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Abstract
In this paper, the buckling of rectangular functionally graded (FG) porous nanoplates based on three-
dimensional elasticity is investigated. Since, similar researches have been done in two-dimensional
analyses inwhich only large deflections with constant thickness were studied by using various plate
theories; therefore, discussion of large deformations and change in thickness of plates after deflection
in this study is examined.Moreover, porosity is assumed in two situations, even and uneven
distributions considered in several conditions. Using nonlocal elasticity theory, nonlocal three-
dimensional equations are obtained. Regarding difficulties in solving three-dimensional differential
equations, simple analyticalmethods are assumed and proposed. Themost important results show
that even porositymakes the plate softer and results of uneven porosity are so close to the prefect
material which leads to this considerable conclusion that porosity as an uneven distribution cannot be
an important factor in static stability analyses of FGnanoplates.

1. Introduction

Plates are important elements included in industrialmachines and engineering structures thatmaymiss their
stability under tensile, compressive and shearing loads. Theminimum stableness force is a remarkable quantity
in engineering design and simulation. Todays, the combinatorial applications ofmaterials are becomingmore
andmorewidespread in order to obtain appropriate properties. Given the advancement of technology, a
material cannot, by itself, be responsive to advanced industry’s needs. So, to satisfy such a request, the laminated
functionally compositematerials were producedwhich had two entirely different properties in their opposite
surfaces. However, theywere not suitable in light of the fact that thesematerials were layered because of residual
stresses which led to their short life. Therefore, the non-homogenousmaterials have been producedwithin
which theirmicrostructuralmechanical properties gradually change from a surface to another one. Due to lack
of sudden split in thesematerials against laminated composites, their resistancewere improved noticeably and
also the stresses were distributed uniformly because of removing stress concentration. In this regard, study of the
critical conditions of suchmaterials is a serious need. Lee et al [1] used amesh-free radial interpolation approach
for examining nonlinear stability of functionally graded (FG) plates subjected to thermal in-plane loads. Lieu
et al [2] taken a FG variable thickness plate for free vibration and bending responses. They assumed functionally
graded property in bi-directional and solved the harvested equations by an isogeometric technic. Thai andKim
[3] analyzed resonant frequencies and bending of a FGplate by proposing a simple higher-order shear
deformation theory. Ohadi et al [4] considered nonlinear thermo-vibrational behavior of a FG plate with taken
piezoelectric layers. Zenkour andRadwan [5] compressively studied a FGplate embedded on an elastic
foundation. They used a refined shear deformation theorywith choosing a hyperbolic function rather than using
shear correction factors. They also used an analytical solution fromwhich various boundary conditionswere
accurately obtained in order to calculatemaximumdeflections. Thai andVo [6] derived a new sinusoidal shear
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deformation theory for static and dynamic analyses of FG plates based on theNavier approach.Wang et al [7]
investigated stability of a FG thin plate with assuming in-planematerial inhomogeneity. Thai andKim [8]
employed a closed-form solution for stability analysis of thick FGplates rested on a polymermatrix. They used
third-order shear deformation theory in order to derive the equilibrium equations. The equationswere solved
by applying Levy solution for simply-supported boundary conditions. Bever andDuwez [9] considered
gradients in the structure of compositematerials to exhibit their compositional properties. Carrera et al [10]
evaluated thickness stretching influences in single andmulti-layered FGplates and shells.With regard to the
Carrera’s unified formulation, variable plate/shell theories were implemented. Bousahla et al [11] analyzed
buckling of FGplates on the basis of amodified four-variable platemodel exposed to linear and non-linear
temperature distributions in the thickness direction. Akavci [12] studied stability and resonant frequencies of a
FG composite plate rested on a soft foundation by proposing a new shear deformation theory inwhich a
hyperbolic functionwas used instead of employing any shear correction factor. Bouderba et al [13] derived a
simplifiedfirst-order theory of shear deformation inwhich only four-unknown variables were existed. This new
plate theorywas employed to examine a FG sandwich plate in a thermal buckling condition. Ghadiri et al [14]
investigated for thefirst time influences of Coriolis and thermal on the natural frequency analysis of a FGplate
whichwas in a rotational condition. To this, generalized differential quadraturemethodwas applied for
cantilever boundary conditions. El-Haina et al [15] proposed a new simple analytical solution technic in order to
study stability of a thick FG composite plate subjected to thermal in-plane forces. Hichem et al [16] derived a
simple and efficient four-variable shear deformation theory to study elastic stability of a FGplate.

