is connected to electrodes directly attached to the top and bottom surfaces of the 
elastomer, the electrodes gain opposite electrical charges. Microcantilevers in AFM deforms and deflects 
by an attractive force between these charges. When the microcantilever oscillates and experiences 
deflection, the lower electrode may come near the base structure, and the microbeam collapses. An electrode 
is located on the base structure and connects to the facing electrode to avoid this levitation effect. This 
causes these electrodes to have similar charges and repel each other [27].  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 1. Schematic view of a dielectric elastomer atomic force microscopy. 

 

2.1 Displacement field 
 

The deformation of the DE microcantilever is modeled on the basis of the Euler-Bernoulli beam theory, 
which is formulated as [28, 29] 
 

𝑈𝑥(𝑥, 𝑧, 𝑡) = −𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
 

 

𝑈𝑦(𝑥, 𝑦, 𝑡) = 0 

 

𝑈𝑧(𝑥, 𝑦, 𝑡) = 𝑤(𝑥, 𝑡)                                                                                                                                                      (1) 
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in which 𝑈𝑥, 𝑈𝑦, and 𝑈𝑧 are displacements components along with 𝑥, 𝑦, 𝑧 coordinates.  

It is noted that the deformation behavior of the Euler-Bernoulli beam model in this paper is based on 

the nonlinear strains and  the extensibility of the centerline is neglected. In the beam model considered here, 

the effect of shear deformation and rotary inertia has been ignored. All the nonlinear terms in this paper are 

related to the geometric nonlinearity inside the strain energy only. However, more sophisticated models 

accounting for the shear deformation and rotary inertia can also be used for the system [30–35]. 

To complete the dynamic modeling of the system, the potential energy, the kinetic energy, and the 

damping force are formulated in the following, respectively. Then, employing Hamilton’s principle, the 

partial differential equation (PDE) will be derived and decomposed via a single-mode Galerkin technique 

[36]. 

 
2.2 Potential Energy 

The strain energy of the elastomer, the potential of the tip-sample interaction, size effects, and the 
potential of electrical load constitute the total potential energy of the DE-AFM, which are formulated in the 
following. 

The elastomer in the microcantilever follows finite deformation. For this reason, a nonlinear model 
should be adopted to obtain its strain energy. Therefore, a hyperelastic Cosserat model developed by Reddy 
and Srinivasa is utilized, in which moderate rotation, finite deformation, and size effect are involved. The 
hyperelastic Cosserat model in line with the Euler-Bernoulli is formulated as [37, 38] 
 

𝑈𝐻𝐶 = ∫
1

2
[𝑎1𝐸𝑥𝑥

2 + 𝑎2𝐸𝑧𝑧
2 + 𝑎3 (

𝜕2𝑤

𝜕𝑥2 )
2

+ 2𝑎4𝐸𝑥𝑥𝐸𝑧𝑧]
𝒱

𝑑𝒱                                                                                         (2) 

 
in which 𝒱 is the occupied volume by DE; 𝐸𝑥𝑥 and 𝐸𝑧𝑧 are axial and transverse components of Green-
Lagrange strain tensor, respectively, which are defined below [39] 
 

𝐸𝑥𝑥 =
1

2
(

𝜕𝑤

𝜕𝑥
)

2
− 𝑧

𝜕2𝑤

𝜕𝑥2   

 

𝐸𝑧𝑧 =
1

2
(

∂w

∂x
)

2
                                                                                                                                                               (3) 

 
In Eq. (2), 𝑎1, 𝑎2, and 𝑎4 stand for elastic constants, and 𝑎3 is a size effect parameter. These parameters 
will be defined in the following. It is mentioned that the size effect in this hyperelastic model is based on 
the modified couple stress theory. It is mentioned that classical hyperelastic models such as neo-Hookean 
and Mooney-Rivlin can also be used for the system. 

Substituting Eq. (3) into Eq. (2), the potential of elastic energy is acquired as 
 

𝑈𝐻𝐶 = ∫ [
1

8
𝑎1𝐴 (

𝜕𝑤

𝜕𝑥
)

4
+

1

8
𝑎2𝐴 (

𝜕𝑤

𝜕𝑥
)

4
+

1

4
𝑎4𝐴 (

𝜕𝑤

𝜕𝑥
)

4
+

1

2
𝑎1𝐼 (

𝜕2𝑤

𝜕𝑥2 )
2

+
1

2
𝑎3 (

𝜕2𝑤

𝜕𝑥2 )
2

]
𝐿

0
𝑑𝑥                       (4) 

 

in which 𝐼 = 𝑏𝑑3 12⁄  is the second moment of cross-section; the cross-section area is denoted by 𝐴 = 𝑏𝑑. 
The elastic constants and the length scales parameter are expressed as [40] 

𝑎1 = 𝑎2 = 2𝜇 + 𝜆, 𝑎4 = 𝜆, 𝑎3 = 2𝜇ℓ2                                                                                                                        (5) 
 

In the above equation, 𝜇 is the shear modulus, 𝜆 stands for the second Lame’s modulus, and ℓ denotes the 
internal length scale parameter. The elastic constants, i.e., 𝜇 and 𝜆 are defined based on the assumption of 
incompressibility condition in DE, which results in 
 

𝜇 =
𝐸

3
, 𝜆 = 50𝜇, 𝜈 =

𝜆

2(𝜆+𝜇)
≈ 0.49                                                                                                                              (6) 

 
Combining Eqs. (4), (5), and (6), the elastic energy is rewritten as 
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𝑈𝐻𝐶 = ∫ [
51𝜇𝐴

2
(

𝜕𝑤

𝜕𝑥
)

4
+ 𝜇𝐴ℓ2 (

𝜕2𝑤

𝜕𝑥2
)

2

+ 26𝜇𝐼 (
𝜕2𝑤

𝜕𝑥2
)

2

]
𝐿

0
𝑑𝑥                                                                                  (7) 

 
The electrical load makes a potential in the system, which is defined as [9, 21] 

 

𝑈𝐸𝐿 = ∫ [−
1

2
𝜖0𝐴 (

Φ

𝑑
)

2
(

𝜕𝑤

𝜕𝑥
)

2
]

𝐿

0
𝑑𝑥                                                                                                                              (8) 

 
where 𝜖0 indicates the electrical permittivity of the elastomer. 