On the other hand, in recent years, due to developing of the use of engineering structures in small-scale and
necessity to optimize their performance, researchers have been encouraged to usematerials withmicro and
nanoscales. Liu et al [17] investigatedwave propagation in nanoplates with considering piezoelectricity
influences. They also considered surface piezoelectricity and nonlocal impacts in their research. Li et al [18] in a
special workmodeled flexural wave propagation for a nonlocal FGbeamusing nonlocal strain gradient theory.
Shahsavari and Janghorban [19] dynamically analyzed the shearing and bending response of a graphene plate
under a concentratedmoving load. A two-variable shear deformation theorywas accompaniedwith nonlocal
elasticity theory of Eringen in order to derive the vibrational equations and the obtained relations were
calculatedwithNavier technic. Hichem et al [20] formulated a zeroth-order shear deformation theory and
applied it for examining post-stability of a nanoscale beam. Eringen’s law and a closed-form approachwere
employed to achieve this aim. Awave propagation analysis for double-walled carbon nano shellmodels was
investigated by Tadi Beni et al [21]. Theymodeled a slip boundary condition and assumed that the nanotube
conveys fluid. To consider nanoscale properties, nonlocal strain gradient theorywas used and themodel was
surrounded in a polymermatrix. Janghorban et al [22] employed a novel higher-order nonlocal strain gradient
shell theory for analytically studyingwave dispersion in a doubly-curved nano shell. Themechanical behavior of
themodel was assumed to be an anisotropic shell. In a specific research, Karami et al [23] employed three-
dimensional elasticity formulation for considering a FGnano sphericalmodel. They applied small-scale effects
with using nonlocal strain gradient theory and incorporated the anisotropic property for themodel. Ebrahimi
and Salari [24] analyzed natural frequencies and static stability of functionally graded (FG)nanobeamswhich
were under in-plane thermal forces. The beamwasmodeled as a Timoshenko beamand nonlocality was
modeled by nonlocal elasticity theory of Eringen. Tadi Beni et al [25] investigated stability of FGnano bridges
under electro-mechanical in-plane loads with utilizing theory of strain gradient. ZamaniNejad et al [26] studied
stability of FGnonlocal beams. They applied Euler–Bernoulli beams and presented a solution by taking into
account the variation of properties in two-directional FGmaterials with arbitrary functions. They solved the
equationswith using generalized differential quadraturemethod for different boundary conditions. Yang et al
[27] demonstrated thermal stability and post-stability of nano-FG composite plates.

In special analyses, various boundary conditionswere considered. Akhavan et al [28] investigated the
fundamental frequencies of amoderately thick FGplatewith utilizing first-order theory of shear deformation.
The plate was placed on aWinkler-Pasternak substrate and the derived equationswere solved by an analytic
assumption. Panda et al [29] studied stability of a FG single/doubly shell panel with initial curvature under
thermal in-plane loads by considering temperature-dependent (TD) and temperature-independent (TID)
properties. Abdelaziz et al [30] presented a newhyperbolic shear defirmation plate theory for analyzing
functionally graded sandwich plates. They studied stability, bending and natural frequencies of the composite
plate whilst several boundary conditions were applied.Many articles have also been presented in recent years in
terms of FGMs and nanomaterials [31–64].

In addition to these, thematerials with porosity are another type ofmaterials with different behavior [65].
The nanoporousmaterials have cavities in nanoscale which are diverse. In fact, the volumetric ratio of cavity of
the porousmaterial to the total volume is called the porosity [66–68]. According to the definition of
nanotechnology, chemistry scientists use nanoporous formaterials that contain cavities with a diameter of less
than 100 nm [66–68]. In terms of suchmaterials, Shafiei andKazemi [69] carried out the nonlinear stability of
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micro/nano functionally graded (FG) porous beams.Wang andZu [70] studied vibrational responses of a FG
non-square porous plate exposed to thermal in-plane forces. Resonant frequencies of FGporous plates with
piezoelectricity impacts under electro-mechanical loads in a translation state was studied byWang [71].