It is assumed that the system works in a vacuum environment. Based on this assumption, the van der 
Waals non-contact force is utilized to incorporate the potential of the tip-sample interaction, namely [41] 
 

𝐹𝑣𝑑𝑊 = −
𝐻𝑅

6�̂�2                                                                                                                                                              (9) 

 
In the above equation, 𝐻 is the Hamaker constant, 𝑅 is the radius of the spherical tip apex, and �̂� stands for 
instantaneous tip/sample separation, which is defined as 
 

�̂� = �̂� − 𝑤(𝐿, 𝑡)                                                                                                                                                           (10)                                                                                                                                     
 

in which �̂� shows the initial tip/sample separation distance. 
The potential of the tip/sample interaction based on Eq. (9) is expressed as [42] 
 

𝑈𝑇𝐼𝑃 = ∫ 𝐹𝑣𝑑𝑊  𝑑�̂� = −
𝐻𝑅

6[𝑍−𝑤(𝐿,𝑡)]
                                                                                                                                (11)                        

 
Then, the final value of the potential energy of the DE-AFM can be obtained below 
 

𝑈𝑆 = {∫ [
51𝜇𝐴

2
(

𝜕𝑤

𝜕𝑥
)

4
+ 𝜇𝐴ℓ2 (

𝜕2𝑤

𝜕𝑥2 )
2

+ 26𝜇𝐼 (
𝜕2𝑤

𝜕𝑥2 )
2

] 𝑑𝑥
𝐿

0
} + {∫ [−

1

2
𝜖0𝐴 (

𝛷

𝑑
)

2
(

𝜕𝑤

𝜕𝑥
)

2
]

𝐿

0
𝑑𝑥} +

{−
𝐻𝑅

6[𝑍−𝑤(𝐿,𝑡)]
}  

                                                                                                                                                           (12) 

2.3 Kinetic Energy 
 

The kinetic energy due to the motion of the microcantilever is acquired as [43] 
 

𝑈𝐾 =
1

2
𝜌𝐴 ∫ (

𝜕𝑤

𝜕𝑡
)

2𝐿

0
𝑑𝑥                                                                                                                                                (13) 

 
in which 𝜌 is the mass-density of the DE.  

2.4 Damping Force 
 

Dielectric elastomers may possess viscous damping. Therefore, the influence of viscous damping on 
the DE-AFM will be analyzed. The damping effect in the system is incorporated by introducing its work as 
the following 

 

𝛿𝑊𝐷 = −𝑐𝑑 ∫
𝜕𝑤

𝜕𝑡
𝛿𝑤𝑑𝑥

𝐿

0
                                                                                                                                                     (14) 
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In the above equation 𝑐𝑑 is the damping coefficient. 
 

2.5 Hamilton’s Principle 

 
Governing equations for mechanical structures can be derived from different techniques such as the 

Lagrangian method, Hamilton’s method, etc. [44–50]. The governing equation and corresponding boundary 
conditions are derived through the use of the Hamilton’s principle, which states 
 

∫ 𝛿[𝑈𝐾 − 𝑈𝑆]
𝑡2

𝑡1
𝑑𝑡 + ∫ 𝛿𝑊𝐷

𝑡2

𝑡1
𝑑𝑡 = 0                                                                                                                           (15) 

 
Substituting Eqs. (12), (13), and (14) into Eq. (15), the PDE governing the motion of the DE-AFM and 

the corresponding boundary conditions are, respectively, derived as 
 

𝜌𝐴
𝜕2𝑤

𝜕𝑡2 + 𝑐𝑑
𝜕𝑤

𝜕𝑡
+ 52𝜇𝐼

𝜕4𝑤

𝜕𝑥4 + 2𝜇𝐴ℓ2 𝜕4𝑤

𝜕𝑥4 − 306𝜇𝐴
𝜕2𝑤

𝜕𝑥2  (
𝜕𝑤

𝜕𝑥
)

2
+ 𝜖0𝐴 (

𝛷

𝑑
)

2 𝜕2𝑤

𝜕𝑥2 = 0                           (16) 

 
 

in which the boundary conditions are  
 

𝑤(0, 𝑡) = 0,
𝜕𝑤

𝜕𝑥
(0, 𝑡) = 0,

𝜕2𝑤

𝜕𝑥2
(𝐿, 𝑡) = 0   

 

52𝜇𝐼
𝜕3𝑤

𝜕𝑥3
(𝐿, 𝑡) + 2𝜇𝐴ℓ2 𝜕3𝑤

𝜕𝑥3
(𝐿, 𝑡) = −

𝐻𝑅

6[𝑍−𝑤(𝐿,𝑡)]2                                                                                                     (17) 