In view of exact analyses literature, there are a few researchwithinwhich thematerials have been analyzed
three-dimensionally. Ansari et al [72] examined free vibration of functionally graded (FG)nanoplates on elastic
foundations via three-dimensional theory of elasticity. The generalized differential quadraturemethodwas
adopted by using three-dimensionalmeshing. Brischetto [73] developed an exact three-dimensional equation
for static analysis of single andmulti-layered shells and plates. The equationswere solved via a proposed exact
3D shellmethod bywhich simple boundary conditions were satisfied. The shell solutionwas based on a layer-
wise approach and the second order differential equationswere solved using the redouble of variables and the
exponentialmatrixmethod. Ansari et al [74] three-dimensionally analyzed static and dynamic of FGnanoplates
based on a newdifferential quadrature-based approach. They established nonlocal elasticity theory of Eringen to
take into account nanoscale effects and it was found that the proposed approach had a fast rate of convergence.
Dastjerdi andAkgöz [75] conducted new static and dynamicmodels of nano andmacro FGplates based on the
three-dimensional elasticity by considering thermal effects. Their results showed that if the thermal analysis is
considered, neglecting the amount of εzz leads to serious errors, and only the results of the three-dimensional
elasticity theory should be used.Nahvi et al [76] presented three-dimensional elasticity formulation for bending
behavior of FGmicro/nanoplates placed on an elasticmediumon the basis of a couple stress approach and an
analytical solution. Three-dimensional thermo-elastic solution of a composite plate with a FG core under
thermal shock using Fourier series expansionwas investigated byAlibeigloo [77]. Kant et al [78] compared the
three-dimensional elasticity solutions for FGplates. The Pagano’s classical, series expansion,mixed
formulation, state space and semi analytical approaches were compared to one another.

In this paper, it is aimed to three-dimensionally analyze themechanical behavior of a porous functionally
graded nanoplate under critical stability conditions to have amore accuratemodel. The governing equations are
derived based on the Eringen’s nonlocal elasticity theory with taking porosities effects into consideration. To
solve the achieved equations, a proposed analyticalmethod is presented by employing some suitable shape
functions. The proposed volume integral is a simplemethod in contrast to the solution techniques in the
literature. In order to verify the outcomes of the equations, the results of three-dimensional analysis are
comparedwith results of plate theories. Afterwards, the results of the current analysis are plotted by investigating
several parameters such as power law, porosity factor, thickness to length ratio, nonlocal parameter and aspect
ratio.

2.Mathematicalmodeling

A rectangular FGnanoplate is shown infigure 1. The development of nanotechnologies extends the field of
application of the classical or non-classical theories of plates. Recently,many theories of nanoscale have been
suggested and various theories of plates are formulated. The classical plate theory (CPT) is inconsistent in the
sense that elements are assumed to remain perpendicular to themid-plane, yet equilibrium requires that stress
componentsσxz,σyz still arise (whichwould cause these elements to deform). The theory of thick plates (higher-
order transverse shear deformation theories (HSDT) or third-order shear deformation theory (TSDT)) are
more appropriate, but they stillmake the assumption thatσz=0.Note that both are approximations of the

Figure 1. Schematic geometry of the FGporous nanoplate in rectangular coordinate system.
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three-dimensional equations of elasticity. Hence, in this study, by considering changes in thickness of the plate
the three-dimensional elasticity relations are presented. In this regard, general three-dimensional displacement
field can be expressed as [75]:

=( ) ( ) ( )U x y z t u x y z a, , , , , 1

=( ) ( ) ( )V x y z t v x y z b, , , , , 1

=( ) ( ) ( )W x y z t w x y z c, , , , , 1

Inwhich u, v andw are the three-dimensional displacement parameters regarding the x, y and z-axis. The three-
dimensional constitutivemodel is themost general type ofmaterialmodels considered in this paper. The non-
zero stiffness coefficients of the stiffnessmatrix are defined as follows [75]:
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Thematerial property gradation considering power law in the FGnanoplates is expressed as [74–76]:

= + - +⎜ ⎟⎛
⎝

⎞
⎠( ) ( ) ( )E z E E E

z

h

1

2
4m c m

k

HereE shows themodulus of elasticity, h represent the thickness of the plate before deflection, Ec andEm are the
Young’smodulus corresponding to ceramic andmetal, respectively, and k is volume fraction exponent or
material grading/power law index. Due to insignificant variation of the Poisson’s ratio, this variant is assumed to
be constant along the thickness (ν(z)=ν). From equation (4), whenever k→∞, the FGnanoplate reduces to a
puremetal and for case k=0, the plate would be a pure ceramic.