 
2.6 Nondimensionalization 
 

The governing equation and boundary conditions, i.e., Eqs. (16) and (17) are made dimensionless in 
order for the numerical calculation to become straightforward. For this purpose, the following 
dimensionless quantities are introduced 

 

𝑥∗ =
𝑥

𝐿
, 𝑤∗ =

𝑤

𝐿
, 𝑡∗ = 𝑡√

𝜇𝐼

𝜌𝐴𝐿4 , 𝑐 =
𝑐𝑑𝐿4

𝜇𝐼
√

𝜇𝐼

𝜌𝐴𝐿4 , 𝜂1 = 52, 𝜂2 =
2𝜇𝐴ℓ2

𝜇𝐼
  

 

𝛽1 =
306𝜇𝐴𝐿2

𝜇 𝐼
, 𝛽2 =

𝐴𝐿2

𝐼
, 𝑉 =

𝜖0

𝜇
(

Φ

𝑑
)

2
, 𝑍∗ =

�̂�

𝐿
, 𝜂3 =

𝐻𝑅

6𝜇𝐼
                                                                                             (18) 

 
Substituting Eq. (18) into Eqs. (16) and (17), a dimensionless form of the equation of motion and the 

boundary conditions are derived as (asterisk symbol is omitted for convenience) 
 
𝜕2𝑤

𝜕𝑡2 + 𝑐
𝜕𝑤

𝜕𝑡
+ (𝜂1 + 𝜂2)

𝜕4𝑤

𝜕𝑥4 − 𝛽1
𝜕2𝑤

𝜕𝑥2  (
𝜕𝑤

𝜕𝑥
)

2
+ 𝛽2𝑉

𝜕2𝑤

𝜕𝑥2 = 0                                                                                        (19) 

 
with 
 

𝑤(0, 𝑡) = 0,
𝜕𝑤

𝜕𝑥
(0, 𝑡) = 0,

𝜕2𝑤

𝜕𝑥2
(1, 𝑡) = 0, (𝜂1 + 𝜂2)

𝜕3𝑤

𝜕𝑥3
(1, 𝑡) = −

𝜂3

[𝑍−𝑤(1,𝑡)]2                                         (20) 

 
2.7 Extended Galerkin Scheme 
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Eq. (19) is a PDE with time-dependent boundary conditions. An extended Galerkin discretization 
method is applied to transform this PDE to an ordinary differential equation (ODE). The extended Galerkin 
method is started by introducing a new variable as [51] 
 

𝑤(𝑥, 𝑡) = 𝑞(𝑥, 𝑡) + 𝑓(𝑡)𝑔(𝑥)                                                                                                                                      (21) 

 
in which 𝑓(𝑡) is defined as 
 

𝑓(𝑡) = −
𝜂3

(𝜂1+𝜂2)[𝑍−𝑤(1,𝑡)]2                                                                                                                                            (22) 

 
In Eq. (21), 𝑔(𝑥) is an arbitrary function. In the present paper, this function is expressed as 
 

𝑔(𝑥) = −
1

6
𝑥2 +

1

2
𝑥3 −

1

2
𝑥4 +

1

6
𝑥5                                                                                                                           (23)             

 
where function 𝑔(𝑥) satisfies the following conditions 
 

𝑔(0) =
𝑑𝑔

𝑑𝑥
(0) = 𝑔(1) =

𝑑𝑔

𝑑𝑥
(1) =

𝑑2𝑔

𝑑𝑥2
(1) = 0,   

𝑑3𝑔

𝑑𝑥3
(1) = 1                                                                                 (24) 

 
Substituting Eq. (21) into Eq. (19), a new PDE in terms of 𝑞(𝑥, 𝑡) is derived, which have homogeneous 

boundary conditions as 
 

𝑞(0, 𝑡) = 0,
𝜕𝑞

𝜕𝑥
(0, 𝑡) = 0,

𝜕2𝑞

𝜕𝑥2
(1, 𝑡) = 0,

𝜕3𝑞

𝜕𝑥3
(1, 𝑡) = 0                                                                                          (25) 

 
By applying the extended Galerkin scheme and using the separation-of-variable approach, we write 

 
𝑞(𝑥, 𝑡) = 𝜙(𝑥)𝑊(𝑡)                                                                                                                                                       (26) 

 
where 𝑊(𝑡) stands for the time-depended generalized coordinate; 𝜙(𝑥) denotes the eigenfunction for a 
cantilever beam. It is noted that a single-mode vibration is considered in this work. 
 

�̈� + 𝑐�̇� + 𝑌2𝑊 + 𝑌1𝑓̈ + 𝑐𝑌1𝑓̇ + 𝑌3𝑓 + 𝑌4𝑓3 + 𝑌5𝑓 2 𝑊 + 𝑌6𝑓 2 𝑊 + 𝑌7 𝑓 𝑊2 + 𝑌8 𝑓 𝑊2 + 𝑌9𝑊3 +
𝑌10𝑉𝑊 + 𝑌11𝑉 𝑓(𝑡) = 0                                                                                                                                                              (27) 
 
in which 
 

𝑌1 = ∫ [𝑔 (𝑥)𝜙 (𝑥)]
1

0
𝑑𝑥 ,                                                       𝑌2 = ∫ [(𝜂1 + 𝜂2)𝜙 (𝑥)𝜙(4)(𝑥)]𝑑𝑥

1

0
 

 

𝑌3 = ∫ [(𝜂1 + 𝜂2)𝑔(4)(𝑥)𝜙 (𝑥)]𝑑𝑥
1

0
 ,                             𝑌4 = − ∫ [𝛽1𝜙 (𝑥)𝑔′(𝑥)2𝑔′′(𝑥)]

1

0
𝑑𝑥 

 

𝑌5 = − ∫ [2𝛽1𝜙 (𝑥)𝑔′(𝑥)𝑔′′(𝑥)𝜙′(𝑥)]
1

0
𝑑𝑥                           𝑌6 = − ∫ [𝛽1𝜙 (𝑥)𝑔′(𝑥)2𝜙′′(𝑥)]𝑑𝑥

1

0
 

 

𝑌7 = − ∫ [𝛽1𝜙 (𝑥)𝑔′′(𝑥)𝜙′(𝑥)2]
1

0
𝑑𝑥                                    𝑌8 = − ∫ [2𝛽1𝜙 (𝑥)𝑔′(𝑥)𝜙′(𝑥)𝜙′′(𝑥)]

1

0
𝑑𝑥 

 

𝑌9 = ∫ [−𝛽1𝜙 (𝑥)𝜙′(𝑥)2𝜙′′(𝑥)]
1

0
𝑑𝑥 ,                                   𝑌10 = ∫ [𝛽2𝜙 (𝑥)𝜙′′(𝑥)]

1

0
𝑑𝑥 
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𝑌11 = ∫ [𝛽2𝜙 (𝑥)𝑔′′(𝑥)]
1

0
𝑑𝑥                                                                                                                                            (28) 

 
In the above equations, the dot symbol stands for derivatives with respect to the dimensionless time 
coordinate, and the prime symbol indicates derivative with respect to the dimensionless axial coordinate. 
In the following, the equation of motion, i.e., Eq. (27), is solved numerically and analytically. Then, results 
based on these solutions are compared to examine the accuracy of the proposed methods.  
 
3. Solution method 

 

In this section, the governing equation is solved analytically using the multiple time scales method. 

The ordinary differential equation, i.e., Eq. (27), contains the function 𝑓(𝑡), Eq. (22), which includes a 

fractional term of the generalized coordinate. We expand this function using the Taylor series to convert 

the ODE into a general form, namely 

 

𝑀 �̈� + 𝐶�̇� + 𝐾 𝑊 + 𝐾𝑛𝑞𝑊2 + 𝐾𝑛𝑐𝑊3 = External force                                                                   (29) 

 

where 𝑀 stands for the mass, 𝐶 stands for the damping, 𝐾 refers to linear term;  𝐾𝑛𝑐 is a term related to the 

quadratic nonlinearity; 𝐾𝑛𝑞 is cubic nonlinear term; “External force” shows term(s) related to external 

excitation of the system, which takes different forms depending on the problem. 

Function 𝑓(𝑡) is expanded to a first-order approximation as follows 

 

𝑓(𝑡) = −
𝜂3

(𝜂1+𝜂2)[𝑍−𝑤(1,𝑡)]2 = 𝐴 + 𝐵𝑊(𝑡)                                                                                                 (30) 

 

in which  

 

𝐴 = −
𝜂3

𝑍2(𝜂1+𝜂2)
,  𝐵 = −

2(𝜂3𝜙(1))

𝑍3(𝜂1+𝜂2)
                                                                                                             (31) 

 

Substituting Eq. (30) into Eq. (27), we get the general form of the ODE as 

 

𝑀 �̈� + 𝐶�̇� + 𝐾 𝑊 + 𝐾𝑛𝑞𝑊2 + 𝐾𝑛𝑐𝑊3 + Γ𝑊 + 𝐾1 = 0                                                                        (32) 

 

in which 

 

𝑀 = 1 + 𝐵𝑌1,                                                                 𝐶 = 𝑐 + 𝑐𝐵𝑌1 

 

𝐾 = 𝑌2 + 𝐵𝑌3 + 3𝐴2𝐵𝑌4 + 𝐴2𝑌5 + 𝐴2𝑌6                     𝐾𝑛𝑞 = 3𝐴𝐵2𝑌4 + 2𝐴𝐵𝑌5 + 2𝐴𝐵𝑌6 + 𝐴𝑌7 + 𝐴𝑌8 

 

𝐾𝑛𝑐 = 𝐵3𝑌4 + 𝐵2𝑌5 + 𝐵2𝑌6 + 𝐵𝑌7 + 𝐵𝑌8 + 𝑌9           Γ = 𝑉𝑌10 + 𝐵𝑉𝑌11 

 

𝐾1 = 𝐴𝑉𝑌11                                                                                                                                                (33) 

 
4. Free vibration analysis  
 

The free vibration of the DE-based AFM can be formulated when the applied voltage is a DC 
polarization voltage, such that 
 

𝑉 = 𝑉𝐷𝐶 =
𝜖0

𝜇
(

Φ𝑑𝑐

𝑑
)

2
                                                                                                                                                    (34) 
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where Φ𝑑𝑐 is a DC voltage. 
Substituting Eq. (34) into Eq. (27), the free vibration ODE is derived as 

 

�̈� + 𝑐�̇� + 𝑌2𝑊 + 𝑌1𝑓̈ + 𝑐𝑌1𝑓̇ + 𝑌3𝑓 + 𝑌4𝑓3 + 𝑌5𝑓2𝑊 + 𝑌6𝑓2𝑊 + 𝑌7 𝑓 𝑊2 + 𝑌8 𝑓 𝑊2 + 𝑌9𝑊3 +
𝑌10𝑉𝐷𝐶𝑊 + 𝑌11𝑉𝐷𝐶 𝑓(𝑡) = 0                                                                                                                        (35)          

                                                                                                                                                                            
 

4.1 Analytical solutions of free vibration 

 

If the applied voltage to the elastomer is a DC polarization voltage, the system undergoes a free 

vibration. For this purpose, we consider 𝑉 = 𝑉𝐷𝐶. Thus, Eq. (32) is transformed into the following form 

 

𝑀 �̈� + 𝐶�̇� + (𝐾 + Γ1) 𝑊 + 𝐾𝑛𝑞𝑊2 + 𝐾𝑛𝑐𝑊3 = 0                                                                                             (36) 

 

where Γ1 = 𝑉𝐷𝐶𝑌10 + 𝐵𝑉𝐷𝐶𝑌11. 