According to equation (4) and using a porosity distribution type [79], the physical andmechanical properties
of the FGporous nanoplate is as follows:

a
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whereα is the porosity distribution factor. Equation (5a) shows evenly distributed porosities (P-I) and
equation (5b) represents unevenly distributed porosities (P-II) [80]. Thereafter, the Lagrangian strains are:

e =
¶
¶
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whereσij (i=x, y, z) is the static stresses in the plate. Using equation (6) andwith considering the vonKármán
assumption the three-dimensional strainsfield are expressed as follows:
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To obtain the total potential energy (V ) of the plate, strain energy is added to the potential energy of external
loads as follows [81]:

= + W ( )V U 8

whereU is the strain energy as follows:
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AndΩ is the potential energy of external loads neglected in this paper.
Using the principle ofminimum total potential energy (d =V 0) the nonlinear three-dimensional governing

equations are obtained in the following equations:
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Inwhich subscriptNL and L denote the quantities for theNonlocal and Local cases, respectively. The local and
nonlocal stress-displacement relations are defined as [82, 83]:
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Using equation (11) and substituting it into equation (10), the nonlocal three-dimensional equationswith local
stresses are obtained as follows:
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Nowbywriting the relation of stresses and strains and helping equation (7) the stressfield is expressed:
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Due to the fact that the nonlinear terms in equation (13) are very small and there is no need to use them, in
particular in stability analysis; therefore, they should be ignored.On the other hand, substituting equation (13)
into equation (12) and also using the adjacent equilibriummethod, the nonlocal three-dimensional equations in
the displacementfield are obtained as follows:

n n
n

- ¶
¶

+
¶
¶ ¶

+
+

¶
¶

+
¶
¶ ¶

+
¶
¶

+
¶
¶ ¶

=
⎛
⎝⎜

⎞
⎠⎟

( )( ( )) ( ) ( ) ( )
( ( ))

( )E z z

K

u

x

E z z

K

v

x y

E z

z

u

y

v

x y

u

z

w

x z
a

1

2 1
0 14

2

2

2 2

2

2 2

2

2

n n
n

¶
¶ ¶

+
- ¶

¶
+

+
¶
¶ ¶

+
¶
¶

+
¶
¶

+
¶
¶ ¶

=
⎛
⎝⎜

⎞
⎠⎟

( ) ( ) ( )( ( )) ( )
( ( ))

( )E z z

K

u

x y

E z z

K

v

y

E z

z

u

x y

v

x

v

z

w

y z
b

1

2 1
0 14

2 2

2

2 2

2

2

2

2

6

Mater. Res. Express 5 (2018) 095006 MMalikan et al

D
o

w
nl

o
ad

ed
 f

ro
m

 m
o

st
w

ie
d

zy
.p

l

http://mostwiedzy.pl


n
n

s s

m s s

+
¶
¶ ¶

+
¶
¶

+
¶
¶ ¶

+
¶
¶

+
- ¶

¶
+

¶
¶

+
¶
¶

-
¶
¶

+
¶

¶ ¶
+

¶
¶ ¶

+
¶
¶

+
¶

¶ ¶
+

¶
¶ ¶

=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

( )
( ( ))

( )( ( ))

( )

E z

z

u

x z

w

x

v

y z

w

y

E z z

K

w

z

w

x

w

y

w

x

w

x y

w

x z

w

y

w

x y

w

y z
c

2 1

1

0 14

x
L

y
L

x
L

y
L

2 2

2

2 2

2

2

2

2

2

2

2

4

4

4

2 2

4

2 2

4

4

4

2 2

4

2 2

3. Solutionmethodology

In order to complete the formulation, the stability equations (equation (14)) should be accompanied by a set of
boundary conditions. Therefore, in this paper a type of boundary condition is applied. The type is the simply
supported (S) boundary condition. Below is the case of this boundary condition [72]:

• Edge Boundary conditions
All edges simply supported (SSSS):
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• Surface Boundary conditions

Since the nanoplate is considered in three dimensions, the surface boundary conditions are defined by:
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To solve the stability equations, amethod has been presented inwhich the responses are assumed to be as
follows:
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Inwhich ( )X xm and ( )Y yn are admissible shape functions on the basis of x and ywhich satisfy the boundary
conditions in equation (15), ( )Z zr is the approximate solution in the direction of z-axis.AndAmnr, Bmnr and
Cmnr are the constant coefficients which should be calculated.Note that the proposed solutions are
approximations of the analyticalmethod for three-dimensional equations. Thismeans that by using the present
solutions, the quasi three-dimensional analytical approaches have been applied. These are simpler than the other
solutionswhich have been used to solve three-dimensional elasticity equations. In some references, theNavier
solutionwas used as a three-dimensional exactmethod [84]which its relations are harder than the current
formulation. The suitable shape functions are proposed in table 1.