Eq. (36) is divided by 𝑀, which leads to 

 

�̈� + 𝐶̅�̇� + 𝜔0
2 𝑊 + 𝛼𝑞𝑊2 + 𝛼𝑐𝑊3 = 0                                                                                                             (37) 

 

where 𝐶̅ = 𝐶/𝑀, 𝜔0
2 = (𝐾 + Γ1)/𝑀, 𝛼𝑞 = 𝐾𝑛𝑞/𝑀, and 𝛼𝑐 = 𝐾𝑛𝑐/𝑀. 

For the analytical solution of the free vibration, the damping is neglected for simplification. Based on the 

multiple time-scales method, the approximation solution to Eq. (37) with neglecting the damping is 

obtained as [52, 53] (it is noted that the details of analytical solutions have not been given in this paper) 

 

𝑊 = 𝑎0 cos(𝜔𝑡 + 𝛽0) +
𝑎0

2𝛼𝑞

6𝜔0
2 [cos(2𝜔𝑡 + 2𝛽0) − 3]                                                                                          (38) 

 

where 𝑎0 and 𝛽0 are constants showing the amplitude and phase, which are chosen based on the initial 

condition. The frequency of the free vibration is as follows 

 

𝜔 = 𝜔0 [1 + (
9𝜔0

2𝛼𝑐−10𝛼𝑞
2

24𝜔0
4 ) 𝑎0

2]                                                                                                                             (39) 

 

Here, the free vibration results of the DE-based AFM are presented.  Material and geometrical 

properties are chosen from the previous studies  [19, 20, 41, 54]. The length 𝐿 = 60μm, width 𝑏 = 10μm, 

thickness 𝑑 = 0.65μm, Hamaker constant 𝐻 = 2.96 × 10−19J, tip radius 𝑅 = 10 × 10−9m, shear modulus 

𝜇 = 1GPa, electrical permittivity  𝜖0 = 17.7 × 10−12Fm−1, reference tip/sample distance �̂� = 60nm. 

There is limited evidence for the internal length scale parameter of DEs. Hence it is selected as ℓ = 0.02𝐿. 

Within this section, the initial velocity for the time integration is equal to �̇�(0) = 0. The above-stated 

parameters are utilized in all numerical and analytical solutions unless otherwise stated.  

Numerical results are presented for Eq. (35), where a numerical scheme, namely backward 

differentiation formula, is used to solve it. Analytical solutions of the multiple time scales method are 

expressed for Eq. (38).  

In Fig. 2, the results of the numerical and analytical methods are compared to examine the accuracy 

and reliability of our results. In this figure, Φ𝑑𝑐 = 100Volt, damping is 𝑐 = 0, and the initial conditions are 

𝑊(0) = 0.0001. Moreover, the constants in Eq. (38) for the analytical solutions are 𝑎0 = 0.0001 and 

 𝛽0 = 0. 

  From Fig. 2, we see a perfect agreement between the numerical and analytical methods. This means 

that the simplification process in Section. 3 (Solution method) is correct. Therefore, we can also adopt such 

a simplification for the forced vibration of the system, which will be conducted in the next sections. The 
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free vibration can be explored either analytically or numerically in the following. We use the numerical 

method in this subsection to analyze the influence of the system’s parameters on the free vibration.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 2. Free vibration of the dielectric elastomer-based microcantilever atomic force microscope 
probe. A comparison between numerical and analytical methods.  

 

In Fig. 3, we identify the general response of the system under a static voltage (free vibration of 
the system). In this figure, a time-integration is carried out to 10 dimensionless time-coordinate. Then, 
the time history and phase-plane diagram are depicted to identify the dynamic response. The system’s 
parameters and initial deflections are chosen as Φ𝑑𝑐 = 100Volt, 𝑐 = 0 and 𝑊(0) = 0.0001. In 
response to a static voltage, a periodic and regular vibration is elicited from this figure. The presence 
of a closed curve in the phase-plane diagram and predictable motions in the time history is evidence 
for the periodicity of DE-based AFM. 
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Figure. 3. Free vibration of the dielectric elastomer-based microcantilever atomic force microscope 
probe under Φ𝑑𝑐 = 100Volt, and 𝑐 = 0 with 𝑊0 = 0.0001. (a) time history, (b) phase-plane diagram.  

It is by now generally have seen that elastomeric materials have viscosity, which may significantly 
affect the response of DEs. To analyze how the viscous damping force can affect the free vibration response 
of DE-based AFM, Fig. 4 is depicted. The DC polarization voltage takes the value of Φ𝑑𝑐 = 100Volt, and 
the damping coefficient is 𝑐 = 0.1. A decreasing trend of the response amplitude is observed by considering 
the damping in DE-based AFM. With changing the time, viscosity decreases the response amplitude and 
dissipates energy in the system. We speculate that this dissipation process might decrease the performance 
of DE-based AFM, where high-amplitude vibrations for image propping are required. 