Wherem and n are the integer numbers. Substituting equation (17) into eqaution (14), a residual in the
algebraic formwill be obtained, based on the presented approach, the residual will be calculated by:
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On the basis of equation (18), the systemof homogenous algebraic equations will be obtained as:
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where ( )A B C, , are the unknown variables. Also [ ]Kij are coefficients of unknown variables which are shown
as follows:
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4. Results and discussions

In this section, several comparisons for somematerials and conditions in order to determine the precision of
the proposed analytical solution are carried out. First of all, buckling of uniaxially compressed rectangular
isotropicmacro plates is considered while all the edges are simple boundaries. Results are shown from [85] in
which exact three-dimensional theory of elasticity was used in conjunction with differential quadrature and
hyperbolic differential quadraturemethods, (DQ) and (HDQ). Moreover,Mindlin plate theory was
accompanied with Pb-Ritzmethod in [86]. It can be seen that the results decreased with increasing thickness
to length ratio (span ratio). As can be observed, the distance among the results of the current paper and [85]
with those obtained by ref [86]with increasing span ratio is jumped remarkably. However with increasing
aspect ratio these distances have become further smaller and it can be found that plate theories in analyzing
rectangular plates with large length have further accurate results than square ones. Thismight be because of
shortcoming of plate theories to analyzemoderately thick and thick plates whichmeans that assuming
constant thickness after deflection in plate theories can be a serious weakness. Table 2 is similar to previous
table, but here the results are verified with biaxial buckling of the plate. It is worth noting that within biaxial
analysis, the deviation of theMindlin plate theory is lesser in contrast to table 1 and then also the results of
present paper are closer to [85] against former table. Another comparison is taken into considerationwith
[87] and [88] in which equations of first-order shear deformation theory (FSDT)were solved with DQ and
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Table 2.Comparison of buckling factors,λ=NxLy
2h/π 2D (D=Eh3/12(1-ν2)), of the uniaxially compressed rectangular plates.

Thickness towidth ratio, h/Ly

0.05 0.10 0.15

Boundary

conditions

Aspect ratio (Lx/Ly)Grid
size,X×Y×Z

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

SSSS 0.5 5.8107 6.0346 6.0204 5.3002 5.4693 5.3529 8.2533 4.7305 4.5607

5.9899 5.3412 4.5530

1.0 3.6387 3.9437 3.9575 3.6709 3.7839 3.7683 3.4382 3.5446 3.4725

3.9314 3.7412 3.4676

1.5 4.0103 4.2559 4.2120 3.9075 4.0214 3.9369 3.5606 3.6831 3.5520

4.2375 3.9613 3.5827

*The results forHDQandDQare in convergence values.
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thenMindlin plate theory were calculated with Pb-Ritzmethod, respectively. This table confirms this fact
that when the plate is thicker, three-dimensional elasticity outcomes are farther than those results obtained
by various plate theories. Additionally, to havemore validation, table 5 is presented. In this table, a simply-
supported square FG plate is considered. In other words, other thanmacro plates shown in tables 2 to 4, it is
required to compare the results of current work with a FG plate. Again [87] is employed besides [89]within
which the equations of an approximate plate theory were solved byNavier approach.When k=0, present
research and other references are in greatest difference to one another. It shows that by an increase in power
law index, the results are in a good agreement, not only for present research, even for [89]. This needs to
further consideration, for which tables 6 and 7 are demonstrated. It should be noted that the results of
h/Lx=0.2 are farther for three cases in contrast to h/Ly=0.1. In table 6, a FG plate is analyzed by
incorporating higher-order transverse shear deformation plate theory (HSDT) and solving with Levy [90]
and alsoNavier [91] solutionmethods. Undoubtedly, one of the appropriate plate theories for evaluating
moderately thick and thick plates can beHSDT applied inmany papers over the past two decades. For k=1,
results aremore satisfactorily acceptable with those references, however by decreasing this index, the values
are found to be in a high percent difference from present paper to results given by [90, 91]. As amatter of
fact, if the plate is thicker, the grading factor is more effective andmakes the further distances in results of
various solutions. It is worthmentioning that by usingHSDT and increasing power law index the results
originated from [90, 91] are becoming closer to each other in table 6, and by using thicker plates, the results of
[87–89] are getting farther to each other in table 5. On the other hand, these effects are steady for present
equations withHSDTwhich leads to closing results by an increase in k. This proves that the plate theories
(CPT, FSDT, etc) cannot exactly predict the responses of thick and evenmoderately thick plates and it is
better to use thick plate theories such as HSDT andTSDT. Finally, all of these harvests can be confirmed by
the last one table. In table 7 the third-order shear deformation theory (TSDT)was applied [16]which is an
accurate thick plate theory. It is obvious that the results lead to furthermatching with increasingmaterial
grading index and also length to thickness ratio. This conclusion is seen reversely in table 5 for plate theories
whichmeans that in thick plates, the thick plate theories such as HSDT, TSDT and etc can be fit ones in
contrast to plate theories.