 

Figure. 4. Influence of the damping on the free vibration of the dielectric elastomer-based 
microcantilever atomic force microscope probe under Φ𝑑𝑐 = 100Volt with 𝑊(0) = 0.0001. (a) time 
history for and 𝑐 = 0.1, (b) time history for and 𝑐 = 0.  
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5. Frequency analysis of the free vibration 

 

In this section, the frequency of the free vibration is analyzed, i.e., solution of Eq. (39). It is noted that 

this frequency can reveal the hardening and softening response in the system. Regardless of the sign, the 

presence of the quadratic nonlinearity 𝛼𝑞 in Eq. (39) indicates a softening response, that is, decreasing the 

frequency of the free vibration 𝜔. By contracts, the sign of the cubic nonlinearity 𝛼𝑐 plays an important 

role in defining the softening and hardening in terms of 𝜔.  Using the material and geometrical parameters 

in the previous section and Φ𝑑𝑐 = 100Volt and 𝑐 = 0, the frequency of the free vibration versus the 

parameter 𝑎0 is depicted in Fig. 5. We see in Fig. 5 that the frequency decreases that is due to the presence 

of the 𝛼𝑞 = 0.0441058 and 𝛼𝑐 = −1.34858 × 108. This output exhibits the softening response of the DE-

based AFM, which is consistent with conventional AFMs where linear materials and piezoelectric actuation 

are utilized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure. 5. Frequency of the free vibration of the dielectric elastomer-based microcantilever atomic 
force microscope probe showing the softening response.  

 

6. Forced vibration analysis  

 

If the voltage varies with time, the forced vibration of the DE-based microcantilever arises. Complexity 

arises in DEs upon application of a time-dependent electrical load. Time-dependency of voltage makes 

nonlinear dynamics of DE, which are of importance to be analyzed. The dynamic equation of the system is 

obtained by using the following equation 

 

𝑉 = 𝑉𝐷𝐶[1 + 𝑉𝐴𝐶 cos(Ω𝑡)]2                                                                                                                                            (40) 

 

where 

 

𝑉𝐷𝐶 =
𝜖0

𝜇
(

𝛷𝑑𝑐

𝑑
)

2
,𝑉𝐴𝐶 =

𝛷𝑎𝑐

𝛷𝑑𝑐
,Ω = �̂�√

𝜌𝐴𝐿4

𝜇𝐼
                                                                                                       (41)    
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in which Ω is dimensionless excitation frequency; 𝛷𝑎𝑐 indicate the amplitude of AC voltage.
Inserting Eq. (41) into Eq. (27), the dynamic equation is expressed as 

�̈� + 𝑐�̇� + 𝑌2𝑊 + 𝑌1𝑓̈ + 𝑐𝑌1𝑓̇ + 𝑌3𝑓 + 𝑌4𝑓3 + 𝑌5𝑓2𝑊 + 𝑌6𝑓2𝑊 + 𝑌7 𝑓 𝑊2 + 𝑌8 𝑓 𝑊2 + 𝑌9𝑊3 +
𝑌10[𝑉𝐷𝐶(1 + 𝑉𝐴𝐶 cos(Ω𝑡))2]𝑊 + 𝑌11[𝑉𝐷𝐶(1 + 𝑉𝐴𝐶 cos(Ω𝑡))2] 𝑓(𝑡) = 0      (42)       

6.1 Analytical solutions of forced vibration 

In this section, we solve the forced vibration of the system analytically using the multiple time-scale 

method. The main purpose is to obtain a closed-form of the frequency-amplitude equation for analyzing the 

nonlinear resonance of the system.  

The dynamic voltage expressed in Eq. (40) is expanded, such that 

𝑉 = 𝑉𝐷𝐶[1 + 𝑉𝐴𝐶 cos(Ω𝑡)]2 = 𝑉𝐷𝐶 + 𝑉𝐷𝐶𝑉𝐴𝐶
2 cos2(Ω 𝑡) + 2𝑉𝐷𝑐𝑉𝐴𝐶 cos(Ω𝑡)  (43)   

It is assumed the 𝑉𝐴𝐶  is much smaller than 𝑉𝐷𝐶 , thereby the terms containing 𝑉𝐴𝐶
2  in Eq. (43) is

neglected. Substituting Eq. (43) into Eqs. (32) and (33), we get  

𝑀 �̈� + 𝐶�̇� + (𝐾 + Γ1)𝑊 + 𝐾𝑛𝑞𝑊2 + 𝐾𝑛𝑐𝑊3 = �̅�1 cos(Ω𝑡) + (�̅�2 + �̅�3) cos(Ω𝑡) 𝑊  (44)   

where Γ1 = 𝑉𝐷𝐶𝑌10 + 𝐵𝑉𝐷𝐶𝑌11; �̅�1 = −2𝑉𝐷𝐶𝑉𝐴𝐶𝑌11𝐴; �̅�2 = −2𝑉𝐷𝐶𝑉𝐴𝐶𝑌10; �̅�3 = −2𝑉𝐷𝐶𝑉𝐴𝐶𝑌11𝐵.