Tables Quantities

tables 2

& 3

E=210 GPa, ν=0.3 [85]E=210 GPa, ν=0.3, ks=5/6 [86]E=210 GPa, ν=0.3, k=0,α=0 [Present]

table 4 E=3×106, ν=0.3, ks=5/6, SSSS [87, 88]E=3×106, ν=0.3, k=0,α=0, SSSS [Present]
table 5 Em=70 GPa,Ec=380 GPa, ν=0.3, ks=5/6 [87]Em=70 GPa,Ec=380 GPa, ν=0.3 [89]Em=70 GPa,Ec=380 GPa,

ν=0.3,α=0 [Present]
table 6 Em=70 GPa,Ec=420 GPa, ν=0.3, h/Ly=0.1 [90, 91]Em=70 GPa,Ec=420 GPa, ν=0.3,α=0, h/Ly=0.1 [Present]
table 7 Em=70 GPa,Ec=380 GPa, ν=0.3, [16]Em=70 GPa,Ec=380 GPa, ν=0.3,α=0 [Present]

In order to obtain the outcomes and various conditions, the nondimensional critical buckling load is defined
asλc=Nx/Ech, and table 8 is employed to achieve this purpose.

Figures 2(a) and (b) show the accuracy of the proposed solution functions for thickness variations
with change in nonlocal parameter (figure 2(a)) and porosity factor (figure 2(b)). It can be seen that by
increasing nonlocal parameter the outcomes of the functions are decreased remarkably and reached
to one another. In other words, for high values of small-scale parameter the proposed functions are
more appropriate than lower values of ones. Furthermore, by investigation of figure 2(b), it is seen that for
various values of porosity factor the presented functions are suitable ones and there is no difference in the
results.

To investigate both porosity cases and also both analytic approaches, figures 3(a) and (b) are
considered whilst the thickness to length ratio is the changeable factor. In the first figure, by comparing
three states; evenly porosity (P-I), unevenly porosity (P-II) and non-porosity (prefect) FG nanoplates, it is
clear that when the plate has unevenly andmiscellaneous cavities in its volume the plate’s critical buckling
loads are noticeably nearer to prefect plates. As a rule, in such a condition we can ignore porosity in
analyzing of stability of FGMs. It also demonstrates that by increasing the span ratio (h/Lx), all of the states
are getting closer and closer to one another. It can be concluded that in large values of span ratio, there
is no need to analyze porosity in buckling ofmoderately thick and thick plates. In fact, porosity in this
condition is not an important factor. From figure 3(b) it is depicted that both analytical solutions are in an
excellent agreement and there is no difference between their results. Although the increase of the span
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Table 3.Comparison of buckling factors,λ=NxLy
2h/π2D of the biaxially compressed rectangular plates.

Thickness towidth ratio, h/Ly

0.05 0.10 0.15

Boundary

conditions

Aspect ratio (Lx/Ly)Grid
size,X×Y×Z

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

[85] 3D,
HDQDQ

[86]Mindlin, Pb-Ritz

method Present, 3D

SSSS 0.5 4.6486 4.8277 4.7731 4.2402 4.3754 4.2849 3.6294 3.7844 3.6101

4.7919 4.2729 3.6298

1.0 1.8194 1.9719 1.9787 1.8355 1.8920 1.8639 1.7191 1.7723 1.7363

1.9657 1.8706 1.7338

1.5 1.2795 1.4297 1.4231 1.3398 1.3872 1.3620 1.2843 1.3218 1.2949

1.4265 1.3755 1.2994

*The results forHDQandDQare in convergence values.
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Table 4.Comparison study of the critical buckling load parameter
(λ=NxLy

2/π 2D) of isotropic square plate under uniaxial load.

h/Lx

References 0.05 0.1 0.2

[87], FSDT-DQ 3.9444 3.7865 3.2637

[88],Mindlin, Pb-Ritzmethod 3.944 3.786 3.264

Present- ( )Z z1 3.9061 3.7060 3.0929

Table 5.Comparison study of the critical buckling load parameter (λ=Nx/Ech) for simply-supported square Al/Al2O3 FGplate under
uniaxial load.

h/Lx=0.1 h/Lx=0.2

References k=0 k=0.5 k=1 k=4 k=0 k=0.5 k=1 k=4

[87], FSDT-DQM 0.034 22 0.022 33 0.017 23 0.011 63 0.1180 0.078 10 0.060 66 0.040 23

[88], Navier 0.033 81 0.02214 0.01698 0.01131 0.1140 0.075 71 0.058 26 0.037 21

Present- ( )Z z1 0.034 02 0.022 44 0.017 12 0.011 42 0.1206 0.077 65 0.060 25 0.041 67

Table 6.Comparison of critical buckling loads (MN/m) for the FG plateswith all edges simply-
supported boundary conditions.

k=0 k=1

Lx/Ly Lx/Ly

References Loading 1 1.5 1 1.5

[90], HSDT-Levy solution Uniaxial 1437.361 1527.903 702.304 748.920

Biaxial 718.692 526.861 351.124 256.776

[91], HSDT-Navier solution Uniaxial 1431.594 1519.588 700.068 745.801

Biaxial 715.808 525.308 350.034 256.194

Present- ( )Z z1 Uniaxial 1447.6 1536.733 705.34 747.476

Biaxial 723.797 530.629 349.67 256.189

Table 7.Comparison of nondimensional critical buckling loads (λ=NxLx
2/Emh

3) for square FG plateswith all edges simply-
supported boundary conditions.

k

References Loading Lx/h 0 0.5 1 2 5 10

[16], TSDT-Levy solution Uniaxial 5 16.0211 10.6254 8.2245 6.3432 7.5778 4.4807

10 18.5785 12.1229 9.3391 7.2631 6.0353 5.4528

20 19.3528 12.5668 9.6675 7.5371 6.3448 5.7668

100 19.6145 12.7158 9.7775 7.6293 6.4507 5.8752

Biaxial 5 8.0105 5.3127 4.1122 3.1716 2.5265 2.2403

10 9.2893 6.0615 4.6695 3.6315 3.0177 2.7264

20 9.6764 6.2834 4.8337 3.7686 3.1724 2.8834

100 9.8073 6.3579 4.8888 3.8147 3.2254 2.9376

Present- ( )Z z1 Uniaxial 5 16.1172 10.6838 8.2656 6.3685 7.6043 4.4896

10 18.6528 12.1653 9.3671 7.2776 6.0443 5.4582

20 19.3915 12.5856 9.6771 7.5431 6.3492 5.7696

100 19.6243 12.7208 9.7804 7.6308 6.4516 5.8753

Biaxial 5 8.0345 5.3259 4.1204 3.1763 2.5297 2.2425

10 9.3078 6.0718 4.6765 3.6351 3.0201 2.7277

20 9.6860 6.2877 4.8366 3.7701 3.1733 2.8839

100 9.8082 6.3584 4.8890 3.8148 3.2255 2.9376
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ratio shows that in high amounts of it, there is no need to consider the nanoplate as a FGMdue to equaling
results of FGM and non-FGM, thismight not be a sensible conclusion in physical interpretation.

Variation of nonlocal parameter for both analytical solutions versus grading index (figure 4(a)) and
porosities (figure 4(b)) has been plotted. In bothfigures the analytical solutions are completely corresponded to
each other. Although thefigures represent that by increasing nonlocal parameter the results of various cases have
become closer to one another, the significant harvest can be the impact of small-scale parameter on the results of
critical buckling loads of the FGnanoplate. Because, low values of this parameter decrease the buckling loads
remarkably.

Table 8.Material properties of the FGporous nanoplate used in this paper as follows:.

Material Elastic properties

FGporous nanoplates (ν=0.3) [92–94] Porousmetal; stainless steel-grade 304 (SUS304) Em=201.04 GPa
Nano-oxide ceramic; silicon nitride (Si3N4) Ec=310 GPa

Figure 2. (a)Material grading index versus small-scale effects (Lx/Ly=1, h/Lx=0.2,α=0.1, k=2, P-II, SS-II,m=n=1).
(b)Variation of evenly porosity factor versusmaterial grading index (Lx/Ly=1, h/Lx=0.1, e0a=0.01 nm, k=0, P-I,m=n=2,
SS-II).
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To further examine the porosities, figure 5(a) is shown for evenly porosity and figure 5(b) is revealed for
unevenly porosity which both are considered for same grading indexes. In the first observation, it can be
evident that the evenly porosity is further impressive for the FGnanoplate in light of the slope of curves on the
diagrams. In fact, the decrease of buckling loads by using evenly porosity is muchmore than decrease of
buckling loads by applying unevenly porosity parameter. It can be stated that the use of the evenly porosity
leads to a softer plate. In addition, it is clearly seen that k factor has not influenced on the porosities. Since the
distances between the curves of various power law index in both figures are intensively similar to each other.
Bymore examining, it is deduced that results of critical buckling loads decreased linearly with an increase in
porosities.