Similar to the free vibration, Eq. (36) is divided by 𝑀, which leads to 

�̈� + 𝐶̅�̇� + 𝜔0
2 𝑊 + 𝛼𝑞𝑊2 + 𝛼𝑐𝑊3 = �̅�1 cos(Ω𝑡) + (�̅�2 + �̅�3) cos(Ω𝑡) 𝑊  (45)   

where 𝐶̅ = 𝐶/𝑀, 𝜔0
2 = (𝐾 + Γ1)/𝑀, 𝛼𝑞 = 𝐾𝑛𝑞/𝑀, 𝛼𝑐 = 𝐾𝑛𝑐/𝑀, 𝐹1 = �̅�1/𝑀, 𝐹2 = �̅�2/𝑀, and

𝐹3 = �̅�3/𝑀.

The frequency-amplitude equation derived using the multiple scale method to the Eq. (45) for a 

primary resonance is expressed as [55] 

[𝐶̅2 + (𝜎 −
9𝛼𝑞𝜔0

2−10𝛼𝑞
2

24𝜔0
3 𝑎2)

2

] 𝑎2 = [
𝐹1

2𝜔0
]

2
(46) 

where 𝜎 is a detuning parameter that for the primary resonance in this paper is given as Ω = 𝜔0.

Herein, the results of the frequency-amplitude equation, Eq. (46), are depicted. The material and 

geometrical parameters are similar to the free vibration. Illustrated in Fig. 6 is the influence of the damping 

on the frequency response of the DE-based AFM. The DC voltage is Φ𝑑𝑐 = 100 Volt and Φ𝑎𝑐 = 20 Volt.
What stands out from this figure is that the damping decreases the response amplitude significantly when 

𝐶̅ = 0.1. Besides, the damping linearizes the resonant trend of the DE-based AFM. Another output of Fig. 

6 is that the response is softening-type nonlinearity for ideal DEs, namely a DE without viscous damping. 

It is noted that the softening response has also been observed in Fig. 5. It is seen that in Fig. 6 (a), two 

solution branches (upper and lower branches) are very close to each other. Based on Fig. 6, the AFM 

undergoes multi-valued solutions; as a result of that, the system shows a jump phenomenon and instability. 

While with the inclusion of the damping, the undesirable jump and instability disappear. 
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Figure. 6. Frequency amplitude curve of the dielectric elastomer-based microcantilever atomic force 

microscope probe. (a) 𝐶̅ = 0, (b) 𝐶̅ = 0.1.  

 

The influence of DC voltage Φ𝑑𝑐 on the frequency response of the system is studied in Fig. 7. The AC 

voltage amplitude is small in comparison to the DC voltage, namely Φ𝑎𝑐 = 20 Volt. From Fig. 7, we 

conclude that the response amplitude increases with the increase of the DC voltage. Plus, increasing the DC 

voltage makes softening resonant behavior weaker. Another finding is that even for a high value of the DC 

voltage, the damping can reduce the response amplitude and can stabilize the dynamic response of the DE-

based cantilever AFM.  
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Figure. 7. Influence of DC voltage Φ𝑑𝑐 on the Frequency amplitude curve of the dielectric elastomer-

based microcantilever atomic force microscope probe. (a) 𝐶̅ = 0, (b) 𝐶̅ = 0.1.  

We explore the influence of the AC voltage amplitude on the resonance of the AFM in Fig. 8 when 

Φ𝑑𝑐 = 100. We observed that the AC voltage amplitude does not significantly affect the softening response 

of the system when the damping is not present in the model. As the figure tells, in a damped DE-based 

AFM, the amplitude of the dynamic voltage increases the response amplitude when it is increased. An 

analogy between Fig. 7 and Fig. 8, one can conclude that the influence of the DC voltage is more than the 

AC voltage amplitude.  

 

 
 

Figure. 8. Influence of AC voltage Φ𝑎𝑐 on the Frequency amplitude curve of the dielectric elastomer-

based microcantilever atomic force microscope probe. (a) 𝐶̅ = 0, (b) 𝐶̅ = 0.1.  

 

The classical continuum mechanics models cannot accurately predict mechanical structures’ 
response on micro/nanoscale. For this reason, size-dependent models are utilized to overcome this 
drawback. As discussed in the mathematical modeling, we have employed the modified couple stress 
theory in the current research. The difference between the classical theory and the modified couple 
stress theory is the presence of the parameter  ℓ. Here, we examine the influence of ℓ on the structure's 
frequency response in Fig. 9. From this figure, we conclude that the influence of the size on the system 
with and without damping is very different. For undamped AFM, the size decreases the softening 
nonlinearity when it is increased, and also it increases the response amplitude. But, for the damped 
AFM, increasing the size effects decrease the response amplitude. 
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Figure. 9. Influence of size-effect parameter  ℓ on the Frequency amplitude curve of the dielectric 

elastomer-based microcantilever atomic force microscope probe. (a) 𝐶̅ = 0, (b) 𝐶̅ = 0.1 

Previous numerical simulations were for the forced vibration in the frequency domain, which is 
obtained and described by means of the analytical solutions of the equation of motion. In what follows, 
the forced vibration is investigated in the time domain by numerically solving of Eq. (42).  

We generate Fig. 10 to identify the overall trend of the forced vibration of the DE-based AFM.  
the DE-based AFM under Φ𝑑𝑐 = 100Volt, Φ𝑎𝑐 = 20, and Ω = 5, wherein a non-damped condition 
is assumed, i.e., 𝑐 = 0, and the initial transverse motion is 𝑊(0) = 0.0001. The plot of velocity versus 
displacement of the coordinate system originated from the non-transient of the time history, leading to 
the phase-plane diagram. To conduct signal processing (FFT), continuous signals in the time history 
are discretized using the FFT scheme. In order to avoid aliasing, a large enough sample rate is adopted 
for the FFT.  Looking at this figure, it is apparent that the DE-based AFM encounters a quasiperiodic 
dynamic response. This trend is better interpreted in the Poincaré map, in which a closed loop of points 
appears, showing quasiperiodicity. Narrowband and distinguished spectra in FFT prove the 
quasiperiodicity of response. 
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Figure 10. Dynamic characteristics of the dielectric elastomer-based microcantilever atomic force 
microscope probe under Φ𝑑𝑐 = 100Volt, Φ𝑎𝑐 = 20, 𝛺 = 5, and 𝑐 = 0 with 𝑊(0) = 0.0001 and 

�̇�(0) = 0. (a) time history, (b) phase-plane diagram, (c) Poincaré map, (d) FFT.  

As stated before, the DE-based AFM is mathematically nonlinear and named a nonlinear system. 
It is well-known that an essential characteristic of such systems is their sensitivity to initial conditions. 
It means that a minor change in initial conditions may vigorously complicate the response of nonlinear 
systems. For this purpose, in Fig. 11, we assess the influence of the initial condition on the forced 

vibration of the considered system. The system’s parameters and the traverse motion rate �̇� are the 
same as those used in Fig. 10, but we choose two initial conditions, i.e., 𝑊(0) = 0.0004980 and 
0.0004982. Inspecting the figure, one quickly sees that increasing the initial transverse displacement 
leads to instability in the system. But, it is difficult to exactly say this instability is due to the numerical 
integration or the instability in real applications that the system may fail and be destroyed. 
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Figure 11. Influence of the initial conditions on the dynamic characteristics of the dielectric elastomer-
based microcantilever atomic force microscope probe under 𝛷𝑑𝑐 = 100Volt, 𝛷𝑎𝑐 = 20, 𝛺 = 5, and 
𝑐 = 0. 

 

7. Verification study 

In order to evaluate the accuracy of our model, a verification process is carried out. A comparison is 
made between this paper and the reference. To this end, parameters in reference [42] are utilized, such that 

𝐿 = 225μm, 𝐼 = 3.57 × 10−23m4, 𝐴 = 7.2 × 10−11m2, 𝐻 = 2.96 × 10−19J, 𝑅 = 10nm, 𝐸 = 170GPa. 
Terms relation to the voltage, length-scale parameter, and cubic term in Eq. (16) is equal to zero. In Fig. 
12, equilibrium tip/sample separation ∆ is plotted versus different initial tip/sample separation 𝑍. It is seen 
that good agreement between this paper and reference [42] is obtained.  
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Figure. 12. Static response of the system. Comparison between this paper and reference [42].  

 

8. Perspective and challenge for AFM based on DEs 
 
Previous studies have reported that DEs can operate in different environments such as water, air, 

and vacuum. In real-world applications, some parameters may notably affect the response of DE, for 
instance, temperature and moisture. Thus, if AFM, excited by DE actuators, works in water or air, 
these factors should be taken into account. It is noted that DEs have good performance in such 
environments. As an example, it has been shown that DEs can work well in water. As reported, the 
absorption of water by DEs is very little. Therefore, water may not change significantly the 
performance and properties of DEs, for example, their viscosity [56]. Another important factor in the 
real application is the gas damping that may affect the quality factor of the DE-based microcantilever. 

Nonetheless, if the ambient pressure is as low as 10−6  atm, the gas damping may be omitted. This 
assumption has been considered in this paper.  

A high voltage actuation may lead to collapse. But, as mentioned in the experimental and 
theoretical studies, the dielectric elastomer can undergo high voltage even for some structures in the 
kilovolt range. This paper theoretically presents a value of 100 V for the voltage, and it is seen that the 
AFM can operate without collapse. However, the dielectric elastomer may operate even at lower 
voltages if an appropriate material for electrodes is fabricated. Although one of the initial limitations 
of DE has been the need for high-voltage, it has been overcome by fabrications of novel electrodes. 

The microcantilever used in this paper is designed as a DE, i.e., the whole body of the cantilever 
consists of a DE. Another discussion raised is that DEs can operate such as piezoelectric patches to 
vibrate any microcantilever, even those with rigid elastic constant. This would be our future aim to 
analyze the possibility of such a mechanism for AFM. 

9. Conclusions 

In this work, a dielectric elastomer actuator was proposed to drive microcantilevers in atomic force 
microscopy. More specifically, dynamic modeling of dielectric elastomer-based atomic force 
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microscopy was implemented. A hyperelastic micropolar model that includes moderate rotation, large 
deformation, and size effects was employed as the constative material model for the dielectric 
elastomer. The elastomer was assumed to be incompressible, and its damping attribute was also 
incorporated. Free and forced vibrations equations of motion are derived via Hamilton’s principle and 
solved with the aid of a Gear implicit backward differentiation scheme and multiple time-scales 
method. The results of the present research are listed below. 

 A periodic motion is seen for the static voltage loading of the system.

 There is evidence that the DE-AFM driven by a sinusoidal voltage leads to quasiperiodic
vibrations.

 With the contribution of the damping force to the system, a decreasing trend of the response
amplitude is found.

 The resonance of the system is softening type.

 With the increase of the size-effect parameter, the softening nonlinearity gets weaker when
damping is neglected.

 For the damped DE-based AFM, the response amplitude gets lowered with the increase of the
size-effect parameter.

 A change in DC and AC voltages can tune the resonant regions of the AFM.

This paper is a theoretical analysis merely, and we hope that future empirical tests will confirm the 
results and model proposed here. 
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