Figures 6(a) and (b) show variation ofmaterial grading index versus evenly porosity and half-waves,
respectively. It can be seen from figure 6(a) that the increase of grading index decreases critical buckling loads
nonlinearly. However, after k=4, this decreasing trend hasmore intensity and finally for k→∞which the
FG nanoplate is converted to fullymetal, the results of critical buckling loads would be smaller. This
nonlinear trend is accompanied with linear decreasing trend of porosity in figure 6(c). In this figure, in the
right section the changes in porosity and in the left section the variation of grading index are illustrated.
According to this three-dimensional figure, it can be deduced that the lowest buckling loads when
0.2�α�0.6 and k=5 occurs.Moreover, a comparison between results of half-waves is presented by

Figure 3. (a)Porosity variation versus thickness to length ratio (Lx/Ly=2, e0a=0.02 nm, k=1, SS-II,m=n=1,Z1(z)).
(b)Material grading index versus thickness to length ratio (Lx/Ly=2, e0a=0.02 nm,α=0.1,P-II,m=n=1,Z1(z)).
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figure 6(b)within which both type of porosities are considered. It is indicated that for lower half-waves the
decreasing trend of buckling loads which resulted from increasing grading index is slower than higher half-
waves. It can be seen after a specific value of k, the results of various half-waves tend to be equal to one
another.

By utilizing figure 7 the changes in aspect ratio (Lx/Ly) in the right section and also span ratio (h/Lx) in the left
section offigure are shown. The increase of aspect ratio leads to growing the resistance of the FGnanoplate
linearly, however, the span ratio is amore important factor due to its very smaller values.

5. Conclusions

The constitutive equations for a porous functionally gradedmaterial were derived inCartesian coordinate
systemusing three-dimensional elasticity theory. The governing equationswere in a nonlocal formby using
nonlocal elasticity theory of Eringen. In order for results to be obtained, the nonlocal governing equations were
solvedwith the volume integralmethods inwhich some shape functionswere assumed. After comparing the
results of the present solutionwith other research results, the excellent agreements were observed. Thereafter,

Figure 4. (a)Material grading index versus small-scale effects (Lx/Ly=1, h/Lx=0.2,α=0.1, P-II,m=n=1,Z1(z)). (b)Porosities
versus small-scale effects (Lx/Ly=1, h/Lx=0.2, k=1,α=0.1,m=n=1,Z1(z)).
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with utilizing some significant parameters the diagramswere plottedwithinwhich somenoticeable conclusions
are presented as follows:

• Even porosity made plates softer and results of uneven porosity are so close to the prefect material which led
to this considerable conclusion that porosity as an uneven distribution cannot be important in order to
implement it in the equations.

• The drastic influence of three-dimensional nonlocal parameter on the critical buckling analysis of FG
nanoplate proved that this parameter plays a determinative role to examinemechanical behavior of porous
FGnanoplates.

Figure 5. (a)Variation of evenly porosity factor versusmaterial grading index (Lx/Ly=1, h/Lx=0.1, e0a=0.01 nm,P-I,
m=n=2,Z1(z), SS-II). (b)Variation of unevenly porosity factor versusmaterial grading index (Lx/Ly=1, h/Lx=0.1,
e0a=0.01 nm,P-II,m=n=2,Z1(z), SS-II).
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Figure 6. (a)Material grading index versus porosity factor variation (Lx/Ly=1, h/Lx=0.1, e0a=0.01 nm, P-I,m=n=2,Z1(z),
SS-II). (b)Material grading index versus porosity factors (Lx/Ly=1, h/Lx=0.1,α=0.25,P-I, e0a=0.01 nm,Z1(z), SS-II).
(c)Material grading index versus porosity factors (Lx/Ly=1, h/Lx=0.1, e0a=0.01 nm,Z1(z), P-II,m=n=2, SS-II).
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